Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation of effect of thermionic emission on magnetized sheath near target plate of tungsten divertor

Li Han-Xi Wang De-Zhen

Citation:

Simulation of effect of thermionic emission on magnetized sheath near target plate of tungsten divertor

Li Han-Xi, Wang De-Zhen
PDF
HTML
Get Citation
  • The high confinement mode (H-mode) is a preferred operation mode of tokamak devices in the future, but the burst of edge localized mode (ELM) will sharply increase the heat load deposited on the divertor target, raising the target temperature rapidly and strengthening surface thermionic emission. In this paper, a one-dimensional fluid model is used to simulate the influence of thermionic emission on the characteristics of the magnetized sheath. The results show that the amplitude of float potential and the electric field strength both decrease under the action of thermionic emission. Plenty of thermionic emission electrons leave the target, resulting in a region with negative charge density near the target plate, and the magnetized sheath is divided into two parts: ion sheath and electron sheath. In the electron sheath, with the rise of the target surface temperature, electrons accumulated in front of the target also increase, the potential distribution is non-monotonic, and a “virtual cathode” structure appears. The reverse electric field formed near the target will confine the thermionic emission electrons leaving the target and slow down the ion movement, leading to a decrease of the ion energy deposited on the target. With the increase of the angle between the magnetic field and the target normal, the potential of the magnetized sheath and the proportion of the thickness of the electron sheath in the magnetized sheath both increase. The virtual cathode potential decreases, the temperature of the target required to form the virtual cathode rises.
      Corresponding author: Wang De-Zhen, wangdez@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12235002)
    [1]

    Burkart W 2005 Nucl. Fusion. 45 E01Google Scholar

    [2]

    Wagner F, Becker G, Behringer K, Campbell D, Eberhagen A, Engelhardt W, Fussmann G, Gehre O, Gernhardt J, Gierke G, Haas G, Huang M, Karger F, Keilhacker M, Klüber O, Kornherr M, Lackner K, Lisitano G, Lister G G, Mayer H M, Meisel D, MIiller E R, Murmann H, Niedermeyer H, Poschenrieder W, Rapp H, Röhr H, Schneider F, Siller G, Speth E, Stäbler A, Steuer K H, Venus G, Vollmer O, Yü Z 1982 Phys. Rev. Lett. 49 1408Google Scholar

    [3]

    ASDEX team 1989 Nucl. Fusion 29 1959Google Scholar

    [4]

    Hobbs G D, Wesson J A 1967 Plasma Phys. 9 85Google Scholar

    [5]

    Takamura S, Ohno N, Ye M Y, Kuwabara T 2004 Contrib. Plasma Phys. 44 126Google Scholar

    [6]

    Gyergyek T, Kovačič J 2013 Contrib. Plasma Phys. 53 189Google Scholar

    [7]

    Tierno S P, Donoso J M, Domenech-Garret J L, Conde L 2016 Phys. Plasmas 23 013503Google Scholar

    [8]

    Li S H, Li J Q 2021 Vacuum 192 110496Google Scholar

    [9]

    Snipes J A, Hubbard A E, Garnier D T, Golovato S N, Granetz R S, Greenwald M, Hutchinson I H, Irby J, LaBombard B, Marmar E S, Niemczewski A, O’Shea P J, Porkolab M, Stek P, Takase Y, Terry J L, Watterson R, Wolfe S M 1996 Plasma Phys. Control. Fusion 38 1127Google Scholar

    [10]

    Campbell D J, the JET team 1997 Plasma Phys. Control. Fusion 39 A285Google Scholar

    [11]

    Maingi R, Bell M G, Bell R E, Bush C E, Fredrickson E D, Gates D A, Kaye S M, Kugel H W, LeBlanc B P, Menard J E, Mueller D, Sabbagh S A, Stutman D, Taylor G, Johnson D W, Kaita R, Maqueda R J, Ono M, Paoletti F, Paul S F, Peng Y K M, Roquemore A L, Skinner C H, Soukhanovskii V A, Synakowski E J 2002 Phys. Rev. Lett. 88 035003Google Scholar

    [12]

    Burrell K H, Austin M E, Brennan D P, DeBoo J C, Doyle E J, Gohil P, Greenfield C M, Groebner R J, Lao L L, Luce T C, Makowski M A, McKee G R, Moyer R A, Osborne T H, Porkolab M, Rhodes T L, Rost J C, Schaffer M J, Stallard B W, Strait E J, Wade M R, Wang G, Watkins J G, West W P, Zeng L 2002 Plasma Phys. Control. Fusion 44 A253Google Scholar

