Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Interface evolution mechanism of dual-bubble coalescence driving micromotors in bulk phase

Wang Li-Na Chen Li Sheng Min-Jia Wang Lei-Lei Cui Hai-Hang Zheng Xu Huang Ming-Hua

Citation:

Interface evolution mechanism of dual-bubble coalescence driving micromotors in bulk phase

Wang Li-Na, Chen Li, Sheng Min-Jia, Wang Lei-Lei, Cui Hai-Hang, Zheng Xu, Huang Ming-Hua
PDF
HTML
Get Citation
  • Self-propelled micromotor serves as a bridge between the microfluidic environment and macroscopic control. It has broad application prospects in targeted drug delivery, biosensors, and other fields. The high driving speed of bubble micromotor is an irreplaceable advantage in practical applications. Bubble micromotor converts chemical energy in ambient solutions into mechanical energy through asymmetric surface catalytic reactions to drive its own motion. The energy conversion rate of bubble driving is used as an indicator to evaluate the driving force. The Pt catalytic layer of a tubular micromotor is located on the inner wall of the microtube. Bubbles form inside the tube. They are released from one end of the microtubule into the solution and self driven by bubble rebound, with an energy conversion rate of $ \sim {10^{ - 10}}$. The Janus microsphere motor near the gas-liquid interface utilizes the energy of the bubble coalesced with the interface to drive the microsphere, with an energy conversion rate of $ \sim {10^{ - 7}}$. In sum, the tubular bubble motor is suitable for complex scenarios but has a low energy conversion rate. The Janus microsphere motor driven by bubbles has a high efficiency but is only suitable near the gas-liquid interface. This paper combines the advantages of driving tubular micromotors in bulk solution and Janus microsphere motors which can be driven efficiently by interface energy, proposes a new method of driving Janus microsphere motors by dual bubble coalescence.In the experiment, a high-speed camera is used to record the ~100 μs of dual bubble coalescence and the process of driving micromotor. Then we investigate the initial kinetic energy conversion rate of micro motor driven by bubble coalescence. Three sets of different bubble/particle size ratios of ${R_{\rm{b}}}/{R_{\rm{p}}} < 1$, ${R_{\rm{b}}}/{R_{\rm{p}}} \approx 1$, ${R_{\rm{b}}}/{R_{\rm{p}}} > 1$ are adopted for their propulsion effects on microspheres. The initial kinetic energy conversion rate is defined to characterize the contribution of bubble coalescence process to microsphere driving.After simulations with the pseudo potential lattice Boltzmann method, the mechanism of bubble coalescence driving the motion of microspheres is revealed. It is clarified that the interface oscillation caused by bubble coalescence is the main reason of driving the micromotor, and its energy conversion rate is between the rebound driving of the tubular micromotor and the one-bubble coalescence driving with the free surface. The research results reveal the details of bubble coalescence at different time periods, and provide the effects of factors such as bubble particle size ratio on microsphere displacement and initial kinetic energy conversion rate. Thus the efficient driving mechanism of dual bubble coalescence and release of surface energy are confirmed.
      Corresponding author: Chen Li, jasonchencl@163.com ; Zheng Xu, zhengxu@lnm.imech.ac.cn
    • Funds: Project supported by the Natural Science Basic Research Program General Program of Shaanxi Province, China (Grant No. 2020JM-479), the China Postdoctoral Science Foundation (Grant No. 2022M720148), and the National Natural Science Foundation of China (Grant No. 52208126).
    [1]

    Wang L L, Chen L, Zheng X, Yu Z X, Lü W C, Sheng M J, Wang L N, Nie P C, Li H Y, Guan D S, Cui H H 2022 Small 18 2203872Google Scholar

    [2]

    李茂垚, 吴建荣, 郑元义 2020 科学通报 65 4123Google Scholar

    Li M Y, Wu J R, Zheng Y Y 2020 Chin. Sci. Bull. 65 4123Google Scholar

    [3]

    Li M, Xi N, Wang Y C, Liu L Q 2021 IEEE Trans. Biomed. Eng. 68 130Google Scholar

    [4]

    Liu L, Wang D W, Rao W 2021 Micromachines 12 280Google Scholar

    [5]

    Wang W, Duan W T, Ahmed S, Mallouk T E, Sen A 2013 Nano Today 8 531Google Scholar

    [6]

    Feng Y W, Jia D L, Yue H E, Wang J, Song W P, Li L Q, Zhang A M, Li S, Chang X C, Zhou D K 2023 Small 19 2207565Google Scholar

    [7]

