Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spin-orbit torque efficiency improved by BiSePt alloy

He Hao-Bin Lan Xiu-Kai Ji Yang

Citation:

Spin-orbit torque efficiency improved by BiSePt alloy

He Hao-Bin, Lan Xiu-Kai, Ji Yang
PDF
HTML
Get Citation
  • In order to achieve high-efficiency spin-orbit torque devices, higher charge-spin conversion efficiency, and lower resistivity are required in the strong spin-orbit coupling layer that provides the spin current. In this work we prepare BiSePt alloy/Co heterostructures with in-plane magnetic anisotropy by magnetron sputtering deposition. The alloy layer is deposited via one of two procedures, either co-sputtering or alternative-sputtering. We study the BiSePt alloy samples and find that the spin orbit torque (SOT) efficiency decreases with the increase of Pt component, which is attributed to the change of topological order of Bi2Se3 amorphous surface, caused by Pt doping. And the resistivity decreases with the increase of Pt component, which depends on the increase of metallic property. Due to the balance of these two competing mechanisms, the spin Hall conductivity of the alloy layer varies non-monotonically with the concentration ratio, and reach an optimal value at a ratio of 67% of Bi2Se3 component. With the increase of the Bi2Se3 component, the SOT efficiency, electrical resistivity and spin Hall conductance of the alloy layer show different trends. At about 20%–70%, they increase/decrease tardily. At about 70%–100%, the resistivity ascends more prominently than the SOT efficiency, which leads the spin Hall conductance to decrease. Comparing with using the co-sputtering deposition, the electrical conductivity and spin Hall angle of the alloy layer obtained using alternating sputtering deposition are small, which is attributed to the enhancing of interfacial scattering and the filter effect of Pt on the spin flow. In contrast to traditional pure heavy metal materials (such as Pt, Ta) and topological insulator materials like Bi2Se3, our BiSePt alloy devices obtained by co-sputtering deposition achieve industry-matched preparation conditions, greater SOT efficiency, and considerable electrical conductivity of the alloy layer, thus making further applications of SOT devices possible.
      Corresponding author: Ji Yang, jiyang@semi.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1405100) and the National Natural Science Foundation of China (Grant No. 12274406).
    [1]

    Dieny B, Prejbeanu I L, Garello K, et al. 2020 Nat. Electron. 3 446Google Scholar

    [2]

    Ralph D C, Stiles M D 2008 J. Magn. Magn. Mater. 320 1190Google Scholar

    [3]

    Manchon A, Železný J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garello K, Gambardella P 2019 Rev. Mod. Phys. 91 035004Google Scholar

    [4]

    Cao Y, Xing G Z, Lin H A, Zhang N, Zheng H Z, Wang K Y 2020 iScience 23 101614Google Scholar

    [5]

    Cai K M, Yang M Y, Ju H L, Wang S M, Ji Y, Li B, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z, Wang K Y 2017 Nat. Mater. 16 712Google Scholar

    [6]

    Cao Y, Sheng Y, Edmonds K W, Ji Y, Zheng H Z, Wang K Y 2020 Adv. Mater. 32 1907929Google Scholar

    [7]

    Sheng Y, Edmonds K W, Ma X Q, Zheng H Z, Wang K Y 2018 Adv. Electron. Mater. 4 1800224Google Scholar

    [8]

    Kurenkov A, DuttaGupta S, Zhang C L, Fukami S, Horio Y, Ohno H 2019 Adv. Mater. 31 1900636Google Scholar

    [9]

    Cao Y, Rushforth A, Sheng Y, Zheng H Z, Wang K Y 2019 Adv. Funct. Mater. 29 1808104Google Scholar

    [10]

    Sheng Y, Li Y C, Ma X Q, Wang K Y 2018 Appl. Phys. Lett. 113 112406Google Scholar

    [11]

    Qiu X P, Shi Z, Fan W J, Zhou S M, Yang H 2018 Adv. Mater. 30 1705699Google Scholar

    [12]

    Yang M Y, Cai K M, Ju H L, Edmonds K W, Yang G, Liu S, Li B H, Zhang B, Sheng Y, Wang S G, Ji Y, Wang K Y 2016 Sci. Rep. 6 20778Google Scholar

    [13]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar

    [14]

    Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [15]

    Mihai Miron I, Gaudin G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J, Gambardella P 2010 Nat. Mater. 9 230Google Scholar