    [13]

    Duan X R, Dong J Q, Yan L W, Ding X T, Yang Q W, Rao J, Liu D Q, Xuan W M, Chen L Y, Li X D, Lei G J, Cao J Y, Cao Z, Song X M, Huang Y, Liu Y, Mao W C, Wang Q M, Cui Z Y, Ji X Q, Li B, Li G S, Li H J, Luo C W, Wang Y Q, Yao L H, Yao L Y, Zhang J H, Zhou J, Zhou Y, Liu Y, HL-2 A team 2010 Nucl. Fusion 50 095011Google Scholar

    [14]

    Komm M, Ratynskaia S, Tolias P, Cavalier J, Dejarnac R, Gunn J P, Podolnik A 2017 Plasma Phys. Control. Fusion 59 094002Google Scholar

    [15]

    邹秀, 刘惠平, 谷秀娥 2008 物理学报 57 5111Google Scholar

    Zou X, Liu H P, Gu X E 2008 Acta. Phys. Sin. 57 5111Google Scholar

    [16]

    邹秀, 籍延坤, 邹滨雁 2010 物理学报 59 1902Google Scholar

    Zou X, Ji Y K, Zou B Y 2010 Acta. Phys. Sin. 59 1902Google Scholar

    [17]

    邱明辉, 刘惠平, 邹秀 2012 物理学报 61 155204Google Scholar

    Qiu M H, Liu H P, Zou X 2012 Acta. Phys. Sin. 61 155204Google Scholar

    [18]

    Gyergyek T, Kovačič J 2015 Phys. Plasmas 22 093511Google Scholar

    [19]

    Sharma G, Adhikari S, Moulick R, Kausik S S, Saikia B K 2020 Phys. Scr. 95 035605Google Scholar

    [20]

    陈龙, 孙少娟, 姜博瑞, 段萍, 安宇豪, 杨叶慧 2021 物理学报 70 245201Google Scholar

    Chen L, Sun S J, Jiang B R, Duan P, An Y H, Yang Y H 2021 Acta. Phys. Sin. 70 245201Google Scholar

    [21]

    Liu J Y, Wang F, Sun J Z 2011 Phys. Plasmas 18 013506Google Scholar

    [22]

    Herring C, Nichols M H 1949 Rev. Mod. Phys. 21 185Google Scholar

    [23]

    赵晓云, 刘金远, 段萍, 李世刚 2012 真空科学与技术学报 32 279Google Scholar

    Zhao X Y, Liu J Y, Duan P, Li S G 2012 Chin. J. Vacuum Sci. Technol. 32 279Google Scholar

    [24]

    Michaelson H B 1977 J. Appl. Phys. 48 4729Google Scholar

    [25]

    Sternberg N, Poggie J 2004 IEEE Trans. Plasma Sci. 32 2217Google Scholar

    [26]

    Bohdansky J 1983 Nucl. Instruments Methods Phys. Res. 2 587

    [27]

    Hu W P, Sang C F, Sun Z Y, Wang D Z 2016 Fusion Eng. Des. 109 330Google Scholar

  • 图 1  模拟区域示意图

    Figure 1.  Schematic diagram of the simulation region.

    图 2  离子速度$ V $、离子密度$ {N_{\text{i}}} $及电子密度$ {N_{\text{e}}} $的空间分布

    Figure 2.  Spatial distribution of ion velocity V, ion density$ {N_{\text{i}}} $ and electron density$ {N_{\text{e}}} $.

    图 3  电势$ \phi $、电场 $ E $的空间分布

    Figure 3.  Spatial distribution of electric potential $ \phi $ and electric field E.

    图 4  不同靶板温度时靶板处的电势$ {\phi _{{\text{sw}}}} $和热电子发射流Js

    Figure 4.  Electric potential at the wall $ {\phi _{{\text{sw}}}} $ and thermionic emission flux $ {J_{\text{s}}} $ at different target temperatures.

    图 5  不同靶板温度$ {T_{\text{s}}} $下 (a)电势$ \phi $和(b)电场 ${{E}}$分布

    Figure 5.  Distribution of (a) electric potential $ \phi $ and (b) electric field $ {{E}} $ in the full region at different target temperatures.

    图 6  不同靶板温度$ {T_{\text{s}}} $下 (a)净电荷密度$ \rho $和(b)热发射电子密度$ {N_{\text{s}}} $分布

    Figure 6.  Distribution of (a) net charge density $ \rho $ and (b) thermionic emission electron density $ {N_{\text{s}}} $ in the full region at different target temperatures.

