Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Photonic shielding in giant resonator system

Zhu Ming-Jie Zhao Wei Wang Zhi-Hai

Citation:

Photonic shielding in giant resonator system

Zhu Ming-Jie, Zhao Wei, Wang Zhi-Hai
PDF
HTML
Get Citation
  • In the traditional quantum optics and waveguide quantum electrodynamics, atom is usually considered as a point like dipole. However, the successful coupling between a superconducting transmon and surface acoustic wave gives birth to a giant atom, which interacts with the waveguide via more than two points. In the giant atom setup, the dipole approximation breaks down the nonlocal light-matter interaction, it brings lots of unconventional quantum effects, which are presented by the phase interference. As a simplification, the giant resonator, which supports equal energy interval, can be regarded as a linear version of the giant atom. Like the giant atom system, the giant resonator is also coupled to the resonator array waveguide via two sites. According to the quantum interference effect, we study the phase control in giant resonator and the cavities in the waveguide. For a coupled three-resonator system, we reveal the characteristics of the steady state via the Heisenberg-Langevin equations when the driving and dissipation are both present. In such a system, the steady state can be coherently controlled by adjusting the phase difference $\phi$ between the two classical driving fields. We analytically give the existence condition of dark cavity. The results show that only when the middle cavity and the giant resonator are both ideal, can one realize the flash and shielding. Furthermore, we generalize the above study in three resonator system to the multiple cavity system to investigate the photonic flash and shielding. We find that when the number of the middle resonators is $4n+1\, (n\in {Z})$, the bidirectional photonic shielding occurs, that is, the giant resonator can shield the middle resonators in the waveguide and vice versa. On the contrary, when there are $4n+3$ middle resonators in the giant resonator regime, only the directional photonic shielding happens, that is, the giant resonator can shield the waveguide, but the waveguide cannot shield the giant resonator. The above interesting photonic flash and shielding comes from the quantum interference effect. That is, the driving field injects the photons into the waveguide, and the photons propagate in different directions. In the overlapped regime, the photon carrying different phase undergoes destructive interference and acts as a dark resonator. We hope that the interference based photonic control scheme can be applied to the field of quantum device designing.
      Corresponding author: Wang Zhi-Hai, wangzh761@nenu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2021YFE0193500)
    [1]

    Leibfried D, Blatt R, Monroe C, Wineland D 2003 Rev. Mod. Phys. 75 281Google Scholar

    [2]

    Haroche S 2013 Rev. Mod. Phys. 85 1083Google Scholar

    [3]

    You J Q, Nori F 2011 Nature 474 589Google Scholar

    [4]

    Xiang Z L, Ashhab S, You J Q, Nori F 2013 Rev. Mod. Phys. 85 623Google Scholar

    [5]

    张智明 2015 量子光学 (北京: 科学出版社) 第26—28页

    Zhang Z M 2015 Quantum Optics (Beijing: Science Press) pp26–28 (in Chinese)

    [6]

    Cai Q Y, Jia W Z 2021 Phys. Rev. A 104 033710Google Scholar

    [7]

    Kockum A F, Delsing P, Johansson G 2014 Phys. Rev. A 90 013837Google Scholar

    [8]

    Zhao W, Wang Z H 2020 Phys. Rev. A 101 053855Google Scholar

    [9]

    Kockum A F 2020 Internation Symposiun on Mathematics, Quantum Theory, and Cryptography Fukuoka, Japan, September 25–27, 2019 p125

    [10]

    Gustafsson M V, Aref T, Kockum A F, Ekström M K, Johansson G, Delsing P 2014 Science 346 207Google Scholar

    [11]

    Guo L Z, Grimsmo A, Kockum A F, Pletyukhov M, Johansson G 2017 Phys. Rev. A 95 053821Google Scholar

    [12]

    Kockum A F, Johansson G, Nori F 2018 Phys. Rev. Lett. 120 140404Google Scholar

    [13]

    Kannan B, Ruckriegel M J, Campbell D L, Kockum A F, Braumüller J, Kim D K, Kjaergaard M, Krantz P, Melville A, Niedzielski B M, Vepsäläinen A, Winik R, Yoder J L, Nori F, Orlando T P, Gustavsson S, Oliver W D 2020 Nature 583 775Google Scholar