    [16]

    Li Y C, Edmonds K W, Liu X H, Zheng H Z, Wang K Y 2019 Adv. Quantum Technol. 2 1800052Google Scholar

    [17]

    Ye X G, Zhu P F, Xu W Z, Shang N, Liu K, Liao Z M 2022 Chin. Phys. Lett. 39 037303Google Scholar

    [18]

    Fukami S, Zhang C L, DuttaGupta S, Kurenkov A, Ohno H 2016 Nat. Mater. 15 535Google Scholar

    [19]

    Li C H, van’t Erve O M J, Robinson J T, Liu Y, Li L, Jonker B T 2014 Nat. Nanotechnol. 9 218Google Scholar

    [20]

    Han J H, Richardella A, Siddiqui S A, Finley J, Samarth N, Liu L Q 2017 Phys. Rev. Lett. 119 077702Google Scholar

    [21]

    Dc M, Grassi R, Chen J Y, Jamali M, Reifsnyder H D, Zhang D L, Zhao Z Y, Li H S, Quarterman P, Lü Y, Li M, Manchon A, Mkhoyan K A, Low T, Wang J P 2018 Nat. Mater. 17 800Google Scholar

    [22]

    Khang N H D, Ueda Y, Hai P N 2018 Nat. Mater. 17 808Google Scholar

    [23]

    Sun Y, Zhang Y, Felser C, Yan B H 2016 Phys. Rev. Lett. 117 146403Google Scholar

    [24]

    Wang Y, Zhu D P, Wu Y, Yang Y M, Yu J W, Ramaswamy R, Mishra R, Shi S, Elyasi M, Teo K L, Wu Y H, Yang H 2017 Nat. Commun. 8 1364Google Scholar

    [25]

    Bekele Z A, Liu X H, Cao Y, Wang K Y 2020 Adv. Electron. Mater. 7 2000793Google Scholar

    [26]

    Bekele Z A, Li R Z, Li Y C, Cao Y, Liu X H, Wang K Y 2021 Adv. Electron. Mater. 7 2100528Google Scholar

    [27]

    Zhang E Z, Deng Y C, Li W H, Liu X H, Wang K Y 2022 Phys. Status. Solidi. A 219 2200498Google Scholar

    [28]

    Zhu L J, Ralph D C, Buhrman R A 2021 Appl. Phys. Rev. 8 031308Google Scholar

    [29]

    Chi Z D, Lau Y C, Kawaguchi M, Hayashi M 2021 APL Materials 9 061111Google Scholar

    [30]

    Kawaguchi M, Shimamura K, Fukami S, Matsukura F, Ohno H, Moriyama T, Chiba D, Ono T 2013 Appl. Phys. Express 6 113002Google Scholar

    [31]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1Google Scholar

    [32]

    Liu L Q, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 096602Google Scholar

    [33]

    Plekhanov E, Weber C 2019 Phys. Rev. B 100 115161Google Scholar

    [34]

    Wang C T, Cheng T, Liu Z R, Liu F, Huang H Q 2022 Phys. Rev. Lett. 128 056401Google Scholar

    [35]

    Corbae P, Ciocys S, Varjas D, Kennedy E, Zeltmann S, Molina-Ruiz M, Griffin S M, Jozwiak C, Chen Z H, Wang L W, Minor A M, Scott M, Grushin A G, Lanzara A, Hellman F 2023 Nat. Mater. 22 200Google Scholar

  • 图 1  合金层[Bi2Se3]xPt1–x电阻率图, 纵轴为对数坐标. 电阻率随Bi2Se3的配比x的增加而显著上升, mt后缀表示合金层为交替溅射生长

    Figure 1.  Resistivity diagram of the alloy layer [Bi2Se3]xPt1–x, with logarithmic scale in the vertical axis. The resistivity increases significantly as partition ration x of Bi2Se3 increases. The suffix “mt” indicates alternating sputtering growth for the alloy layer.

    图 2  (a) 霍尔器件的测量示意图 (θ为外磁场与电流的夹角, 其中理想情况下Hex在器件平面内); (b) SOT结构示意图, 显示了自旋流、外磁场Hex与磁化M的偏差

    Figure 2.  (a) Measurement scheme of the Hall device (θ is the angle between the current and Hex, which lies in the device plane in the ideal situation); (b) schematic structure of the SOT, shows the spin flow and the deviation between Hex and magnetization M.