    图 7  靶板温度$ {T_{\text{s}}} $ = 2950 K时, 磁化鞘层(a)电势$ \phi $和(b)电场$ E $分布

    Figure 7.  When target temperature $ {T_{\text{s}}} $ = 2950 K, distribution of (a) electric potential$ \phi $and (b) electric field E in the magnetized sheath .

    图 8  靶板温度$ {T_{\text{s}}} $ = 2950 K时, 磁化鞘层(a)净电荷密度$ \rho $和(b)热发射电子密度$ {N_{\text{s}}} $分布

    Figure 8.  When target temperature $ {T_{\text{s}}} $ = 2950 K, distribution of (a) net charge density $ \rho $ and (b) thermionic emission electron density $ {N_{\text{s}}} $ in the magnetized sheath.

    图 9  不同磁场角度$ \theta $下, 电子鞘中电势$ \phi $分布

    Figure 9.  Distribution of electric potential $ \phi $ in electron sheath at different magnetic field angles $ \theta $.

    图 10  磁场角度$ \theta $ = 80°时, 不同靶板温度下磁化鞘层(a)电势$ \phi $和(b)电场$ E $分布

    Figure 10.  When the magnetic field angle $ \theta $ = 80°, distribution of (a) electric potential $ \phi $ and (b) electric field $ E $ in the magnetized sheath at different target temperatures.

  • [1]

    Burkart W 2005 Nucl. Fusion. 45 E01Google Scholar

    [2]

    Wagner F, Becker G, Behringer K, Campbell D, Eberhagen A, Engelhardt W, Fussmann G, Gehre O, Gernhardt J, Gierke G, Haas G, Huang M, Karger F, Keilhacker M, Klüber O, Kornherr M, Lackner K, Lisitano G, Lister G G, Mayer H M, Meisel D, MIiller E R, Murmann H, Niedermeyer H, Poschenrieder W, Rapp H, Röhr H, Schneider F, Siller G, Speth E, Stäbler A, Steuer K H, Venus G, Vollmer O, Yü Z 1982 Phys. Rev. Lett. 49 1408Google Scholar

    [3]

    ASDEX team 1989 Nucl. Fusion 29 1959Google Scholar

    [4]

    Hobbs G D, Wesson J A 1967 Plasma Phys. 9 85Google Scholar

    [5]

    Takamura S, Ohno N, Ye M Y, Kuwabara T 2004 Contrib. Plasma Phys. 44 126Google Scholar

    [6]

    Gyergyek T, Kovačič J 2013 Contrib. Plasma Phys. 53 189Google Scholar

    [7]

    Tierno S P, Donoso J M, Domenech-Garret J L, Conde L 2016 Phys. Plasmas 23 013503Google Scholar

    [8]

    Li S H, Li J Q 2021 Vacuum 192 110496Google Scholar

    [9]

    Snipes J A, Hubbard A E, Garnier D T, Golovato S N, Granetz R S, Greenwald M, Hutchinson I H, Irby J, LaBombard B, Marmar E S, Niemczewski A, O’Shea P J, Porkolab M, Stek P, Takase Y, Terry J L, Watterson R, Wolfe S M 1996 Plasma Phys. Control. Fusion 38 1127Google Scholar

    [10]

    Campbell D J, the JET team 1997 Plasma Phys. Control. Fusion 39 A285Google Scholar

    [11]

    Maingi R, Bell M G, Bell R E, Bush C E, Fredrickson E D, Gates D A, Kaye S M, Kugel H W, LeBlanc B P, Menard J E, Mueller D, Sabbagh S A, Stutman D, Taylor G, Johnson D W, Kaita R, Maqueda R J, Ono M, Paoletti F, Paul S F, Peng Y K M, Roquemore A L, Skinner C H, Soukhanovskii V A, Synakowski E J 2002 Phys. Rev. Lett. 88 035003Google Scholar

    [12]

    Burrell K H, Austin M E, Brennan D P, DeBoo J C, Doyle E J, Gohil P, Greenfield C M, Groebner R J, Lao L L, Luce T C, Makowski M A, McKee G R, Moyer R A, Osborne T H, Porkolab M, Rhodes T L, Rost J C, Schaffer M J, Stallard B W, Strait E J, Wade M R, Wang G, Watkins J G, West W P, Zeng L 2002 Plasma Phys. Control. Fusion 44 A253Google Scholar

    [13]

