Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First principles study of H2 dissociation, H atom and O atom diffusion on Mo doped γ-U (100) surface

Li Jun-Wei Jia Wei-Min Wei Ya-Xuan Lü Sha-Sha Wang Jin-Tao Li Zheng-Cao

Citation:

First principles study of H2 dissociation, H atom and O atom diffusion on Mo doped γ-U (100) surface

Li Jun-Wei, Jia Wei-Min, Wei Ya-Xuan, Lü Sha-Sha, Wang Jin-Tao, Li Zheng-Cao
PDF
HTML
Get Citation
  • As an important uranium alloy, U-Mo alloy has excellent mechanical properties, structural stability and thermal conductivity, which is an important nuclear reactor fuel and tank armor. However, there exists a serious of fundamental problems of U-Mo alloy which need solving for practical applications. U-Mo alloy is easily subjected to surface corrosion of small molecules including the H2, O2, H2O, and CO2. The hydrogen corrosion and oxidation will have significant influence on it. In order to further investigate the reaction mechanism, based on the density functional theory and the transition state algorithm, the first principles calculation of γ-U (100) with Mo atom doping and Mo coating is carried out.Firstly, the minimum energy path of H2 molecule is calculated for the dissociation adsorption on Mo-U and 4Mo-U surface. Secondly, the transition states of H and O atoms are studied during surface diffusing between adjacent most stable adsorption sites. Thirdly, the bulk phase diffusion of H and O atoms are investigated and the relationship is analyzed between adsorption energy and adsorption height in the bulk phase diffusion.The results show that when H2 molecule is adsorbed at the configuration of top horizontal position, the H atom needs to overcome a barrier to triggering off the H—H bond-broken and then is adsorbed on surface bridge site by the neighboring atoms. The energy barrier for H2 dissociation on 4Mo-U is higher than that of Mo-U. Meanwhile, the lower energy barrier is required for O atom to diffuse in Mo-U, so that it can be adsorbed, dissociated and diffused quickly, and then forming an oxidation film on the surface. Furthermore, both H and O atoms need to cross the energy barrier to diffuse into the body phase, forming chemical bonds with the atoms and staying in the body phase stably finally.In this paper, we comprehensively analyze the dissociation and diffusion of the initial stage for hydrogen corrosion and oxidation on uranium-molybdenum alloy by theoretical studies. The results lay a foundation for theoretically exploring the surface corrosion mechanism of U-Mo alloy. Meanwhile, They provide theoretical support for investigating burn-in and corrosion of uranium-molybdenum alloy, predicting material properties under extreme and special environment, and providing a reference for further research on corrosion resistance of uranium-molybdenum alloy.
      Corresponding author: Li Zheng-Cao, zcli@tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975135, 12005017) and the National Basic Research Program of China (Grant No. 2020YFB1901800).
    [1]

    伯格J. J. 著 (石琪 译) 1983 铀合金物理冶金 (北京: 原子能出版社) 第76—79页

    Burke J J (translated by Shi Q)1983 Physical Metallurgy of Uranium Alloys (Beijing: Atomic Energy Press) pp76–79 (in Chinese)

    [2]

    Yang X Y, Yang Y, Liu Y, Wang Z W, Wärnå J, Xu Z T, Zhang P 2020 Prog. Nucl. Energy 122 103268Google Scholar

    [3]

    Koelling D D, Freeman A J 1973 Phys. Rev. B 7 4454Google Scholar

    [4]

    Shen Z Y, Kong Y, Du Y, Zhang S Y 2021 Calphad 72 102241Google Scholar

    [5]

    SU Q L, DENG H Q, AO B Y, Xiao S F, Chen P H, Hu W Y 2014 Rsc Advances 4 57308Google Scholar

    [6]

    Bajaj S, Landa A, Söderlind P, Turchi P E A, Arróyave R 2011 J. Nucl. Mater. 419 177Google Scholar

    [7]

    Castellano A, Bottin F, Dorado B, Bouchet J 2020 Phys. Rev. B 101 184111Google Scholar

    [8]

