Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hyperspectral absorption of CO in the near infrared band at room temperature

Wang Ya-Min Wu Hao-Long Tao Meng-Meng Li Guo-Hua Wang Sheng Ye Jing-Feng

Citation:

Hyperspectral absorption of CO in the near infrared band at room temperature

Wang Ya-Min, Wu Hao-Long, Tao Meng-Meng, Li Guo-Hua, Wang Sheng, Ye Jing-Feng
cstr: 32037.14.aps.72.20230557
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • As an important medial product in the combustion process of carbon-based compounds, CO serves as one of the preferable candidates for combustion diagnosis in absorption spectrum. So far, most of researches have focused on the conventional one-line or dual-line technique, which requires a number of beam projections for two-dimension (2D) tomography of combustion field. Hyperspectral absorption spectroscopy enables continuous acquisition of absorption information over a whole absorption band, rather than one or two discrete absorption lines, demonstrating remarkable advantage over the traditional one-line and dual-line techniques. Hyperspectral absorption spectroscopy can not only reduce the system complexity with limited projections for high spatial resolution 2D tomography, but also improve the system applicability by refining the measurement robustness. However, up to now, little attention has been paid to hyperspectral absorption of CO. Here, by using a wideband tunable laser source around 1.5 μm, experiments are conducted at room temperature to investigate the hyperspectral absorption characteristics of CO in the near infrared band. Absorptions under different pressure conditions are compared with each other. And, the measured results are consistent with the HITRAN2016 database. With the measured hyperspectral absorption information in the 1565–1570 nm range, temperature and mole fraction of CO are derived by the first derivative method. Despite the distortion of the recorded absorption peaks, accurate results are obtained with measurement errors within 5% for both temperature and mole fraction, thereby validating the reliability of hyperspectral absorption technique for CO. And, this research is instructive for future 2D tomography of combustion fields based on hyperspectral absorption of CO.
      Corresponding author: Tao Meng-Meng, taomengmeng@nint.ac.cn ; Ye Jing-Feng, yejingfeng@nint.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62105268, 91841303, 52106222) and the Foundation of State Key Laboratory of Laser Interaction with Matter, China (Grant Nos. SKLLIM2009, SKLLIM2110).
    [1]

    陈健 2019 硕士学位论文(天津: 天津大学)

    Chen J 2019 M. S. Thesis (Tianjin: Tianjin University

    [2]

    王振, 杜艳君, 丁艳军, 李政, 彭志敏 2022 物理学报 71 044205Google Scholar

    Wang Z, Du Y J, Ding Y J, Li Z, Peng Z M 2022 Acta Phys. Sin. 71 044205Google Scholar

    [3]

    Devolder P, Dusanter S, Lemoine B, Fittschen C 2006 Chem. Phys. Lett. 417 154Google Scholar

    [4]

    张雅琪 2019 硕士学位论文(杭州: 浙江大学)

    Zhang Y Q 2019 M. S. Thesis (Hangzhou: Zhejiang University

    [5]

    Fu B, Zhang C, Lü W, Sun J, Shang C, Cheng Y, Xu L 2022 Appl. Spectrosc. Rev. 57 112Google Scholar

    [6]

    Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2017 Prog. Energy Combust. Sci. 60 132

    [7]

    Bolshov M A, Kuritsyn Y A, Romanovskii Y V 2015 Spectrochim. Acta, Part B 106 45Google Scholar

    [8]

    Hanson R K, Davidson D F 2014 Prog. Energy Combust. Sci. 44 103Google Scholar

    [9]

    刘晶儒, 胡志云, 张振荣, 关小伟, 王晟, 陶波, 叶景峰, 张立荣, 黄梅生, 赵新艳, 叶锡生 2011 光学精密工程 19 284

    Liu J R, Hu Z Y, Zhang Z R, Guan X W, Wang S, Tao B, Ye J F, Zhang L R, Huang M S, Zhao X Y, Ye X S 2011 Opt. Precis. Eng. 19 284