    [14]

    Vadiraj A M, Ask A, McConkey T G, Nsanzineza I, Chang C W S, Kockum A F, Wilson C M 2021 Phys. Rev. A 103 023710Google Scholar

    [15]

    Zhou L, Yang S, Liu Y X, Sun C P, Nori F 2009 Phys. Rev. A 80 062109Google Scholar

    [16]

    Zhou L, Gong Z R, Liu Y X, Sun C P, Nori F 2008 Phys. Rev. Lett. 101 100501Google Scholar

    [17]

    程木田 2011 物理学报 60 117301Google Scholar

    Cheng M T 2011 Acta Phys. Sin. 60 117301Google Scholar

    [18]

    Witthaut D, SØrensen A S 2010 New J.Phys. 12 043052Google Scholar

    [19]

    Zang X F, Jiang C 2010 J. Phys. B: At. Mol. Opt. Phys. 43 065505Google Scholar

    [20]

    Liao J Q, Gong Z R, Zhou L, Liu Y X, Sun C P, Nori F 2010 Phys. Rev. A 81 042304Google Scholar

    [21]

    石永强, 孔维龙, 吴存仁, 张文轩, 谭磊 2017 物理学报 66 054204Google Scholar

    Shi Y Q, Kong W L, Wu R C, Zhang W X, Tan L 2017 Acta Phys. Sin. 66 054204Google Scholar

    [22]

    海莲, 张莎, 李维银, 谭磊 2017 物理学报 66 154203Google Scholar

    Hai L, Zhang S, Li W Y, Tan L 2017 Acta Phys. Sin. 66 154203Google Scholar

    [23]

    Shen J T, Fan S H 2009 Phys. Rev. A 79 023838Google Scholar

    [24]

    Qin W, Nori F 2016 Phys. Rev. A 93 032337Google Scholar

    [25]

    Zhou L, Yang L P, Li Y, Sun C P 2013 Phys. Rev. Lett. 111 103604Google Scholar

    [26]

    Du X P, Cao Q, Dang N, Tan L 2021 Eur. Phys. J. D 75 79Google Scholar

    [27]

    Wang Z H, Zhou L, Li Y, Sun C P 2014 Phys. Rev. A 89 053813Google Scholar

    [28]

    陆赫林, 杜春光 2016 物理学报 65 214204Google Scholar

    Lu H L, Du C G 2016 Acta Phys. Sin. 65 214204Google Scholar

    [29]

    Lei F C, Gao M, Du C G, Jing Q L, Long G L 2015 Opt. Express 23 011508Google Scholar

    [30]

    Yan X B, Gu K H, Fu C B, Cui C L, Wang R, Wu J H 2014 Eur. Phys. J. D 68 126Google Scholar

    [31]

    Yan X B, Gu K H, Fu C B, Cui C L, Wu J H 2014 Chin. Phys. B 23 114201Google Scholar

    [32]

    王雅君, 王俊萍, 张文慧, 李瑞鑫, 田龙, 郑耀辉 2021 物理学报 70 204202Google Scholar

    Wang Y J, Wang J P, Zhang W H, Li R X, Tian L, Zheng Y H 2021 Acta Phys. Sin. 70 204202Google Scholar

    [33]

    Yin Y, Chen Y, Sank D, O’Malley P J J, White T C, Barends R, Kelly J, Lucero E, Mariantoni M, Megrant A, Neill C, Vainsencher A, Wenner J, Korotkov A N, Cleland A N, Martinis J M 2013 Phys. Rev. Lett. 110 107001Google Scholar

    [34]

    Meher N, Sivakumar S, Panigrahi P K 2017 Sci. Rep. 7 9251Google Scholar

    [35]

    熊芳, 冯晓强, 谭磊 2016 物理学报 65 044205Google Scholar

    Xiong F, Feng X Q, Tan L 2016 Acta Phys. Sin. 65 044205Google Scholar

    [36]

    Wang H, Blencowe M P, Armour A D, Rimberg A J 2017 Phys. Rev. B 96 104503Google Scholar

    [37]

    Armour A D, Blencowe M P, Brahimi E, Rimberg A J 2013 Phys. Rev. Lett. 111 247001Google Scholar

    [38]