    Baraban L, Streubel R, Makarov D, Han L Y, Karnaushenko D, Schmidt O G, Cuniberti G 2013 ACS Nano 7 1360Google Scholar

    [8]

    Pavlick R A, Sengupta S, McFadden T, Zhang H, Sen A 2011 Angew. Chem. Int. Ed. 50 9374Google Scholar

    [9]

    郑旭, 崔海航, 李战华 2017 科学通报 62 167Google Scholar

    Zheng X, Cui H H, Li Z H 2017 Chin. Sci. Bull. 62 167Google Scholar

    [10]

    Wang S J, Wu N 2014 Langmuir 30 3477Google Scholar

    [11]

    Manjare M, Yang B, Zhao Y P 2012 Phys. Rev. Lett. 109 128305Google Scholar

    [12]

    魏梦举, 陈力, 伍涛, 张鸿雁, 崔海航 2017 物理学报 66 164702Google Scholar

    Wei M J, Chen L, Wu T, Zhang H Y, Cui H H 2017 Acta. Phys. Sin. 66 164702Google Scholar

    [13]

    Wang L L, Chen L, Zhang J, Duan J M, Wang L, Li Z H, Zheng X, Cui H H 2018 Langmuir 34 10426Google Scholar

    [14]

    Van Leeuwen J L 2010 Science 329 395Google Scholar

    [15]

    Noblin X, Rojas N O, Westbrook J, Llorens C, Dumais J 2012 Science. 335 1322Google Scholar

    [16]

    Naeem S, Naeem F, Manjare M, Liao F, Bolaños Quiñones V A, Huang G S, Li Y, Zhang J, Solovev A A, Mei Y F 2019 Appl. Phys. Lett. 114 033701Google Scholar

    [17]

    张培赟, 黄高山, 门传玲, 梅永丰 2017 中国科学: 化学 47 14Google Scholar

    Zhang P Y, Huang G S, Men C L, Mei Y F 2017 Sci. Sin. Chem. 47 14Google Scholar

    [18]

    孔磊, 牟方志, 姜玉周, 李小丰, 官建国 2017 科学通报 62 107Google Scholar

    Kong L, Mou F Z, Jiang Y Z, Li X F, Guan J G 2017 Chin. Sci. Bull. 62 107Google Scholar

    [19]

    Wrede P, Medina-Sanchez M, Fomin V M, Schmidt O G 2021 Small 17 2006449Google Scholar

    [20]

    Wang W, Chiang T Y, Velegol D, Mallouk T E 2013 J. Am. Chem. Soc. 135 10557Google Scholar

    [21]

    Kupershtokh A L, Medvedev D A, Karpov D I 2009 Comput. Math. Appl 58 965Google Scholar

    [22]

    Shan X W, Chen H D 1993 Phys. Rev. E 47 1815Google Scholar

    [23]

    郭照立, 郑楚光 2009 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第160—165页

    Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) pp160–165 (in Chinese)

    [24]

    Chen L, Yu Y, Lu J H, Hou G X 2014 Int. J. Numer. Methods Fluids 74 439Google Scholar

    [25]

    Martys N S, Chen H D 1996 Phys. Rev. E 53 743Google Scholar

    [26]

    Elgeti J, Winkler R G, Gompper G 2015 Rep. Prog. Phys. 78 056601Google Scholar

  • 图 1  (a)实验装置示意图; (b)气泡聚并形状演化的方向定位

    Figure 1.  (a) Schematic diagram of the experimental setup; (b) orientation of the evolution of bubble aggregation and shape.

    图 2  气泡聚集与界面演化的时间序列 (a) 0; (b) 4.34 μs; (c) 10.5 μs; (d) 43.39 μs

    Figure 2.  Time series of bubble aggregation and interface evolution: (a) 0; (b) 4.34 μs; (c) 10.5 μs; (d) 43.39 μs.

    图 3  气泡聚并后表面能释放量随气泡半径变化图

    Figure 3.  Variation of surface energy release with bubble radius after bubble aggregation.

    图 4  Rb1 = 24 μm, Rb2 = 25 μm, Rp = 27 μm时, 实验拍摄的气泡聚并驱动颗粒运动的时间序列(黄色虚线标示初始时刻颗粒的位置, 绿色虚线标示初始时刻聚并气泡中心) (a) 0; (b) 13.3 μs; (c) 26.6 μs; (d) 39.9 μs; (e) 66.6 μs; (f) 533.0 μs

    Figure 4.  Experimentally filmed time series of bubbles aggregating and driving particle motion at Rb1 = 24 μm, Rb2 = 25 μm, Rp = 27 μm (Yellow dashed line marks the position of the particle at the initial moment, and the green dashed line marks the center of the aggregation bubble at the initial moment): (a) 0; (b) 13.3 μs; (c) 26.6 μs; (d) 39.9 μs; (e) 66.6 μs; (f) 533.0 μs.