    [10]

    李留成, 多丽萍, 周冬建, 王增强, 王元虎, 唐书凯 2019 红外与激光工程 48 0805011Google Scholar

    Li L C, Duo L P, Zhou D J, Wang Z Q, Wang Y H, Tang S K 2019 Infrared Laser Eng. 48 0805011Google Scholar

    [11]

    Wagner S, Klein M, Kathrotia T, Riedel U, Kissel T, Dreizler A, Ebert V 2012 Appl. Phys. B 109 533Google Scholar

    [12]

    Sur R, Sun K, Jeffries J B, Hanson R K, Pummill R J, Waind T, Wagner D R, Whitty K J 2014 Appl. Phys. B 116 33

    [13]

    彭于权, 阚瑞峰, 许振宇, 夏晖晖, 聂伟, 张步强 2018 中国激光 45 0911010Google Scholar

    Peng Y Q, Kan R F, Xu Z Y, Xia H H, Nie W, Zhang B Q 2018 Chin. J. Lasers 45 0911010Google Scholar

    [14]

    Sane A, Satijia A, Lucht R P, Gore J P 2014 Appl. Phys. B 117 7

    [15]

    Hu S W, Yin K W, Tu X B, Yang F R, Chen S 2021 J. Exp. Fluid Mech. 35 60 [胡尚炜, 殷可为, 涂晓波, 杨富荣, 陈爽 2021 实验流体力学 35 60Google Scholar

    Hu S W, Yin K W, Tu X B, Yang F R, Chen S 2021 J. Exp. Fluid Mech. 35 60Google Scholar

    [16]

    Sappey A D, Masterson P, Huelson E, Howell J, Estes M, Hofvander H, Jobson A 2011 Combust. Sci. Technol. 183 1282Google Scholar

    [17]

    Sepman A, Ogren Y, Gullberg M, Wiinikka H 2016 Appl. Phys. B 122 29

    [18]

    Ma L, Li X, Sanders S T, Caswell A W, Roy S, Plemmons D H, Gord J R 2013 Opt. Express 21 1152Google Scholar

    [19]

    Tao M M, Tao B, Hu Z Y, Feng G B, Ye X S, Zhao J 2017 Opt. Express 25 32386Google Scholar

    [20]

    Sanders S T 2001 Ph. D. Dissertation (Stanford, CA: Stanford University

    [21]

    Huber R, Wojtkowski M, Fujimoto J G 2006 Opt. Express 14 3225Google Scholar

    [22]

    陶蒙蒙, 陶波, 叶景峰, 沈炎龙, 黄珂, 叶锡生, 赵军 2020 物理学报 69 034205Google Scholar

    Tao M M, Tao B, Ye J F, Shen Y L, Huang K, Ye X S, Zhao J 2020 Acta Phys. Sin. 69 034205Google Scholar

    [23]

    Grauer S J, Emmert J, Sanders S T, Wagner S, Daun K J 2019 Meas. Sci. Tchnol. 30 105401Google Scholar

    [24]

    Kranendonk L A, Caswell A W, Sanders S T 2007 Appl. Opt. 46 4117Google Scholar

    [25]

    Caswell A W, Roy S, An X, Sanders S T, Schauer F R, Gord J R 2013 Appl. Opt. 52 2893Google Scholar

    [26]

    Cai W W, Ewing D J, Ma L 2008 Comput. Phys. Commun. 179 250Google Scholar

    [27]

    Ma L, Cai W W 2008 Appl. Opt. 47 3751Google Scholar

    [28]

    Ma L, Cai W W 2008 Appl. Opt. 47 4186Google Scholar

    [29]

    Cai W W, Kaminski C F 2014 Appl. Phys. Lett. 104 034101Google Scholar

    [30]

    Wright P, Garcia-Stewart C A, Carey S J, Hindle F P, Pegrum S H, Colbourne S M, Turner P J, Hurr W J, Litt T J, Murray S C, Crossley S D, Ozanyan K B, McCann H 2005 Appl. Opt. 44 6578Google Scholar