    Wang Z H, Xu X W, Li Y 2017 Phys. Rev. A 95 013815Google Scholar

    [39]

    Cui X Y, Wang Z H, Wu J H 2018 Commun. Theor. Phys. 70 215Google Scholar

    [40]

    张智明 2015 量子光学 (北京: 科学出版社) 第173—177页

    Zhang Z M 2015 Quantum Optics (Beijing: Science Press) pp173–177 (in Chinese)

    [41]

    Roushan P, Neill C, Tangpanitanon J, Bastidas V M, Megrant A, Barends R, Chen Y, Chen Z, Chiaro B, Martinis J 2017 Science 358 1175Google Scholar

    [42]

    Ma R, Saxberg B, Owens C, Leung N, Lu Y, Simon J, Schuster D I 2019 Nature 566 51Google Scholar

  • 图 1  系统模型示意图

    Figure 1.  Schematic diagram of system model

    图 2  系统平均光子数随相位差变化图 (a)由暗腔条件所得图像, $ \lambda=J=\varDelta=\varDelta_{0}=\varDelta_{b}=\gamma_{b}=\gamma_{0}=\gamma $, $J_{0}= $$ \dfrac{1}{2\sqrt{6}}\gamma$; (b) $ b $腔为理想腔, $ \lambda=J=J_{0}=\varDelta=\varDelta_{0}=\gamma_{0}=\gamma $, $ \varDelta_{b}=\gamma_{b}=0 $; (c)$ a_{0} $腔与$ b $腔都为理想腔, $ \lambda=J=\varDelta= $$ J_{0}=\gamma=1 $, $\varDelta_{0}=\gamma_{0}= $$ 0$, $ \varDelta_{b}=\gamma_{b}=0 $; (d)$ a_{0} $腔为理想腔, $ \lambda=J=J_{0}=\varDelta=\varDelta_{b}=\gamma_{b}=\gamma $, $ \varDelta_{0}=\gamma_{0}=0 $

    Figure 2.  Diagram of system average photon number versus phase difference: (a) Under the dark cavity conditions, $ \lambda=J=\varDelta=\varDelta_{0}=\varDelta_{b}=\gamma_{b}=\gamma_{0}=\gamma $, $J_{0}=\dfrac{1}{2\sqrt{6}}\gamma$; (b) b cavity is ideal, $ \lambda=J=J_{0}=\varDelta=\varDelta_{0}=\gamma_{0}=\gamma $, $ \varDelta_{b}=\gamma_{b}=0 $; (c) b and $ a_{0} $ cavities are ideal, $ \lambda=J=\varDelta=J_{0}=\gamma=1 $, $ \varDelta_{0}=\gamma_{0}=0 $, $ \varDelta_{b}=\gamma_{b}=0 $; (d) $ a_{0} $ cavity is ideal, $ \lambda=J=J_{0}=\varDelta=\varDelta_{b}= $$ \gamma_{b}=\gamma $, $ \varDelta_{0}=\gamma_{0}=0 $

    图 3  耦合腔阵列为多腔时系统模型示意图

    Figure 3.  Schematic diagram of system for coupled resonator array

    图 4  多腔系统平均光子数随相位差变化图 (a)$ b $腔为理想腔时, $N=8,\; j=4$, $ J=J_{0}=\lambda=\varDelta=\gamma=1 $, $ \varDelta_{b}=\gamma_{b}=0 $, $ \varDelta_{1}=\gamma_{1}=1 $; (b)中间腔为理想腔时, $N=8,\; j=4$, $ J=J_{0}= $$ \lambda=\varDelta=\gamma=1 $, $ \varDelta_{b}=\gamma_{b}=1 $, $ \varDelta_{1}=\gamma_{1}=0 $; (c) $ b $腔为理想腔时, $N=8,\; j=5$, $ J=J_{0}=\lambda=\varDelta=\gamma=1 $, $ \varDelta_{b}=\gamma_{b}=0 $, $ \varDelta_{1}=\gamma_{1}=1 $; (d)中间腔为理想腔时, $N=8,\; j=5$, $J=J_{0}=\lambda= $$ \varDelta=\gamma=1$, $ \varDelta_{b}=\gamma_{b}=1 $, $ \varDelta_{1}=\gamma_{1}=0 $