    Losada E L, Garces J E 2019 J. Nucl. Mater. 518 380Google Scholar

    [9]

    Alonso P R, Rubiolo G H 2007 Modell. Simul. Mater. Sci. Eng. 15 263Google Scholar

    [10]

    Powell G L, Kirkpatrick J R 1997 J. Alloys Compd. 253 167

    [11]

    Kautz E J, Lambeets S V, Royer J, Perea D E, Harilal S S 2022 Scr. Mater. 212 114528Google Scholar

    [12]

    Ilton E S, Bagus P S 2011 Surf. Interface Anal. 43 1549Google Scholar

    [13]

    Mclean W, Colmenares C A, Smith R L, Somorjai G A 1982 Phys. Rev. B 25 8Google Scholar

    [14]

    Tian X F, Wang Yu, Li L S, Wu M D, Yu Y 2020 Comput. Mater. Sci. 179 109633Google Scholar

    [15]

    Liu G D, Liu Z X, Ao B Y, Hu W Y, Deng H Q 2018 Comput. Mater. Sci. 144 85Google Scholar

    [16]

    李俊炜, 贾维敏, 吕沙沙, 魏雅璇, 李正操, 王金涛 2022 物理学报 71 226601Google Scholar

    Li J W, Jia W M, Lü S S, Wei Y X, Li Z C, Wang J T 2022 Acta Phys. Sin. 71 226601Google Scholar

    [17]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [18]

    Kresse G, Hafner J 1993 Phys. Rev. B: Condens. Matter. 48 13115Google Scholar

    [19]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1993 Phys. Rev. B: Condens. Matter. 46 6671

    [20]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [21]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045Google Scholar

    [22]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [23]

    Pack James D, Monkhorst H J 1976 Phys. Rev. B 13 5188Google Scholar

    [24]

    Chiotti P, Klepfer H H, White R W 1959 Trans. Am. Soc. Metals 51 772

    [25]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354Google Scholar

    [26]

    Electronegativity of Chemical Elements, Material-properties https://material-properties.org/electronegativity-of-chemical-elements/ [2023-1-1]

    [27]

    Deringer V L, Tchougréeff A L, Dronskowski R 2011 J. Phys. Chem. A 115 5461Google Scholar

    [28]

    Nelson R, ErturalC, George J, Deringer V, Dronskowski R 2020 J. Comput. Chem. 41 1931Google Scholar

  • 图 1  H2分子吸附解离示意图 (a) Mo-U; (b) 4Mo-U

    Figure 1.  Schematic diagram of H2 molecular adsorption and dissociation: (a) Mo-U; (b) 4Mo-U

    图 2  H2分子在Mo-U和4Mo-U表面解离吸附过程的最小能量路径 (a) Mo-U; (b) 4Mo-U

    Figure 2.  The minimum energy paths (MEPs) for H2 adsorption and dissociation on Mo-U and 4Mo-U surface: (a) Mo-U; (b) 4Mo-U.

    图 3  H2分子在Mo-U表面解离吸附过程中与部分原子的分波态密度 (a) Mo原子和H原子的分波态密度; (b) 13号U原子和H原子的分波态密度

    Figure 3.  (a) The partial density of states (PDOS) between H and surface atoms at the adsorption and dissociation on Mo-U: (a) PDOS of Mo and H atoms; (b) PDOS of 13 th U and H atoms.

    图 4  H2分子在4Mo-U表面解离吸附过程中部分原子的分波态密度 (a) 3号Mo原子和H原子的分波态密度; (b) 4号Mo原子和H原子的分波态密度

    Figure 4.  (a) PDOS between H and surface atoms at the adsorption and dissociation on 4Mo-U: (a) PDOS of 3th Mo and H atoms; (b) PDOS of 4th U and H atoms.

    图 5  H2在Mo-U表面解离吸附过程中差分电荷密度(等值面: 0.002 e/Å3) (a) 初态; (b) 过渡态; (c) 终态

    Figure 5.  Differential charge density of H2 at the adsorption and dissociation on Mo-U (Isosurfaces level: 0.002 e/Å3): (a) Initial state; (b) transition state; (c) final state.