    图 3  零偏置下不同配比样品的1 mA电流下的RH(I, θ)曲线(图例中, 0—100%为共溅射样品Bi2Se3的配比)

    Figure 3.  RH(I, θ) curves of samples with different proportions at 1 mA current and zero bias (In the legend, 0–100% represents the ratio of Bi2Se3).

    图 4  对于Bi2Se3配比为48% (共溅射)的器件 (a) 面外磁场H下的RAHE回线; (b) 在不同电流下的RDH(I, θ)曲线, 振幅随电流增加而增加

    Figure 4.  For a device with a Bi2Se3 ratio of 48% (co-sputtering): (a) RAHE loop under out-of-plane magnetic field H; (b) RDH(I, θ) curve at different current, the amplitude increases with the increase of current.

    图 5  (a) 不同样品的HP随电流的变化, 虚线为线性拟合曲线; (b) 折线图, 不同样品在单位电流密度下的HP (0—100%为共溅射样品Bi2Se3的配比)

    Figure 5.  (a) Variation of HP of different samples with current, and the dashed line is a linear fitting curve; (b) line graph, HP per unit current density of different samples (0–100% represents the ratio of Bi2Se3).

    图 6  合金层[Bi2Se3]xPt1–x的自旋霍尔角及自旋霍尔电导率随Bi2Se3配比x的变化(mt后缀为多层膜样品)

    Figure 6.  Spin Hall angle and spin Hall conductivity of [Bi2Se3]xPt1–x alloy layer vary with the ratio x of Bi2Se3 (Suffix mt represents the multilayer sample).

  • [1]

    Dieny B, Prejbeanu I L, Garello K, et al. 2020 Nat. Electron. 3 446Google Scholar

    [2]

    Ralph D C, Stiles M D 2008 J. Magn. Magn. Mater. 320 1190Google Scholar

    [3]

    Manchon A, Železný J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garello K, Gambardella P 2019 Rev. Mod. Phys. 91 035004Google Scholar

    [4]

    Cao Y, Xing G Z, Lin H A, Zhang N, Zheng H Z, Wang K Y 2020 iScience 23 101614Google Scholar

    [5]

    Cai K M, Yang M Y, Ju H L, Wang S M, Ji Y, Li B, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z, Wang K Y 2017 Nat. Mater. 16 712Google Scholar

    [6]

    Cao Y, Sheng Y, Edmonds K W, Ji Y, Zheng H Z, Wang K Y 2020 Adv. Mater. 32 1907929Google Scholar

    [7]

    Sheng Y, Edmonds K W, Ma X Q, Zheng H Z, Wang K Y 2018 Adv. Electron. Mater. 4 1800224Google Scholar

    [8]

    Kurenkov A, DuttaGupta S, Zhang C L, Fukami S, Horio Y, Ohno H 2019 Adv. Mater. 31 1900636Google Scholar

    [9]

    Cao Y, Rushforth A, Sheng Y, Zheng H Z, Wang K Y 2019 Adv. Funct. Mater. 29 1808104Google Scholar

    [10]

    Sheng Y, Li Y C, Ma X Q, Wang K Y 2018 Appl. Phys. Lett. 113 112406Google Scholar

    [11]

    Qiu X P, Shi Z, Fan W J, Zhou S M, Yang H 2018 Adv. Mater. 30 1705699Google Scholar

    [12]

    Yang M Y, Cai K M, Ju H L, Edmonds K W, Yang G, Liu S, Li B H, Zhang B, Sheng Y, Wang S G, Ji Y, Wang K Y 2016 Sci. Rep. 6 20778Google Scholar

    [13]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar

    [14]

    Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [15]

    Mihai Miron I, Gaudin G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J, Gambardella P 2010 Nat. Mater. 9 230Google Scholar

    [16]

    Li Y C, Edmonds K W, Liu X H, Zheng H Z, Wang K Y 2019 Adv. Quantum Technol. 2 1800052Google Scholar

    [17]

    Ye X G, Zhu P F, Xu W Z, Shang N, Liu K, Liao Z M 2022 Chin. Phys. Lett. 39 037303Google Scholar

    [18]

    Fukami S, Zhang C L, DuttaGupta S, Kurenkov A, Ohno H 2016 Nat. Mater. 15 535Google Scholar

    [19]

    Li C H, van’t Erve O M J, Robinson J T, Liu Y, Li L, Jonker B T 2014 Nat. Nanotechnol. 9 218Google Scholar