    Figure 4.  Diagram of the average photon number changing with phase difference in a multi cavities system: (a) b cavity is ideal, $ N=8,\; j=4 $, $ J=J_{0}=\lambda=\varDelta=\gamma=1 $, $ \varDelta_{b}=\gamma_{b}=0 $, $ \varDelta_{1}= \gamma_{1}=1 $; (b) the middle cavities are ideal, $N=8,\; j=4$, $ J=J_{0}=\lambda=\varDelta=\gamma=1 $, $ \varDelta_{b}=\gamma_{b}=1 $, $ \varDelta_{1}=\gamma_{1}=0 $; (c) b cavity is ideal, $N=8,\; j=5$, $ J=J_{0}=\lambda=\varDelta=\gamma=1 $, $ \varDelta_{b}=\gamma_{b}= $$ 0 $, $ \varDelta_{1}=\gamma_{1}=1 $; (d) the middle cavities are ideal, $N=8,\; j=5$, $ J=J_{0}=\lambda=\varDelta=\gamma=1 $, $ \varDelta_{b}=\gamma_{b}=1 $, $ \varDelta_{1}=\gamma_{1}=0 $

    图 5  驱动在$ a_{\pm j} $腔系统平均光子数随相位差变化图 (a)$ b $腔为理想腔时, $N=7,\; j=2$, $ J=J_{0}=\lambda=\varDelta=\gamma=1 $, $\varDelta_{b}=\gamma_{b}= $$ 0$, $ \varDelta_{1}=\gamma_{1}=1 $; (b)中间腔为理想腔时, $N=7,\; j=2$, $ J=J_{0}=\lambda=\varDelta=\gamma=1 $, $ \varDelta_{b}=\gamma_{b}=1 $, $ \varDelta_{1}=\gamma_{1}=0 $; (c)$ b $腔为理想腔时, $N=7,\; j=3$, $ J=J_{0}=\lambda= $$ \varDelta=\gamma=1 $, $ \varDelta_{b}=\gamma_{b}=0 $, $ \varDelta_{1}=\gamma_{1}=1 $; (d)中间腔为理想腔时, $N=7,\; j=3$, $J= J_{0}= \lambda= $$ \varDelta= \gamma=1$, $ \varDelta_{b}=\gamma_{b}=1 $, $ \varDelta_{1}=\gamma_{1}=0 $

    Figure 5.  Diagram of the average photon number changing with phase difference when driving in the $ a_{\pm j} $ cavities: (a) b cavity is ideal, $N=7,\; j=2$, $ J=J_{0}=\lambda=\varDelta=\gamma=1 $, $ \varDelta_{b}=\gamma_{b}=0 $, $ \varDelta_{1}=\gamma_{1}=1 $; (b) the middle cavities are ideal, $N=7,\; j=2$, $ J=J_{0}=\lambda=\varDelta=\gamma=1 $, $ \varDelta_{b}=\gamma_{b}=1 $, $ \varDelta_{1}=\gamma_{1}=0 $; (c) b cavity is ideal, $N=7,\; j=3$, $ J=J_{0}=\lambda=\varDelta=\gamma=1 $, $ \varDelta_{b}=\gamma_{b}= $$ 0 $, $ \varDelta_{1}= \gamma_{1}=1 $; (d) the middle cavities are ideal, $N=7, \;j=3$, $ J=J_{0}=\lambda=\varDelta=\gamma=1 $, $ \varDelta_{b}=\gamma_{b}=1 $, $ \varDelta_{1}=\gamma_{1}=0 $

  • [1]

    Leibfried D, Blatt R, Monroe C, Wineland D 2003 Rev. Mod. Phys. 75 281Google Scholar

    [2]

    Haroche S 2013 Rev. Mod. Phys. 85 1083Google Scholar

    [3]

    You J Q, Nori F 2011 Nature 474 589Google Scholar

    [4]

    Xiang Z L, Ashhab S, You J Q, Nori F 2013 Rev. Mod. Phys. 85 623Google Scholar

    [5]

    张智明 2015 量子光学 (北京: 科学出版社) 第26—28页

    Zhang Z M 2015 Quantum Optics (Beijing: Science Press) pp26–28 (in Chinese)

    [6]

    Cai Q Y, Jia W Z 2021 Phys. Rev. A 104 033710Google Scholar

    [7]