    [31]

    Wang F, Cen K F, Li N, Jeffries J B, Huang Q X, Yan J H, Chi Y 2010 Meas. Sci. Technol. 21 045301Google Scholar

    [32]

    Deguchi Y, Kamimoto T, Kiyota Y 2015 Flow Meas. Instrum. 46 312Google Scholar

    [33]

    Tsekenis S A, Tait N, McCann H 2015 Rev. Sci. Instrum. 86 035104Google Scholar

    [34]

    Terzija N, Karagiannopoulos S, Begg S, Wright P, Ozanyan K, McCann H 2015 Int. J. Engine Res. 16 565Google Scholar

    [35]

    Liu C, Cao Z, Lin Y, Xu L, McCann H 2018 IEEE Trans Instrum. Meas. 67 1338Google Scholar

    [36]

    Wang Z, Deguchi Y, Kamimoto T, Tainaka K, Tanno K 2020 Fuel 268 117370Google Scholar

    [37]

    陶蒙蒙, 王亚民, 吴昊龙, 李国华, 王晟, 陶波, 叶景峰, 冯国斌, 叶锡生, 陈卫标 2022 物理学报 71 114203Google Scholar

    Tao M M, Wang Y M, Wu H L, Li G H, Wang S, Tao B, Ye J F, Feng G B, Ye X S, Chen W B 2022 Acta Phys. Sin. 71 114203Google Scholar

    [38]

    Schulze G, Jirasek A, Yu M M L, Lim A, Turner R F B, Blades M W 2005 Appl. Spectrosc. 59 545Google Scholar

  • 图 1  HITRAN2016光谱数据库计算得到的室温下CO在1.6 μm附近的吸收谱线

    Figure 1.  Absorption lines of CO around 1.6 μm at room temperature in HITRAN2016 database.

    图 2  CO宽光谱吸收测量实验光路图. WTLD, 宽带调谐光源; PD, 探测器; DAQ, 数采系统

    Figure 2.  Schematic diagram of the hyperspectral absorption experiment. WTLD, wideband tunable laser diode; PD, photo-detector; DAQ, data acquisition.

    图 3  实验测得的吸收信号 (a)原始探测信号; (b)吸收光谱信号

    Figure 3.  Recorded absorption signal: (a) Detected original signal; (b) absorption signal.

    图 4  实测信号与理论模拟的对比

    Figure 4.  Comparison between theoretical absorption signal and experimental results.

    图 5  激光器扫描过程中采样点与波长之间的对应关系

    Figure 5.  Relationship between the sampling point and the output wavelength.

    图 6  不同压强下CO在1567 nm附近的吸收谱 (a)理论模拟光谱; (b)实测吸收光谱及其洛伦兹拟合

    Figure 6.  Detailed absorption spectra of CO around 1567 nm at different pressures: (a) Theoretical absorption spectra; (b) measured absorption spectra and corresponding Lorentz fit.

    图 7  1565—1570 nm实测CO宽光谱吸收数据(a)与理论模拟数据(b)

    Figure 7.  Measured hyperspectral absorption spectrum (a) and simulated hyperspectral absorption spectrum (b) of CO in the 1565—1570 nm range.

    图 8  实测吸收光谱数据与理论模拟数据之间的对比 (a) 实测吸收光谱数据一阶导数与理论模拟数据一阶导数; (b) 不同温度下实测吸收光谱数据一阶导数与理论模拟数据一阶导数之间的RMSE

    Figure 8.  Comparison between measured and theoretical spectra: (a) First derivatives of the measured and theoretical spectra; (b) RMSE between measured and theoretical spectra at different temperatures.

    图 9  300 K温度下, 实测数据一阶导数与理论模拟数据一阶导数的分布关系

    Figure 9.  Relationship between the first derivative of the measured spectrum and that of the theoretical spectrum at 300 K.