    图 6  H2在4Mo-U表面解离吸附过程中差分电荷密度(等值面: 0.002 e/Å3) (a) 初态; (b) 过渡态; (b) 终态

    Figure 6.  Differential charge density of H2 at the adsorption and dissociation on 4Mo-U (Isosurfaces level: 0.002 e/Å3): (a) Initial state; (b) transition state; (c) final state.

    图 7  不同能垒下H2分子净电荷转移结果随过渡态能垒的变化, 插图为H2分子Mo-U和4Mo-U解离时的电子态密度

    Figure 7.  The net charge transfer of H2 molecules versus energy barriers, and the illustration shows PDOS of H2 molecules under transition state on Mo-U and 4Mo-U.

    图 8  (a) H原子在Mo-U表面扩散过程的最小能量路径; (b) H原子在4Mo-U表面扩散过程的最小能量路径

    Figure 8.  (a) The MEPs for H atom diffusion on Mo-U surface; (b) the MEPs for H atom diffusion on 4Mo-U surface.

    图 9  (a) O原子在Mo-U表面扩散过程的最小能量路径; (b) O原子在4Mo-U表面扩散过程的最小能量路径

    Figure 9.  (a) The MEPs for O atom diffusion on Mo-U surface; (b) the MEPs for O atom diffusion on 4Mo-U surface.

    图 10  H原子在Mo-U和4Mo-U体内扩散优化前后的俯视图和侧视图 (a) 优化前H-Mo-U_First; (b)优化前H-Mo-U_Second; (c)优化前H-Mo-U_Third; (d)优化前H-4Mo-U_First; (e) 优化前H-4Mo-U_Second; (f) 优化前H-4Mo-U_Third. 下方对应图像为其优化后结果, 如(a')优化后H-Mo-U_First

    Figure 10.  Top and side views of H atom bulk diffusion on Mo-U surface before and after structure optimization: (a) H-Mo-U_First before optimization; (b) H-Mo-U_Second before optimization; (c) H-Mo-U_Third before optimization; (d) H-4Mo-U_First before optimization; (e) H-4Mo-U_Second before optimization; (f) H-4Mo-U_Third before optimization. The corresponding image below is optimization result, such as (a') H-Mo-U_First after optimization.

    图 11  O原子在Mo-U和4Mo-U体内扩散优化前后的俯视图和侧视图 (a) 优化前O-Mo-U_First; (b)优化前O-Mo-U_Second; (c)优化前O-Mo-U_Third; (d)优化前O-4Mo-U_First; (e) 优化前O-4Mo-U_Second; (f) 优化前O-4Mo-U_Third. 下方对应图像为其优化后结果, 如(a')优化后O-Mo-U_First

    Figure 11.  Top and side views of O atom bulk diffusion on Mo-U surface before and after structure optimization: (a) O-Mo-U_First before optimization; (b) O-Mo-U_Second before optimization; (c) O-Mo-U_Third before optimization; (d) O-4Mo-U_First before optimization; (e) O-4Mo-U_Second before optimization; (f) O-4Mo-U_Third before optimization. The corresponding image below is optimization result, such as (a') O-Mo-U_First after optimization.

    图 12  不同初始吸附构型下, 原子体相扩散稳定吸附高度及吸附能量变化 (a) H原子在Mo-U体相扩散; (b) H原子在4Mo-U体相扩散; (c) O原子在Mo-U体相扩散; (d) O原子在4Mo-U体相扩散

    Figure 12.  The adsorption height and energy for atom diffusion in bulk phase under different initial adsorption configurations: (a) H atom diffusion in Mo-U bulk phase; (b) H atom diffusion in 4Mo-U bulk phase; (c) O atom diffusion in Mo-U bulk phase; (d) O atom diffusion in 4Mo-U bulk phase.