    Kockum A F, Delsing P, Johansson G 2014 Phys. Rev. A 90 013837Google Scholar

    [8]

    Zhao W, Wang Z H 2020 Phys. Rev. A 101 053855Google Scholar

    [9]

    Kockum A F 2020 Internation Symposiun on Mathematics, Quantum Theory, and Cryptography Fukuoka, Japan, September 25–27, 2019 p125

    [10]

    Gustafsson M V, Aref T, Kockum A F, Ekström M K, Johansson G, Delsing P 2014 Science 346 207Google Scholar

    [11]

    Guo L Z, Grimsmo A, Kockum A F, Pletyukhov M, Johansson G 2017 Phys. Rev. A 95 053821Google Scholar

    [12]

    Kockum A F, Johansson G, Nori F 2018 Phys. Rev. Lett. 120 140404Google Scholar

    [13]

    Kannan B, Ruckriegel M J, Campbell D L, Kockum A F, Braumüller J, Kim D K, Kjaergaard M, Krantz P, Melville A, Niedzielski B M, Vepsäläinen A, Winik R, Yoder J L, Nori F, Orlando T P, Gustavsson S, Oliver W D 2020 Nature 583 775Google Scholar

    [14]

    Vadiraj A M, Ask A, McConkey T G, Nsanzineza I, Chang C W S, Kockum A F, Wilson C M 2021 Phys. Rev. A 103 023710Google Scholar

    [15]

    Zhou L, Yang S, Liu Y X, Sun C P, Nori F 2009 Phys. Rev. A 80 062109Google Scholar

    [16]

    Zhou L, Gong Z R, Liu Y X, Sun C P, Nori F 2008 Phys. Rev. Lett. 101 100501Google Scholar

    [17]

    程木田 2011 物理学报 60 117301Google Scholar

    Cheng M T 2011 Acta Phys. Sin. 60 117301Google Scholar

    [18]

    Witthaut D, SØrensen A S 2010 New J.Phys. 12 043052Google Scholar

    [19]

    Zang X F, Jiang C 2010 J. Phys. B: At. Mol. Opt. Phys. 43 065505Google Scholar

    [20]

    Liao J Q, Gong Z R, Zhou L, Liu Y X, Sun C P, Nori F 2010 Phys. Rev. A 81 042304Google Scholar

    [21]

    石永强, 孔维龙, 吴存仁, 张文轩, 谭磊 2017 物理学报 66 054204Google Scholar

    Shi Y Q, Kong W L, Wu R C, Zhang W X, Tan L 2017 Acta Phys. Sin. 66 054204Google Scholar

    [22]

    海莲, 张莎, 李维银, 谭磊 2017 物理学报 66 154203Google Scholar

    Hai L, Zhang S, Li W Y, Tan L 2017 Acta Phys. Sin. 66 154203Google Scholar

    [23]

    Shen J T, Fan S H 2009 Phys. Rev. A 79 023838Google Scholar

    [24]

    Qin W, Nori F 2016 Phys. Rev. A 93 032337Google Scholar

    [25]

    Zhou L, Yang L P, Li Y, Sun C P 2013 Phys. Rev. Lett. 111 103604Google Scholar

    [26]

    Du X P, Cao Q, Dang N, Tan L 2021 Eur. Phys. J. D 75 79Google Scholar

    [27]

    Wang Z H, Zhou L, Li Y, Sun C P 2014 Phys. Rev. A 89 053813Google Scholar

    [28]

    陆赫林, 杜春光 2016 物理学报 65 214204Google Scholar

    Lu H L, Du C G 2016 Acta Phys. Sin. 65 214204Google Scholar

    [29]

    Lei F C, Gao M, Du C G, Jing Q L, Long G L 2015 Opt. Express 23 011508Google Scholar

    [30]

    Yan X B, Gu K H, Fu C B, Cui C L, Wang R, Wu J H 2014 Eur. Phys. J. D 68 126Google Scholar

    [31]

    Yan X B, Gu K H, Fu C B, Cui C L, Wu J H 2014 Chin. Phys. B 23 114201Google Scholar

    [32]