    表 1  双线法反演得到的温度信息

    Table 1.  Temperature derived by dual-line method

    Lines T/K
    L1 L2 L3 L4
    L1 401.66 318.64 342.92
    L2 401.66 259.62 316.15
    L3 318.64 259.61 417.04
    L4 342.92 316.15 417.03
    DownLoad: CSV
  • [1]

    陈健 2019 硕士学位论文(天津: 天津大学)

    Chen J 2019 M. S. Thesis (Tianjin: Tianjin University

    [2]

    王振, 杜艳君, 丁艳军, 李政, 彭志敏 2022 物理学报 71 044205Google Scholar

    Wang Z, Du Y J, Ding Y J, Li Z, Peng Z M 2022 Acta Phys. Sin. 71 044205Google Scholar

    [3]

    Devolder P, Dusanter S, Lemoine B, Fittschen C 2006 Chem. Phys. Lett. 417 154Google Scholar

    [4]

    张雅琪 2019 硕士学位论文(杭州: 浙江大学)

    Zhang Y Q 2019 M. S. Thesis (Hangzhou: Zhejiang University

    [5]

    Fu B, Zhang C, Lü W, Sun J, Shang C, Cheng Y, Xu L 2022 Appl. Spectrosc. Rev. 57 112Google Scholar

    [6]

    Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2017 Prog. Energy Combust. Sci. 60 132

    [7]

    Bolshov M A, Kuritsyn Y A, Romanovskii Y V 2015 Spectrochim. Acta, Part B 106 45Google Scholar

    [8]

    Hanson R K, Davidson D F 2014 Prog. Energy Combust. Sci. 44 103Google Scholar

    [9]

    刘晶儒, 胡志云, 张振荣, 关小伟, 王晟, 陶波, 叶景峰, 张立荣, 黄梅生, 赵新艳, 叶锡生 2011 光学精密工程 19 284

    Liu J R, Hu Z Y, Zhang Z R, Guan X W, Wang S, Tao B, Ye J F, Zhang L R, Huang M S, Zhao X Y, Ye X S 2011 Opt. Precis. Eng. 19 284

    [10]

    李留成, 多丽萍, 周冬建, 王增强, 王元虎, 唐书凯 2019 红外与激光工程 48 0805011Google Scholar

    Li L C, Duo L P, Zhou D J, Wang Z Q, Wang Y H, Tang S K 2019 Infrared Laser Eng. 48 0805011Google Scholar

    [11]

    Wagner S, Klein M, Kathrotia T, Riedel U, Kissel T, Dreizler A, Ebert V 2012 Appl. Phys. B 109 533Google Scholar

    [12]

    Sur R, Sun K, Jeffries J B, Hanson R K, Pummill R J, Waind T, Wagner D R, Whitty K J 2014 Appl. Phys. B 116 33

    [13]

    彭于权, 阚瑞峰, 许振宇, 夏晖晖, 聂伟, 张步强 2018 中国激光 45 0911010Google Scholar

    Peng Y Q, Kan R F, Xu Z Y, Xia H H, Nie W, Zhang B Q 2018 Chin. J. Lasers 45 0911010Google Scholar

    [14]

    Sane A, Satijia A, Lucht R P, Gore J P 2014 Appl. Phys. B 117 7

    [15]

    Hu S W, Yin K W, Tu X B, Yang F R, Chen S 2021 J. Exp. Fluid Mech. 35 60 [胡尚炜, 殷可为, 涂晓波, 杨富荣, 陈爽 2021 实验流体力学 35 60Google Scholar

    Hu S W, Yin K W, Tu X B, Yang F R, Chen S 2021 J. Exp. Fluid Mech. 35 60Google Scholar

    [16]

    Sappey A D, Masterson P, Huelson E, Howell J, Estes M, Hofvander H, Jobson A 2011 Combust. Sci. Technol. 183 1282Google Scholar

    [17]

    Sepman A, Ogren Y, Gullberg M, Wiinikka H 2016 Appl. Phys. B 122 29

    [18]