    图 13  不同初始吸附构型下, O原子与基底成键原子的COHP (a) O-Mo-U_Second; (b) O-Mo-U_Third; (c) O-4Mo-U_Second; (d) O-4Mo-U_Third

    Figure 13.  The COHP of O atom bonding to the bulk atoms: (a) O-Mo-U_Second; (b) O-Mo-U_Third; (c) O-4Mo-U_Second; (d) O-4Mo-U_Third.

    表 1  H2分子在Mo-U表面不同解离阶段下的净电荷数

    Table 1.  The net charge number of H2 molecules at different dissociation stages on Mo-U surface.

    ConfigurationH1/eH2/eMo1/eU3/eU8/eU13/e
    Initial0.12770.10320.2662–0.1315–0.3385–0.2727
    Transition0.22180.25520.1256–0.0307–0.2919–0.3678
    020.34420.34420.0495–0.0407–0.3044–0.4325
    030.41790.41770.0034–0.0411–0.2918–0.4775
    Final0.44820.44820.0130–0.0436–0.2637–0.5015
    DownLoad: CSV

    表 2  H2分子在4Mo-U表面不同解离阶段下的净电荷数

    Table 2.  The net charge number of H2 molecules at different dissociation stages on 4Mo-U surface.

    ConfigurationH1/eH2/eMo1/eMo2/eMo3/eMo4/e
    Initial0.02670.03190.27420.24840.24560.1868
    010.10000.10000.26850.23370.20870.1183
    Transition0.20800.20800.25280.20730.13270.0377
    030.29920.29920.25270.20300.0856–0.0345
    040.35290.35290.25180.21580.0399–0.0536
    050.37770.37770.24080.24530.0095–0.0225
    Final0.39260.39260.24800.26320.00770.0043
    DownLoad: CSV

    表 A1  O原子在体相扩散后与Mo-U结构中部分原子的ICOHP

    Table A1.  ICOHP between O atom and partial atoms in Mo-U after bulk phase diffusion.

    Mo-U_ SecondICOHP/eVMo-U_ ThirdICOHP/eV
    Mo1-O11.6431U5-O14.8108
    U5-O14.4165U7-O15.0568
    U8-O12.6392U10-O14.8167
    U10-O14.4180U17-O12.2676
    U17-O12.5125
    DownLoad: CSV

    表 A2  O原子在体相扩散后与4Mo-U结构中部分原子的ICOHP

    Table A2.  ICOHP between O atom and partial atoms in 4Mo-U after bulk phase diffusion.

    4Mo-U_SecondICOHP/eV4Mo-U_ThirdICOHP/eV
    Mo3-O12.4263U8-O13.9520
    Mo4-O11.5266U10-O16.0116
    U8-O15.0490U14-O15.9456
    U16-O15.0493U16-O13.9521
    DownLoad: CSV
  • [1]

    伯格J. J. 著 (石琪 译) 1983 铀合金物理冶金 (北京: 原子能出版社) 第76—79页

    Burke J J (translated by Shi Q)1983 Physical Metallurgy of Uranium Alloys (Beijing: Atomic Energy Press) pp76–79 (in Chinese)

    [2]

    Yang X Y, Yang Y, Liu Y, Wang Z W, Wärnå J, Xu Z T, Zhang P 2020 Prog. Nucl. Energy 122 103268Google Scholar

    [3]

    Koelling D D, Freeman A J 1973 Phys. Rev. B 7 4454Google Scholar

    [4]

    Shen Z Y, Kong Y, Du Y, Zhang S Y 2021 Calphad 72 102241Google Scholar

    [5]

    SU Q L, DENG H Q, AO B Y, Xiao S F, Chen P H, Hu W Y 2014 Rsc Advances 4 57308Google Scholar

    [6]

    Bajaj S, Landa A, Söderlind P, Turchi P E A, Arróyave R 2011 J. Nucl. Mater. 419 177Google Scholar

    [7]

    Castellano A, Bottin F, Dorado B, Bouchet J 2020 Phys. Rev. B 101 184111Google Scholar

    [8]

    Losada E L, Garces J E 2019 J. Nucl. Mater. 518 380Google Scholar

    [9]

    Alonso P R, Rubiolo G H 2007 Modell. Simul. Mater. Sci. Eng. 15 263Google Scholar