    图 5  Rb1 = 47 μm, Rb2 = 49 μm, Rp = 36 μm时, 实验记录气泡聚并驱动颗粒运动序列图 (a) 0; (b) 5 μs; (c) 10 μs; (d) 20 μs; (e) 30 μs; (f) 200 μs

    Figure 5.  Experimentally recorded bubble aggregation and driven particle motion sequence diagram at Rb1 = 47 μm, Rb2 = 49 μm, Rp = 36 μm: (a) 0; (b) 5 μs; (c) 10 μs; (d) 20 μs; (e) 30 μs; (f) 200 μs.

    图 6  Rb1 = 7.8 μm, Rb2 = 10.4 μm, Rp = 18.0 μm时, 实验记录气泡聚并驱动颗粒运动序列图 (a) 0; (b) 5 μs; (c) 10 μs; (d) 20 μs; (e) 30 μs; (f) 200 μs

    Figure 6.  Experimentally recorded bubble aggregation and driven particle motion sequence diagram at Rb1 = 7.8 μm, Rb2 = 10.4 μm, Rp = 18.0 μm: (a) 0; (b) 5 μs; (c) 10 μs; (d) 20 μs; (e) 30 μs; (f) 200 μs.

    图 7  双气泡聚并驱动颗粒运动的位移、初始动能转换率随气泡与颗粒尺寸比值的变化

    Figure 7.  Variation of displacement, initial kinetic energy conversion rate with bubble to particle size ratio for double bubble aggregation and driving particle motion.

    图 8  反弹边界条件液相流场中双气泡数值模拟的计算域及边界条件

    Figure 8.  Computational domain and boundary conditions for the numerical simulation of double bubbles in liquid-phase flow field with rebound boundary conditions.

    图 9  不同时刻近颗粒气泡聚并演化过程压强及速度场变化 (a) 9.1 μs; (b) 18.3 μs; (c) 36.6 μs; (d) 73.1 μs; (e) 310.8 μs; (f) 914.1 μs

    Figure 9.  Variation of pressure and velocity fields during near-particle bubble aggregation and evolution at different moments: (a) 9.1 μs; (b) 18.3 μs; (c) 36.6 μs; (d) 73.1 μs; (e) 310.8 μs; (f) 914.1 μs.

    图 10  实验与数值模拟气泡聚并驱动颗粒形态演化对照橙色框内为数值模拟结果(Rb = 20 μm, Rp = 10 μm), 蓝色框内为实验结果(Rb1 = 41 μm, Rb2 = 39 μm, Rp = 34 μm)

    Figure 10.  Comparison of experimental and numerical simulations of bubble aggregation-driven particle morphology evolution. The orange box shows the numerical simulation results (Rb = 20 μm, Rp = 10 μm), and the blue box shows the experimental results (Rb1 = 41 μm, Rb2 = 39 μm, Rp = 34 μm).

    图 11  气泡与颗粒尺寸比与初始动能转换率、颗粒位移之间的关系

    Figure 11.  Relationship between bubble to particle size ratio and initial kinetic energy conversion rate, particle displacement.

    图 12  (a)“力偶极子”微马达流场[26]; (b)双气泡聚并微马达速度场

    Figure 12.  (a) Flow field of the “force dipole” micromotor[26]; (b) velocity field of the double bubble aggregation and micromotor.

  • [1]

    Wang L L, Chen L, Zheng X, Yu Z X, Lü W C, Sheng M J, Wang L N, Nie P C, Li H Y, Guan D S, Cui H H 2022 Small 18 2203872Google Scholar

    [2]

    李茂垚, 吴建荣, 郑元义 2020 科学通报 65 4123Google Scholar

    Li M Y, Wu J R, Zheng Y Y 2020 Chin. Sci. Bull. 65 4123Google Scholar

    [3]

    Li M, Xi N, Wang Y C, Liu L Q 2021 IEEE Trans. Biomed. Eng. 68 130Google Scholar

    [4]

    Liu L, Wang D W, Rao W 2021 Micromachines 12 280Google Scholar

    [5]

    Wang W, Duan W T, Ahmed S, Mallouk T E, Sen A 2013 Nano Today 8 531Google Scholar

    [6]

    Feng Y W, Jia D L, Yue H E, Wang J, Song W P, Li L Q, Zhang A M, Li S, Chang X C, Zhou D K 2023 Small 19 2207565Google Scholar