    [20]

    Han J H, Richardella A, Siddiqui S A, Finley J, Samarth N, Liu L Q 2017 Phys. Rev. Lett. 119 077702Google Scholar

    [21]

    Dc M, Grassi R, Chen J Y, Jamali M, Reifsnyder H D, Zhang D L, Zhao Z Y, Li H S, Quarterman P, Lü Y, Li M, Manchon A, Mkhoyan K A, Low T, Wang J P 2018 Nat. Mater. 17 800Google Scholar

    [22]

    Khang N H D, Ueda Y, Hai P N 2018 Nat. Mater. 17 808Google Scholar

    [23]

    Sun Y, Zhang Y, Felser C, Yan B H 2016 Phys. Rev. Lett. 117 146403Google Scholar

    [24]

    Wang Y, Zhu D P, Wu Y, Yang Y M, Yu J W, Ramaswamy R, Mishra R, Shi S, Elyasi M, Teo K L, Wu Y H, Yang H 2017 Nat. Commun. 8 1364Google Scholar

    [25]

    Bekele Z A, Liu X H, Cao Y, Wang K Y 2020 Adv. Electron. Mater. 7 2000793Google Scholar

    [26]

    Bekele Z A, Li R Z, Li Y C, Cao Y, Liu X H, Wang K Y 2021 Adv. Electron. Mater. 7 2100528Google Scholar

    [27]

    Zhang E Z, Deng Y C, Li W H, Liu X H, Wang K Y 2022 Phys. Status. Solidi. A 219 2200498Google Scholar

    [28]

    Zhu L J, Ralph D C, Buhrman R A 2021 Appl. Phys. Rev. 8 031308Google Scholar

    [29]

    Chi Z D, Lau Y C, Kawaguchi M, Hayashi M 2021 APL Materials 9 061111Google Scholar

    [30]

    Kawaguchi M, Shimamura K, Fukami S, Matsukura F, Ohno H, Moriyama T, Chiba D, Ono T 2013 Appl. Phys. Express 6 113002Google Scholar

    [31]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1Google Scholar

    [32]

    Liu L Q, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 096602Google Scholar

    [33]

    Plekhanov E, Weber C 2019 Phys. Rev. B 100 115161Google Scholar

    [34]

    Wang C T, Cheng T, Liu Z R, Liu F, Huang H Q 2022 Phys. Rev. Lett. 128 056401Google Scholar

    [35]

    Corbae P, Ciocys S, Varjas D, Kennedy E, Zeltmann S, Molina-Ruiz M, Griffin S M, Jozwiak C, Chen Z H, Wang L W, Minor A M, Scott M, Grushin A G, Lanzara A, Hellman F 2023 Nat. Mater. 22 200Google Scholar