    Ma L, Li X, Sanders S T, Caswell A W, Roy S, Plemmons D H, Gord J R 2013 Opt. Express 21 1152Google Scholar

    [19]

    Tao M M, Tao B, Hu Z Y, Feng G B, Ye X S, Zhao J 2017 Opt. Express 25 32386Google Scholar

    [20]

    Sanders S T 2001 Ph. D. Dissertation (Stanford, CA: Stanford University

    [21]

    Huber R, Wojtkowski M, Fujimoto J G 2006 Opt. Express 14 3225Google Scholar

    [22]

    陶蒙蒙, 陶波, 叶景峰, 沈炎龙, 黄珂, 叶锡生, 赵军 2020 物理学报 69 034205Google Scholar

    Tao M M, Tao B, Ye J F, Shen Y L, Huang K, Ye X S, Zhao J 2020 Acta Phys. Sin. 69 034205Google Scholar

    [23]

    Grauer S J, Emmert J, Sanders S T, Wagner S, Daun K J 2019 Meas. Sci. Tchnol. 30 105401Google Scholar

    [24]

    Kranendonk L A, Caswell A W, Sanders S T 2007 Appl. Opt. 46 4117Google Scholar

    [25]

    Caswell A W, Roy S, An X, Sanders S T, Schauer F R, Gord J R 2013 Appl. Opt. 52 2893Google Scholar

    [26]

    Cai W W, Ewing D J, Ma L 2008 Comput. Phys. Commun. 179 250Google Scholar

    [27]

    Ma L, Cai W W 2008 Appl. Opt. 47 3751Google Scholar

    [28]

    Ma L, Cai W W 2008 Appl. Opt. 47 4186Google Scholar

    [29]

    Cai W W, Kaminski C F 2014 Appl. Phys. Lett. 104 034101Google Scholar

    [30]

    Wright P, Garcia-Stewart C A, Carey S J, Hindle F P, Pegrum S H, Colbourne S M, Turner P J, Hurr W J, Litt T J, Murray S C, Crossley S D, Ozanyan K B, McCann H 2005 Appl. Opt. 44 6578Google Scholar

    [31]

    Wang F, Cen K F, Li N, Jeffries J B, Huang Q X, Yan J H, Chi Y 2010 Meas. Sci. Technol. 21 045301Google Scholar

    [32]

    Deguchi Y, Kamimoto T, Kiyota Y 2015 Flow Meas. Instrum. 46 312Google Scholar

    [33]

    Tsekenis S A, Tait N, McCann H 2015 Rev. Sci. Instrum. 86 035104Google Scholar

    [34]

    Terzija N, Karagiannopoulos S, Begg S, Wright P, Ozanyan K, McCann H 2015 Int. J. Engine Res. 16 565Google Scholar

    [35]

    Liu C, Cao Z, Lin Y, Xu L, McCann H 2018 IEEE Trans Instrum. Meas. 67 1338Google Scholar

    [36]

    Wang Z, Deguchi Y, Kamimoto T, Tainaka K, Tanno K 2020 Fuel 268 117370Google Scholar

    [37]

    陶蒙蒙, 王亚民, 吴昊龙, 李国华, 王晟, 陶波, 叶景峰, 冯国斌, 叶锡生, 陈卫标 2022 物理学报 71 114203Google Scholar

    Tao M M, Wang Y M, Wu H L, Li G H, Wang S, Tao B, Ye J F, Feng G B, Ye X S, Chen W B 2022 Acta Phys. Sin. 71 114203Google Scholar

    [38]

    Schulze G, Jirasek A, Yu M M L, Lim A, Turner R F B, Blades M W 2005 Appl. Spectrosc. 59 545Google Scholar

Metrics
  • Abstract views:  4709
  • PDF Downloads:  83
  • Cited By: 0
Publishing process
  • Received Date:  08 April 2023
  • Accepted Date:  31 July 2023
  • Available Online:  12 September 2023
  • Published Online:  20 November 2023
  • /

    返回文章
    返回