    [7]

    Baraban L, Streubel R, Makarov D, Han L Y, Karnaushenko D, Schmidt O G, Cuniberti G 2013 ACS Nano 7 1360Google Scholar

    [8]

    Pavlick R A, Sengupta S, McFadden T, Zhang H, Sen A 2011 Angew. Chem. Int. Ed. 50 9374Google Scholar

    [9]

    郑旭, 崔海航, 李战华 2017 科学通报 62 167Google Scholar

    Zheng X, Cui H H, Li Z H 2017 Chin. Sci. Bull. 62 167Google Scholar

    [10]

    Wang S J, Wu N 2014 Langmuir 30 3477Google Scholar

    [11]

    Manjare M, Yang B, Zhao Y P 2012 Phys. Rev. Lett. 109 128305Google Scholar

    [12]

    魏梦举, 陈力, 伍涛, 张鸿雁, 崔海航 2017 物理学报 66 164702Google Scholar

    Wei M J, Chen L, Wu T, Zhang H Y, Cui H H 2017 Acta. Phys. Sin. 66 164702Google Scholar

    [13]

    Wang L L, Chen L, Zhang J, Duan J M, Wang L, Li Z H, Zheng X, Cui H H 2018 Langmuir 34 10426Google Scholar

    [14]

    Van Leeuwen J L 2010 Science 329 395Google Scholar

    [15]

    Noblin X, Rojas N O, Westbrook J, Llorens C, Dumais J 2012 Science. 335 1322Google Scholar

    [16]

    Naeem S, Naeem F, Manjare M, Liao F, Bolaños Quiñones V A, Huang G S, Li Y, Zhang J, Solovev A A, Mei Y F 2019 Appl. Phys. Lett. 114 033701Google Scholar

    [17]

    张培赟, 黄高山, 门传玲, 梅永丰 2017 中国科学: 化学 47 14Google Scholar

    Zhang P Y, Huang G S, Men C L, Mei Y F 2017 Sci. Sin. Chem. 47 14Google Scholar

    [18]

    孔磊, 牟方志, 姜玉周, 李小丰, 官建国 2017 科学通报 62 107Google Scholar

    Kong L, Mou F Z, Jiang Y Z, Li X F, Guan J G 2017 Chin. Sci. Bull. 62 107Google Scholar

    [19]

    Wrede P, Medina-Sanchez M, Fomin V M, Schmidt O G 2021 Small 17 2006449Google Scholar

    [20]

    Wang W, Chiang T Y, Velegol D, Mallouk T E 2013 J. Am. Chem. Soc. 135 10557Google Scholar

    [21]

    Kupershtokh A L, Medvedev D A, Karpov D I 2009 Comput. Math. Appl 58 965Google Scholar

    [22]

    Shan X W, Chen H D 1993 Phys. Rev. E 47 1815Google Scholar

    [23]

    郭照立, 郑楚光 2009 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第160—165页

    Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) pp160–165 (in Chinese)

    [24]

    Chen L, Yu Y, Lu J H, Hou G X 2014 Int. J. Numer. Methods Fluids 74 439Google Scholar

    [25]

    Martys N S, Chen H D 1996 Phys. Rev. E 53 743Google Scholar

    [26]