  • [1] Liu Ming-Jie, Tian Ya-Li, Wang Yu, Li Xiao-Xiao, He Xiao-Hu, Gong Ting, Sun Xiao-Cong, Guo Gu-Qing, Qiu Xuan-Bing, Li Chuan-Liang. Calculation of spectroscopic constants for O-2 containing spin-orbit coupling. Acta Physica Sinica, 2025, 74(2): . doi: 10.7498/aps.74.20241435
    [2] Xue Wen-Ming, Li Jin, He Chao-Yu, Ouyang Tao, Luo Chao-Bo, Tang Chao, Zhong Jian-Xin. Giant and tunable Rashba spin splitting and quantum spin Hall effect in H-Pb-Cl. Acta Physica Sinica, 2023, 72(5): 057101. doi: 10.7498/aps.72.20221493
    [3] Wang Zhi-Mei, Wang Hong, Xue Nai-Tao, Cheng Gao-Yan. Quantum coherence in spin-orbit coupled quantum dots system. Acta Physica Sinica, 2022, 71(7): 078502. doi: 10.7498/aps.71.20212111
    [4] Zhou Yong-Xiang, Xue Xun. Electron vortices in spin-orbit coupling system. Acta Physica Sinica, 2022, 71(21): 210301. doi: 10.7498/aps.71.20220751
    [5] He Dong-Mei, Peng Bin, Zhang Wan-Li, Zhang Wen-Xu. Inverse spin Hall effect in Nb doped SrTiO3. Acta Physica Sinica, 2019, 68(10): 106101. doi: 10.7498/aps.68.20190118
    [6] Liang Tao, Li Ming. Integer quantum Hall effect in a spin-orbital coupling system. Acta Physica Sinica, 2019, 68(11): 117101. doi: 10.7498/aps.68.20190037
    [7] Wan Ting, Luo Zhao-Ming, Min Li, Chen Min, Xiao Lei. Enhanced photonic spin Hall effect due to controllable permittivity of alloy film. Acta Physica Sinica, 2018, 67(6): 064201. doi: 10.7498/aps.67.20171824
    [8] Long Yang, Ren Jie, Jiang Hai-Tao, Sun Yong, Chen Hong. Quantum spin Hall effect in metamaterials. Acta Physica Sinica, 2017, 66(22): 227803. doi: 10.7498/aps.66.227803
    [9] Huang Zhen, Zeng Wen, Gu Yi, Liu Li, Zhou Lu, Zhang Wei-Ping. Double reflection of spin-orbit-coupled cold atoms. Acta Physica Sinica, 2016, 65(16): 164201. doi: 10.7498/aps.65.164201
    [10] Yi Xu-Nong, Li Ying, Ling Xiao-Hui, Zhang Zhi-You, Fan Dian-Yuan. Spin-orbit interaction of light in metasuface. Acta Physica Sinica, 2015, 64(24): 244202. doi: 10.7498/aps.64.244202
    [11] Guo Yuan-Yuan, Hao Jian-Long, Xue Hai-Bin, Liu Zhe-Jie. Effect of the intrinsic in-plane shape anisotropy on the oscillation characteristics of zero-field spin torque oscillator. Acta Physica Sinica, 2015, 64(19): 198502. doi: 10.7498/aps.64.198502
    [12] Han Fang-Bin, Zhang Wen-Xu, Peng Bin, Zhang Wan-Li. Angle dependent inverse spin Hall effect in NiFe/Pt thin film. Acta Physica Sinica, 2015, 64(24): 247202. doi: 10.7498/aps.64.247202
    [13] Guo Zi-Zheng, Deng Hai-Dong, Huang Jia-Sheng, Xiong Wan-Jie, Xu Chu-Dong. Spin-torque critical current tuned by stress. Acta Physica Sinica, 2014, 63(13): 138501. doi: 10.7498/aps.63.138501
    [14] Zhang Bao-Long, Wang Dong-Hong, Yang Zhi, Liu Rui-Ping, Li Xiu-Yan. Noncollinear magnetic order and spin-orbit coupling effect in (FeCr)n alloying clusters. Acta Physica Sinica, 2013, 62(14): 143601. doi: 10.7498/aps.62.143601
    [15] Luo Xing, Zhou Xin-Xing, Luo Hai-Lu, Wen Shuang-Chun. Cross-polarizaton characteristics in spin Hall effect of light. Acta Physica Sinica, 2012, 61(19): 194202. doi: 10.7498/aps.61.194202
    [16] Jiang Hong-Liang, Zhang Rong-Jun, Zhou Hong-Ming, Yao Duan-Zheng, Xiong Gui-Guang. Parametric properties of the electron spin relaxation due to spin-orbit interaction in InAs quantum dots. Acta Physica Sinica, 2011, 60(1): 017204. doi: 10.7498/aps.60.017204
    [17] Wang Zhi-Ming. Spin injection in GaAs and giant Hall effect. Acta Physica Sinica, 2011, 60(7): 077203. doi: 10.7498/aps.60.077203
    [18] Ma Juan, Luo Hai-Lu, Wen Shuang-Chun. Spin Hall effect of light in a multilayer-medium structure. Acta Physica Sinica, 2011, 60(9): 094205. doi: 10.7498/aps.60.094205
    [19] Yang Jie-Hui, Pan Liu-Zhan, Xu You. . Acta Physica Sinica, 2000, 49(4): 807-810. doi: 10.7498/aps.49.807
    [20] СПИН-ОРБИТАЛЬНАЯ СВЯЗЬ В ЯДРЕ. Acta Physica Sinica, 1958, 14(6): 469-478. doi: 10.7498/aps.14.469
Metrics
  • Abstract views:  2977
  • PDF Downloads:  78
  • Cited By: 0
Publishing process
  • Received Date:  28 February 2023
  • Accepted Date:  27 April 2023
  • Available Online:  28 April 2023
  • Published Online:  05 July 2023

/

返回文章
返回