    王雅君, 王俊萍, 张文慧, 李瑞鑫, 田龙, 郑耀辉 2021 物理学报 70 204202Google Scholar

    Wang Y J, Wang J P, Zhang W H, Li R X, Tian L, Zheng Y H 2021 Acta Phys. Sin. 70 204202Google Scholar

    [33]

    Yin Y, Chen Y, Sank D, O’Malley P J J, White T C, Barends R, Kelly J, Lucero E, Mariantoni M, Megrant A, Neill C, Vainsencher A, Wenner J, Korotkov A N, Cleland A N, Martinis J M 2013 Phys. Rev. Lett. 110 107001Google Scholar

    [34]

    Meher N, Sivakumar S, Panigrahi P K 2017 Sci. Rep. 7 9251Google Scholar

    [35]

    熊芳, 冯晓强, 谭磊 2016 物理学报 65 044205Google Scholar

    Xiong F, Feng X Q, Tan L 2016 Acta Phys. Sin. 65 044205Google Scholar

    [36]

    Wang H, Blencowe M P, Armour A D, Rimberg A J 2017 Phys. Rev. B 96 104503Google Scholar

    [37]

    Armour A D, Blencowe M P, Brahimi E, Rimberg A J 2013 Phys. Rev. Lett. 111 247001Google Scholar

    [38]

    Wang Z H, Xu X W, Li Y 2017 Phys. Rev. A 95 013815Google Scholar

    [39]

    Cui X Y, Wang Z H, Wu J H 2018 Commun. Theor. Phys. 70 215Google Scholar

    [40]

    张智明 2015 量子光学 (北京: 科学出版社) 第173—177页

    Zhang Z M 2015 Quantum Optics (Beijing: Science Press) pp173–177 (in Chinese)

    [41]

    Roushan P, Neill C, Tangpanitanon J, Bastidas V M, Megrant A, Barends R, Chen Y, Chen Z, Chiaro B, Martinis J 2017 Science 358 1175Google Scholar

    [42]

    Ma R, Saxberg B, Owens C, Leung N, Lu Y, Simon J, Schuster D I 2019 Nature 566 51Google Scholar