    Duan X R, Dong J Q, Yan L W, Ding X T, Yang Q W, Rao J, Liu D Q, Xuan W M, Chen L Y, Li X D, Lei G J, Cao J Y, Cao Z, Song X M, Huang Y, Liu Y, Mao W C, Wang Q M, Cui Z Y, Ji X Q, Li B, Li G S, Li H J, Luo C W, Wang Y Q, Yao L H, Yao L Y, Zhang J H, Zhou J, Zhou Y, Liu Y, HL-2 A team 2010 Nucl. Fusion 50 095011Google Scholar

    [14]

    Komm M, Ratynskaia S, Tolias P, Cavalier J, Dejarnac R, Gunn J P, Podolnik A 2017 Plasma Phys. Control. Fusion 59 094002Google Scholar

    [15]

    邹秀, 刘惠平, 谷秀娥 2008 物理学报 57 5111Google Scholar

    Zou X, Liu H P, Gu X E 2008 Acta. Phys. Sin. 57 5111Google Scholar

    [16]

    邹秀, 籍延坤, 邹滨雁 2010 物理学报 59 1902Google Scholar

    Zou X, Ji Y K, Zou B Y 2010 Acta. Phys. Sin. 59 1902Google Scholar

    [17]

    邱明辉, 刘惠平, 邹秀 2012 物理学报 61 155204Google Scholar

    Qiu M H, Liu H P, Zou X 2012 Acta. Phys. Sin. 61 155204Google Scholar

    [18]

    Gyergyek T, Kovačič J 2015 Phys. Plasmas 22 093511Google Scholar

    [19]

    Sharma G, Adhikari S, Moulick R, Kausik S S, Saikia B K 2020 Phys. Scr. 95 035605Google Scholar

    [20]

    陈龙, 孙少娟, 姜博瑞, 段萍, 安宇豪, 杨叶慧 2021 物理学报 70 245201Google Scholar

    Chen L, Sun S J, Jiang B R, Duan P, An Y H, Yang Y H 2021 Acta. Phys. Sin. 70 245201Google Scholar

    [21]

    Liu J Y, Wang F, Sun J Z 2011 Phys. Plasmas 18 013506Google Scholar

    [22]

    Herring C, Nichols M H 1949 Rev. Mod. Phys. 21 185Google Scholar

    [23]

    赵晓云, 刘金远, 段萍, 李世刚 2012 真空科学与技术学报 32 279Google Scholar

    Zhao X Y, Liu J Y, Duan P, Li S G 2012 Chin. J. Vacuum Sci. Technol. 32 279Google Scholar

    [24]

    Michaelson H B 1977 J. Appl. Phys. 48 4729Google Scholar

    [25]

    Sternberg N, Poggie J 2004 IEEE Trans. Plasma Sci. 32 2217Google Scholar

    [26]

    Bohdansky J 1983 Nucl. Instruments Methods Phys. Res. 2 587

    [27]