    [10]

    Powell G L, Kirkpatrick J R 1997 J. Alloys Compd. 253 167

    [11]

    Kautz E J, Lambeets S V, Royer J, Perea D E, Harilal S S 2022 Scr. Mater. 212 114528Google Scholar

    [12]

    Ilton E S, Bagus P S 2011 Surf. Interface Anal. 43 1549Google Scholar

    [13]

    Mclean W, Colmenares C A, Smith R L, Somorjai G A 1982 Phys. Rev. B 25 8Google Scholar

    [14]

    Tian X F, Wang Yu, Li L S, Wu M D, Yu Y 2020 Comput. Mater. Sci. 179 109633Google Scholar

    [15]

    Liu G D, Liu Z X, Ao B Y, Hu W Y, Deng H Q 2018 Comput. Mater. Sci. 144 85Google Scholar

    [16]

    李俊炜, 贾维敏, 吕沙沙, 魏雅璇, 李正操, 王金涛 2022 物理学报 71 226601Google Scholar

    Li J W, Jia W M, Lü S S, Wei Y X, Li Z C, Wang J T 2022 Acta Phys. Sin. 71 226601Google Scholar

    [17]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [18]

    Kresse G, Hafner J 1993 Phys. Rev. B: Condens. Matter. 48 13115Google Scholar

    [19]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1993 Phys. Rev. B: Condens. Matter. 46 6671

    [20]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [21]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045Google Scholar

    [22]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [23]

    Pack James D, Monkhorst H J 1976 Phys. Rev. B 13 5188Google Scholar

    [24]

    Chiotti P, Klepfer H H, White R W 1959 Trans. Am. Soc. Metals 51 772

    [25]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354Google Scholar

    [26]

    Electronegativity of Chemical Elements, Material-properties https://material-properties.org/electronegativity-of-chemical-elements/ [2023-1-1]

    [27]

    Deringer V L, Tchougréeff A L, Dronskowski R 2011 J. Phys. Chem. A 115 5461Google Scholar

    [28]

    Nelson R, ErturalC, George J, Deringer V, Dronskowski R 2020 J. Comput. Chem. 41 1931Google Scholar