  • [1] Yan Wei-Zhi, Fan Qing, Yang Peng-Fei, Li Gang, Zhang Peng-Fei, Zhang Tian-Cai. Trapping of single atom and precise control of its coupling strength in micro-optical cavity. Acta Physica Sinica, 2023, 72(11): 114202. doi: 10.7498/aps.72.20222220
    [2] Qian Qi-Sheng, Liu Hui-Yan, Zha Yong-Peng, Ni Hai-Bin. Generation and control of structural color in asymmetric coaxial cavity. Acta Physica Sinica, 2022, 71(8): 084103. doi: 10.7498/aps.71.20211337
    [3] Zheng Yun-Jie, Wang Chen-Yang, Xie Shuang-Yuan, Xu Jing-Ping, Yang Ya-Ping. Input-output characteristics of single-mode cavity with multiple coherently coupled artificial atoms. Acta Physica Sinica, 2022, 71(24): 244204. doi: 10.7498/aps.71.20221456
    [4] Li Ze-Yu, Jiang Qu-Han, Ma Teng-Zhou, Yuan Ying-Hao, Chen Lin. Multi-parameter tunable phase transition based terahertz graphene plasmons and its application. Acta Physica Sinica, 2021, 70(22): 224202. doi: 10.7498/aps.70.20210445
    [5] Zhu Ji-Lin, Gao Dong-Bao, Zeng Xin-Wu. In-plane manipulation of single particle based on phase-modulating acoustic tweezer. Acta Physica Sinica, 2021, 70(21): 214302. doi: 10.7498/aps.70.20210981
    [6] Wei Wei-Hua, Li Mu-Tian, Liu Mo-Nan. Coupled microcavities with unidirectional single mode via femtosecond laser direct-writing. Acta Physica Sinica, 2018, 67(6): 064203. doi: 10.7498/aps.67.20172395
    [7] Hai Lian, Zhang Sha, Li Wei-Yin, Tan Lei. Single photon transport properties in the system of coupled cavity array nonlocally coupled to a -type three-level atom. Acta Physica Sinica, 2017, 66(15): 154203. doi: 10.7498/aps.66.154203
    [8] Shi Yong-Qiang, Kong Wei-Long, Wu Ren-Cun, Zhang Wen-Xuan, Tan Lei. Single photon transport by a quantized cavity field driven cascade-type three-level atom in a dissipative coupled cavity array. Acta Physica Sinica, 2017, 66(5): 054204. doi: 10.7498/aps.66.054204
    [9] Qi Zhi-Ming, Liang Wen-Yao. Reflection phase characteristics and their applications based on one-dimensional coupled-cavity photonic crystals with gradually changed thickness ofsurface layer. Acta Physica Sinica, 2016, 65(7): 074201. doi: 10.7498/aps.65.074201
    [10] Xiong Fang, Feng Xiao-Qiang, Tan Lei. Quantum phase transition in arrays of dissipative cavities with two-photon process. Acta Physica Sinica, 2016, 65(4): 044205. doi: 10.7498/aps.65.044205
    [11] Li Hong-Xia, Jiang Yang, Bai Guang-Fu, Shan Yuan-Yuan, Liang Jian-Hui, Ma Chuang, Jia Zhen-Rong, Zi Yue-Jiao. Single mode optoelectronic oscillator assisted by active ring resonance cavity filtering. Acta Physica Sinica, 2015, 64(4): 044202. doi: 10.7498/aps.64.044202
    [12] Zhou Jing, Wang Ming, Ni Hai-Bin, Ma Xin. Finite difference time domain simulation of optical properties of annular cavity arrays. Acta Physica Sinica, 2015, 64(22): 227301. doi: 10.7498/aps.64.227301
    [13] Bao Jia, Tan Lei. The influences of detuning on the duperfluid-nsulator phase transition in coupled dissipative cavity arrays. Acta Physica Sinica, 2014, 63(8): 084201. doi: 10.7498/aps.63.084201
    [14] Ni Zhi-Peng, Wang Qiu-Liang, Yan Lu-Guang. A hybrid optimization approach to design of compact self-shielded super conducting magnetic resonance imaging magnet system. Acta Physica Sinica, 2013, 62(2): 020701. doi: 10.7498/aps.62.020701
    [15] Wang Zheng, Zhao Xin-Jie, He Ming, Zhou Tie-Ge, Yue Hong-Wei, Yan Shao-Lin. Simulations of impedance matching and phase locking of Josephson junction arrays embedded in a Fabry-Perot resonator. Acta Physica Sinica, 2010, 59(5): 3481-3487. doi: 10.7498/aps.59.3481
    [16] Wang Yan-Hua, Ren Wen-Hua, Liu Yan, Tan Zhong-Wei, Jian Shui-Sheng. Phase-modified coupled mode theory for calculation of fiber Bragg grating Fabry-Perot cavity transmission spectrum. Acta Physica Sinica, 2008, 57(10): 6393-6399. doi: 10.7498/aps.57.6393
    [17] Du Xiao-Yu, Zheng Wan-Hua, Ren Gang, Wang Ke, Xing Ming-Xin, Chen Liang-Hui. Slow wave effect of 2-D photonic crystal coupled cavity array. Acta Physica Sinica, 2008, 57(1): 571-575. doi: 10.7498/aps.57.571
    [18] Feng Li-Juan, Jiang Hai-Tao, Li Hong-Qiang, Zhang Ye-Wen, Chen Hong. The dispersive characteristics of impurity bands in coupled-resonator optical waveguides of photonic crystals. Acta Physica Sinica, 2005, 54(5): 2102-2105. doi: 10.7498/aps.54.2102
    [19] Tan Hua-Tang, Gan Zhong-Wei, Li Gao-Xiang. Entanglement for excitons in three quantum dots in a cavity coupled to a broadband squeezed vacuum. Acta Physica Sinica, 2005, 54(3): 1178-1183. doi: 10.7498/aps.54.1178
    [20] Zhang Guang-Yin, Zhang Hai-Chao, Ding Xin, Song Feng, Guo Shu-Guang, Meng Fan-Zhen. . Acta Physica Sinica, 2002, 51(2): 253-258. doi: 10.7498/aps.51.253
Metrics
  • Abstract views:  2949
  • PDF Downloads:  89
  • Cited By: 0
Publishing process
  • Received Date:  10 January 2023
  • Accepted Date:  23 February 2023
  • Available Online:  02 March 2023
  • Published Online:  05 May 2023

/

返回文章
返回