    Hu W P, Sang C F, Sun Z Y, Wang D Z 2016 Fusion Eng. Des. 109 330Google Scholar

  • [1] Chen Long, Tan Cong-Qi, Cui Zuo-Jun, Duan Ping, An Yu-Hao, Chen Jun-Yu, Zhou Li-Na. Multi-ion magnetized sheath properties with non-extensive electron distribution. Acta Physica Sinica, 2024, 73(5): 055201. doi: 10.7498/aps.73.20231452
    [2] Shang Ji-Hua, Yang Xin-Yu, Sun Da-Peng, Zhang Jiu-Xing. Improvement of barium tungsten cathode and investigation of thermionic emission performance. Acta Physica Sinica, 2022, 71(4): 047901. doi: 10.7498/aps.71.20211684
    [3] Improvement of barium tungsten cathode and investigation of thermionic emission performance. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211684
    [4] Zhang Hong-Yan, Bao Li-Hong, Chao Luo-Meng, Zhao Feng-Qi, Liu Zi-Zhong. Optical absorption and thermionic emission mechanism of multi-functional La1–x Srx B6 hexaborides. Acta Physica Sinica, 2021, 70(21): 214204. doi: 10.7498/aps.70.20211069
    [5] Chen Long, Sun Shao-Juan, Jiang Bo-Rui, Duan Ping, An Yu-Hao, Yang Ye-Hui. Characteristics of non-Maxwellian magnetized sheath with secondary electron emission. Acta Physica Sinica, 2021, 70(24): 245201. doi: 10.7498/aps.70.20211061
    [6] Xu Feng1\2, Yu Guo-Hao, Deng Xu-Guang, Li Jun-Shuai, Zhang Li, Song Liang, Fan Ya-Ming, Zhang Bao-Shun. Current transport mechanism of Schottky contact of Pt/Au/n-InGaN. Acta Physica Sinica, 2018, 67(21): 217802. doi: 10.7498/aps.67.20181191
    [7] Bao Li-Hong, Narengerile, O. Tegus, Zhang Xin, Zhang Jiu-Xing. Synthesis and properties of LaxCe1-xB6 compounds by in-situ spark plasma sintering. Acta Physica Sinica, 2013, 62(19): 196105. doi: 10.7498/aps.62.196105
    [8] Peng Kai, Liu Da-Gang. Numerical simulation and study of three-dimensional thermal field emission. Acta Physica Sinica, 2012, 61(12): 121301. doi: 10.7498/aps.61.121301
    [9] Duan Ping, Li Xi, E Peng, Qing Shao-Wei. Effect of magnetized secondary electron on the characteristics of sheath in Hall thruster. Acta Physica Sinica, 2011, 60(12): 125203. doi: 10.7498/aps.60.125203
    [10] Wang Dao-Yong, Ma Jin-Xiu, Li Yi-Ren, Zhang Wen-Gui. Sheath structure of a hot-cathode in plasma. Acta Physica Sinica, 2009, 58(12): 8432-8439. doi: 10.7498/aps.58.8432
    [11] Zou Xiu, Liu Hui-Ping, Gu Xiu-E. Sheath structure of a magnetized plasma. Acta Physica Sinica, 2008, 57(8): 5111-5116. doi: 10.7498/aps.57.5111
    [12] LIU DE-YONG, WANG DE-ZHEN, LIU JIN-YUAN. DYNAMICS AND SUSPENSION OF DUST PARTICLES IN CATHODE SHEATHS OF DC GLOW DISCHARGES. Acta Physica Sinica, 2000, 49(6): 1094-1100. doi: 10.7498/aps.49.1094
    [13] WANG DE-ZHEN, MA TENG-CAI. THEORETICAL MODEL FOR THE HEAVY PARTICLE TRANSPORT IN A CATHODE SHEATH. Acta Physica Sinica, 2000, 49(12): 2404-2407. doi: 10.7498/aps.49.2404
    [14] YU WEI, ZHANG LIAN-ZHU, LI XIAO-WEI, HAN LI, CHEN YAN-MEI, FU GUANG-SHENG. HEAVY PARTICLE TRANSPORT PROCESS IN CATHODE SHEATH OF NITROGEN GLOW DISCHARGE. Acta Physica Sinica, 1999, 48(9): 1701-1708. doi: 10.7498/aps.48.1701
    [15] HAN JUN-BO, WANG DE-ZHEN, MA TENG-CAI. A SELF-CONSISTENT MONTE CARLO SIMULATION OF IONS IN HOLLOW-CATHODE SHEATH OF ARGON GAS DISCHARGES. Acta Physica Sinica, 1996, 45(3): 428-435. doi: 10.7498/aps.45.428
    [16] Wei He-Lin, Liu Zhu-Li. . Acta Physica Sinica, 1995, 44(2): 225-232. doi: 10.7498/aps.44.225
    [17] WEI HE-LIN, LIU ZU-LI. ELECTRON TRANSPORT PROCESS IN CATHODE SHEATH OF HELIUM dc HOLLOW CATHODE GLOW DISCHARGE PLASMA. Acta Physica Sinica, 1994, 43(6): 950-957. doi: 10.7498/aps.43.950
    [18] ZHANG EN-QIU. ON THE THEORY OF THERMIONIC EMISSION (Ⅲ)——A MODEL OF DYNAMICAL SURFACE EMISSION CENTERS. Acta Physica Sinica, 1976, 25(1): 23-30. doi: 10.7498/aps.25.23
    [19] ZHANG EN-QIU. HEORY OF THERMIONIC EMISSION (II)——ON THE MONOATOMIC LAYER AND DIPOLE THEORY. Acta Physica Sinica, 1974, 23(5): 53-63. doi: 10.7498/aps.23.53
    [20] ZHANG EN-QIU. THEORY OF THERMIONIC EMISSION (I)——A CRITICISM OF THE SEMI-CONDUCTOR MODEL OF THE OXIDE-COATED CATHODE. Acta Physica Sinica, 1974, 23(5): 43-52. doi: 10.7498/aps.23.43
Metrics
  • Abstract views:  1447
  • PDF Downloads:  44
  • Cited By: 0
Publishing process
  • Received Date:  24 February 2023
  • Accepted Date:  15 May 2023
  • Available Online:  02 June 2023
  • Published Online:  05 August 2023

/

返回文章
返回