  • [1] Liu Xu-Xi, Gao Shi-Sen, La Yong-Xiao, Yu Dong-Liang, Liu Wen-Bo. Phase-field simulation of high-temperature corrosion of binary Zr-2.5Sn alloy. Acta Physica Sinica, 2024, 73(14): 148201. doi: 10.7498/aps.73.20240393
    [2] Yang Jian-Yu, Xi Kun, Zhu Li-Zhe. Transition state searching for complex biomolecules: Algorithms and machine learning. Acta Physica Sinica, 2023, 72(24): 248701. doi: 10.7498/aps.72.20231319
    [3] Dong Xiao. Density functional theory on reaction mechanism between p-doped LiNH2 clusters and LiH and a new hydrogen storage and desorption mechanism. Acta Physica Sinica, 2023, 72(15): 153101. doi: 10.7498/aps.72.20230374
    [4] Zhang Yu-Hang, Xue Zhen-Yong, Sun Hao, Zhang Zhu-Wei, Chen Hu. Single molecule magnetic tweezers for unfolding dynamics of Acyl-CoA binding protein. Acta Physica Sinica, 2023, 72(15): 158702. doi: 10.7498/aps.72.20230533
    [5] Cheng Chao, Wang Xun, Sun Jia-Xing, Cao Chao-Ming, Ma Yun-Li, Liu Yan-Xia. Electronic structure calculation of Cr content effect on corrosion resistance of Ti-Nb-Cr alloy. Acta Physica Sinica, 2018, 67(19): 197101. doi: 10.7498/aps.67.20180956
    [6] Yang Meng-Sheng, Yi Tai-Min, Zheng Feng-Cheng, Tang Yong-Jian, Zhang Lin, Du Kai, Li Ning, Zhao Li-Ping, Ke Bo, Xing Pi-Feng. Surface oxidation of as-deposit uranium film characterized by X-ray photoelectron spectroscopy. Acta Physica Sinica, 2018, 67(2): 027301. doi: 10.7498/aps.67.20172055
    [7] Ke Hai-Bo, Pu Zhen, Zhang Pei, Zhang Peng-Guo, Xu Hong-Yang, Huang Huo-Gen, Liu Tian-Wei, Wang Ying-Min. Research progress in U-based amorphous alloys. Acta Physica Sinica, 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [8] Sun Qi-Xiang, Yan Bing. Computational study of two-body and three-body dissociation of CH3I2+. Acta Physica Sinica, 2017, 66(9): 093101. doi: 10.7498/aps.66.093101
    [9] Yao Jian-Gang, Gong Bao-An, Wang Yuan-Xu. Dissociative adsorptions of NO on Yn (n=1–12) clusters. Acta Physica Sinica, 2013, 62(24): 243601. doi: 10.7498/aps.62.243601
    [10] Duan Yong-Hua, Sun Yong, He Jian-Hong, Peng Ming-Jun, Guo Zhong-Zheng. Electronic theory of the mechanism of corrosion of Pb-Mg-Al alloy. Acta Physica Sinica, 2012, 61(4): 046101. doi: 10.7498/aps.61.046101
    [11] Tang Yan-Li, Li Rong-Wu. Research of dimer diffusion and dissociation on Cu surfaces. Acta Physica Sinica, 2012, 61(18): 186802. doi: 10.7498/aps.61.186802
    [12] Zhang Hui, Wu Di, Zhang Guo-Ying, Xiao Ming-Zhu. Study of the influence mechanism of additional elements on the corrosion behavior of bulk Cu-based amorphous alloys. Acta Physica Sinica, 2010, 59(1): 488-493. doi: 10.7498/aps.59.488
    [13] Liu Gui-Li. Electronic structure and corrosion character of Mg alloys. Acta Physica Sinica, 2010, 59(4): 2708-2713. doi: 10.7498/aps.59.2708
    [14] Liu Gui-Li. Study of corrosion effect of Pt on Ti alloys by recursion method. Acta Physica Sinica, 2009, 58(5): 3359-3363. doi: 10.7498/aps.58.3359
    [15] Liu Gui-Li. Electronic theoretical study on the influence of rare earth on the stress corrosion in magnesium alloy. Acta Physica Sinica, 2006, 55(12): 6570-6573. doi: 10.7498/aps.55.6570
    [16] SUN QIANG, XIE JIAN-JUN, ZHANG TAO. H2 DISSOCIATIVE ADSORPTION ON SURFACES OF Ni, Pd and Cu. Acta Physica Sinica, 1995, 44(11): 1805-1813. doi: 10.7498/aps.44.1805
    [17] LU CHUN-MING, LI ZHE-SHEN, DONG GUO-SHENG, REN JING, GONG YA-QIAN. INFLUENCE OF CHEMICAL ETCHING AND SULFIDE TREATMENT ON InSb(111) SURFACES. Acta Physica Sinica, 1992, 41(4): 675-682. doi: 10.7498/aps.41.675
    [18] KAO SHU-JUN, TSIEN CHIH-TSIANG. THE QUASI-CHEMICAL MODEL OF SELF-DIFFUSION IN HOMOGENEOUS ALLOYS. Acta Physica Sinica, 1965, 21(3): 622-629. doi: 10.7498/aps.21.622
    [19] ИССЛЕДОВАНИЕ ПОЛИГОНИЗАЦИИ МОЛИБДЕНА И ЕГО СПЛАВОВ. Acta Physica Sinica, 1964, 20(6): 528-539. doi: 10.7498/aps.20.528
    [20] . Acta Physica Sinica, 1963, 19(12): 824-829. doi: 10.7498/aps.19.824
Metrics
  • Abstract views:  3362
  • PDF Downloads:  75
  • Cited By: 0
Publishing process
  • Received Date:  08 January 2023
  • Accepted Date:  27 April 2023
  • Available Online:  18 May 2023
  • Published Online:  20 July 2023

/

返回文章
返回