-
The inverse spin Hall effect (ISHE), namely spin flows converted into charge currents due to spin orbital interaction, is investigated extensively in heavy metals, such as Pt, W, Au, etc. Recently, the effect was also found in Cu doped with Au. Their difference is that the spin Hall effect is from the intrinsic effect which is related to the topological character of the electronic bands, while the ISHE is mainly from the extrinsic spin dependent scattering by the impurities. The impurity scattering can give opportunities to tune the effect, for example by impurity concentration, which is impossible by the intrinsic mechanism. In this work, we extend the material to the doped oxides. NiFe films are deposited on undoped and doped SrTiO3 substrates by magnetron sputtering, respectively. The spins are injected from the magnetic thin films by spin pumping through using a shorted microstrip transmission line fixture at different frequencies and room temperature. The spin rectification voltage and the inverse spin Hall voltage in the doped sample are separated by the inverting spin injection direction method, which is realized by flipping the samples. The results show that in the undoped SrTiO3 substrate, the voltage curves before and after flipping the sample are basically the same, which is due to the voltage generated by the spin rectification effect of the NiFe film. For Nb-doped SrTiO3 substrates with Nb concentration x = 0.028, 0.05, 0.1, 0.15 and 0.2, the inverse spin Hall voltage decreases with doping concentration increasing and is not detectable in sample with doping concentration of 0.15, nor with doping concentration of 0.2. The decrease of the ISHE effect may be due to the spin coherent length decreasing with the increase of the impurity concentration. The correlation between spin-charge conversion and transportation needs knowing in detail. Nevertheless, the results show that by doping strong spin-orbit coupling impurities into SrTiO3, thus by changing the doping concentration, the inverse spin Hall effect in SrTiO3 can be controlled. This tunable spin-charge conversion provides more possibilities for developing the spintronic devices and it will have great potential applications in the future.
-
Keywords:
- doping /
- SrTiO3 /
- inverse spin Hall effect
[1] Valenzuela S O, Tinkham M 2006 Nature 442 176Google Scholar
[2] Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S 2007 Phys. Rev. Lett. 98 156601Google Scholar
[3] Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar
[4] Kato Y K, Myers R C, Gossard A C, Awschalom D D 2004 Science 306 1910Google Scholar
[5] Kumar A, Bansal R, Chaudhary S, Muduli P K 2018 Phys. Rev. B 98 104403Google Scholar
[6] Nakayama H, Ando K, Harii K, Fujikawa Y, Kajiwara Y, Yoshino T, Saitoh E 2010 IEEE Trans. Magn. 46 2202Google Scholar
[7] Jungwirth T, Qian N, Macdonald A H 2002 Phys. Rev. Lett. 88 207208Google Scholar
[8] Guo G Y, Murakami S, Chen T W, Nagaosa N 2008 Phys. Rev. Lett. 100 096401Google Scholar
[9] Bottegoni F, Ferrari A, Cecchi S, Finazzi M, Ciccacci F, Isella G 2013 Appl. Phys. Lett. 10215241 1
[10] Ramaswamy R, Wang Y, Elyasi M, Motapothula M, Venkatesan T, Qiu X, Yang H 2017 Phys. Rev. Appl. 8 024034Google Scholar
[11] Tse W K, Das S S 2006 Phys. Rev. Lett. 96 056601Google Scholar
[12] Fert A, Levy P M 2011 Phys. Rev. Lett. 106 157208Google Scholar
[13] Gradhand M, Fedorov D V, Zahn P, Mertig I 2010 Phys. Rev. Lett. 104 186403Google Scholar
[14] Choi W Y, Kim H J, Chang J, Han S H, Abbout A, Saidaoui H B M, Manchon A, Lee K J, Koo H C 2018 Nano Lett. 18 7998Google Scholar
[15] Zhang W, Peng B, Han F, Wang Q, Soh W T, Ong C K, Zhang W 2016 Appl. Phys. Lett. 108 102405Google Scholar
[16] Wang Q, Zhang W, Peng B, Zhang W 2017 Aip. Adv. 7 125218Google Scholar
[17] Mosendz O, Vlaminck V, Pearson J E, Fradin F Y, Bauer G E W, Bader S D, Hoffmann A 2010 Phys. Rev. B 82 214403Google Scholar
[18] Ando K, Takahashi S, Ieda J, Kajiwara Y, Saitoh E 2011 J. Appl. Phys. 109 103913Google Scholar
[19] Deorani P, Yang H 2013 Appl. Phys. Lett. 103 232408Google Scholar
-
-
[1] Valenzuela S O, Tinkham M 2006 Nature 442 176Google Scholar
[2] Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S 2007 Phys. Rev. Lett. 98 156601Google Scholar
[3] Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar
[4] Kato Y K, Myers R C, Gossard A C, Awschalom D D 2004 Science 306 1910Google Scholar
[5] Kumar A, Bansal R, Chaudhary S, Muduli P K 2018 Phys. Rev. B 98 104403Google Scholar
[6] Nakayama H, Ando K, Harii K, Fujikawa Y, Kajiwara Y, Yoshino T, Saitoh E 2010 IEEE Trans. Magn. 46 2202Google Scholar
[7] Jungwirth T, Qian N, Macdonald A H 2002 Phys. Rev. Lett. 88 207208Google Scholar
[8] Guo G Y, Murakami S, Chen T W, Nagaosa N 2008 Phys. Rev. Lett. 100 096401Google Scholar
[9] Bottegoni F, Ferrari A, Cecchi S, Finazzi M, Ciccacci F, Isella G 2013 Appl. Phys. Lett. 10215241 1
[10] Ramaswamy R, Wang Y, Elyasi M, Motapothula M, Venkatesan T, Qiu X, Yang H 2017 Phys. Rev. Appl. 8 024034Google Scholar
[11] Tse W K, Das S S 2006 Phys. Rev. Lett. 96 056601Google Scholar
[12] Fert A, Levy P M 2011 Phys. Rev. Lett. 106 157208Google Scholar
[13] Gradhand M, Fedorov D V, Zahn P, Mertig I 2010 Phys. Rev. Lett. 104 186403Google Scholar
[14] Choi W Y, Kim H J, Chang J, Han S H, Abbout A, Saidaoui H B M, Manchon A, Lee K J, Koo H C 2018 Nano Lett. 18 7998Google Scholar
[15] Zhang W, Peng B, Han F, Wang Q, Soh W T, Ong C K, Zhang W 2016 Appl. Phys. Lett. 108 102405Google Scholar
[16] Wang Q, Zhang W, Peng B, Zhang W 2017 Aip. Adv. 7 125218Google Scholar
[17] Mosendz O, Vlaminck V, Pearson J E, Fradin F Y, Bauer G E W, Bader S D, Hoffmann A 2010 Phys. Rev. B 82 214403Google Scholar
[18] Ando K, Takahashi S, Ieda J, Kajiwara Y, Saitoh E 2011 J. Appl. Phys. 109 103913Google Scholar
[19] Deorani P, Yang H 2013 Appl. Phys. Lett. 103 232408Google Scholar
Catalog
Metrics
- Abstract views: 7373
- PDF Downloads: 65
- Cited By: 0