    Elgeti J, Winkler R G, Gompper G 2015 Rep. Prog. Phys. 78 056601Google Scholar

  • [1] Xu Xin-Meng, Lou Qin. Lattice Boltzmann method for studying dynamics of single rising bubble in shear-thickening power-law fluids. Acta Physica Sinica, 2024, 73(13): 134701. doi: 10.7498/aps.73.20240394
    [2] Ma Cong, Liu Bin, Liang Hong. Lattice Boltzmann simulation of three-dimensional fluid interfacial instability coupled with surface tension. Acta Physica Sinica, 2022, 71(4): 044701. doi: 10.7498/aps.71.20212061
    [3] Chen Xiao-Peng, Feng Jun-Peng, Hu Hai-Bao, Du Peng, Wang Ti-Kang. Lattice Boltzmann method based simulation of two dimensional bubble group ripening process. Acta Physica Sinica, 2022, 71(11): 110504. doi: 10.7498/aps.70.20212183
    [4] Wu Ming-Yu, Mi Guang-Bao, Li Pei-Jie, Huang Xu. Formation mechanisms of Ti2AlC and Ti3AlC during solid-state sintering between multilayer graphene and TiAl alloy composite. Acta Physica Sinica, 2022, 71(19): 196801. doi: 10.7498/aps.71.20220845
    [5] Wang Jiao, Liu Shao-Hui, Chen Chang-Qing, Hao Hao-Shan, Zhai Ji-Wei. Interface modification and energy storage properties of barium titanate-based/ polyvinylidene fluoride composite. Acta Physica Sinica, 2020, 69(21): 217702. doi: 10.7498/aps.69.20201031
    [6] Li Yuan, Shi Ai-Hong, Chen Guo-Yu, Gu Bing-Dong. Formation of step bunching on 4H-SiC (0001) surfaces based on kinetic Monte Carlo method. Acta Physica Sinica, 2019, 68(7): 078101. doi: 10.7498/aps.68.20182067
    [7] Li Yang, Su Ting, Liang Hong, Xu Jiang-Rong. Phase field lattice Boltzmann model for two-phase flow coupled with additional interfacial force. Acta Physica Sinica, 2018, 67(22): 224701. doi: 10.7498/aps.67.20181230
    [8] Lou Qin,  Li Tao,  Yang Mo. Lattice Boltzmann simulations of rising bubble driven by buoyancy in a complex microchannel. Acta Physica Sinica, 2018, 67(23): 234701. doi: 10.7498/aps.67.20181311
    [9] Zang Chen-Qiang, Lou Qin. Lattice Boltzmann simulation of immiscible displacement in the complex micro-channel. Acta Physica Sinica, 2017, 66(13): 134701. doi: 10.7498/aps.66.134701
    [10] Wei Meng-Ju, Chen Li, Wu Tao, Zhang Hong-Yan, Cui Hai-Hang. Mechanism of the motion of spherical microparticle induced by a collapsed microbubble. Acta Physica Sinica, 2017, 66(16): 164702. doi: 10.7498/aps.66.164702
    [11] Wang Zuo, Liu Yan, Zhang Jia-Zhong. Simulation of micro flow in the transition regime using effective-viscosity-based multi-relaxation-time lattice Boltzmann model. Acta Physica Sinica, 2016, 65(1): 014703. doi: 10.7498/aps.65.014703
    [12] Liang Hong, Chai Zhen-Hua, Shi Bao-Chang. Lattice Boltzmann simulation of droplet dynamics in a bifurcating micro-channel. Acta Physica Sinica, 2016, 65(20): 204701. doi: 10.7498/aps.65.204701
    [13] Xie Wen-Jun, Teng Peng-Fei. Study of acoustic levitation by lattice Boltzmann method. Acta Physica Sinica, 2014, 63(16): 164301. doi: 10.7498/aps.63.164301
    [14] Tao Shi, Wang Liang, Guo Zhao-Li. Lattice Boltzmann modeling of microscale oscillating Couette flow. Acta Physica Sinica, 2014, 63(21): 214703. doi: 10.7498/aps.63.214703
    [15] Zeng Jian-Bang, Li Long-Jian, Jiang Fang-Ming. Numerical investigation of bubble nucleation process using the lattice Boltzmann method. Acta Physica Sinica, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [16] Zhang Yun-Peng, Lin Xin, Wei Lei, Wang Meng, Peng Dong-Jian, Huang Wei-Dong. Effect of surface tension anisotropy on the growth patterns of cellulars in directional solidification. Acta Physica Sinica, 2012, 61(22): 228106. doi: 10.7498/aps.61.228106
    [17] Liu Lei, Chen Zheng, Wang Yong-Xing. The simulation of precipitate splitting in alloy (Ⅰ): segmentation mechanism. Acta Physica Sinica, 2012, 61(18): 186401. doi: 10.7498/aps.61.186401
    [18] Jiang Fang-Ming, Liao Quan, Zeng Jian-Bang, Li Long-Jian. Simulation of bubble growth process in pool boilingusing lattice Boltzmann method. Acta Physica Sinica, 2011, 60(6): 066401. doi: 10.7498/aps.60.066401
    [19] Zhang Jian-Min, Xin Hong, Wei Xiu-Mei. Interface-energy calculation for Ag/Ni twist boundaries with MAEAM. Acta Physica Sinica, 2005, 54(1): 237-241. doi: 10.7498/aps.54.237
    [20] LI HUA-BING, HUANG PING-HUA, LIU MU-REN, KONG LING-JIANG. SIMULATION OF THE MKDV EQUATION WITH LATTICE BOLTZMANN METHOD. Acta Physica Sinica, 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
Metrics
  • Abstract views:  3180
  • PDF Downloads:  70
  • Cited By: 0
Publishing process
  • Received Date:  15 April 2023
  • Accepted Date:  23 May 2023
  • Available Online:  26 June 2023
  • Published Online:  20 August 2023

/

返回文章
返回