Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Virtual screening of drugs targeting PD-L1 protein

Lin Kai-Dong Lin Xiao-Qian Lin Xu-Bo

Citation:

Virtual screening of drugs targeting PD-L1 protein

Lin Kai-Dong, Lin Xiao-Qian, Lin Xu-Bo
PDF
HTML
Get Citation
  • Monoclonal antibody inhibitors targeting PD-1/PD-L1 immune checkpoints are gradually entering the market and have achieved certain positive effects in the treatments of various types of tumors. However, with the expansion of application, the limitations of antibody drugs and problems such as excessive homogenization of research gradually appear, making small-molecule inhibitors the new focus of researchers. This study aims to use ligand-based and structure-based binding activity prediction methods to achieve virtual screening of small-molecule inhibitors targeting PD-L1, thereby helping to accelerate the development of small molecule drugs. A dataset of PD-L1 small-molecule inhibitory activity from relevant research literature and patents is collected and activity judgment classification models with intensity prediction regression models are constructed based on different molecular featurization methods and machine learning algorithms. The two types of models filter 68 candidate compounds with high PD-L1 inhibitory activity from a large drug-like small molecule screening pool (ZINC15). Ten of these compounds not only have good drug similarities and pharmacokinetics, but also exhibit comparable binding affinities and similar mechanisms of action with previous reported hotspot compounds in molecular docking. This phenomenon is further verified in subsequent molecular dynamics simulation and the estimation of binding free energy. In this study, a virtual screening workflow integrating ligand-based method and structure-based method is developed, and potential PD-L1 small-molecule inhibitors are effectively screened from large compound databases, which is expected to help accelerate the application and expansion of tumor immunotherapy.
      Corresponding author: Lin Xu-Bo, linxbseu@buaa.edu.cn
    • Funds: Project supported by the National Nature Science Foundation of China (Grant No. 21903002) and the Excellence Research Fund of Shen Yuan Honors College, Beihang University, China (Grant No. 230121202).
    [1]

    Waldman A D, Fritz J M, Lenardo M J 2020 Nat. Rev. Immunol. 20 651Google Scholar

    [2]

    Wherry E J, Kurachi M 2015 Nat. Rev. Immunol. 15 486Google Scholar

    [3]

    Zou W, Wolchok J D, Chen L 2016 Sci. Transl. Med. 8 328rv4Google Scholar

    [4]

    Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, Wu X, Ma J, Zhou M, Li X, Li Y, Li G, Xiong W, Guo C, Zeng Z 2019 Mol. Cancer 18 10Google Scholar

    [5]

    Topalian S L, Drake C G, Pardoll D M 2015 Cancer Cell 27 450Google Scholar

    [6]

    Postow M A, Callahan M K, Wolchok J D 2015 J. Clin. Oncol. 33 1974Google Scholar

    [7]

    Tang Q, Chen Y, Li X, Long S, Shi Y, Yu Y, Wu W, Han L, Wang S 2022 Front. Immunol. 13 964442Google Scholar

    [8]

    Ai L, Xu A, Xu J 2020 Adv. Exp. Med. Biol. 1248 33Google Scholar

    [9]

    Dermani F K, Samadi P, Rahmani G, Kohlan A K, Najafi R 2019 J. Cell. Physiol. 234 1313Google Scholar

    [10]

    Parry R V, Chemnitz J M, Frauwirth K A, Lanfranco A R, Braunstein I, Kobayashi S V, Linsley P S, Thompson C B, Riley J L 2005 Mol. Cell. Biol. 25 9543Google Scholar

    [11]

    Patsoukis N, Brown J, Petkova V, Liu F, Li L, Boussiotis V A 2012 Sci. Signal. 5 ra46Google Scholar

    [12]

    Hui E, Cheung J, Zhu J, Su X, Taylor M J, Wallweber H A, Sasmal D K, Huang J, Kim J M, Mellman I, Vale R D 2017 Science 355 1428Google Scholar

    [13]

    Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N 2002 Proc. Natl. Acad. Sci. U.S.A. 99 12293Google Scholar

    [14]

    Iwai Y, Terawaki S, Honjo T 2005 Int. Immunol. 17 133Google Scholar

    [15]

    Gong J, Chehrazi-Raffle A, Reddi S, Salgia R 2018 J. Immunother. Cancer 6 8Google Scholar

    [16]

    Akinleye A, Rasool Z 2019 J. Hematol. Oncol. 12 92Google Scholar

    [17]

    Shiravand Y, Khodadadi F, Kashani S M A, Hosseini-Fard S R, Hosseini S, Sadeghirad H, Ladwa R, O'Byrne K, Kulasinghe A 2022 Curr. Oncol. 29 3044Google Scholar

    [18]

    Zhang J, Zhang Y, Qu B, Yang H, Hu S, Dong X 2021 Eur. J. Med. Chem. 218 113356Google Scholar

    [19]

    Johnson D B, Nebhan C A, Moslehi J J, Balko J M 2022 Nat. Rev. Clin. Oncol. 19 254Google Scholar

    [20]

    Mould D R, Meibohm B 2016 BioDrugs 30 275Google Scholar

    [21]

    Wu Q, Jiang L, Li S C, He Q J, Yang B, Cao J 2021 Acta Pharmacol. Sin. 42 1Google Scholar

    [22]

    Zhan M M, Hu X Q, Liu X X, Ruan B F, Xu J, Liao C 2016 Drug Discov. Today 21 1027Google Scholar

    [23]

    Liu C, Seeram N P, Ma H 2021 Cancer Cell Int. 21 239Google Scholar

    [24]

    Chupak L S, Zheng X 2015 WO Patent 2015034820 A1

    [25]

    Zak K M, Grudnik P, Guzik K, Zieba B J, Musielak B, Dömling A, Dubin G, Holak T A 2016 Oncotarget 7 30323Google Scholar

    [26]

    Koblish H K, Wu L, Wang L S, Liu P C C, Wynn R, Rios-Doria J, Spitz S, Liu H, Volgina A, Zolotarjova N, Kapilashrami K, Behshad E, Covington M, Yang Y O, Li J, Diamond S, Soloviev M, O'Hayer K, Rubin S, Kanellopoulou C, Yang G, Rupar M, DiMatteo D, Lin L, Stevens C, Zhang Y, Thekkat P, Geschwindt R, Marando C, Yeleswaram S, Jackson J, Scherle P, Huber R, Yao W, Hollis G 2022 Cancer Discov. 12 1482Google Scholar

    [27]

    Jiang J, Zou X, Liu Y, Liu X, Dong K, Yao X, Feng Z, Chen X, Sheng L, Li Y 2021 Front. Pharmacol. 12 677120Google Scholar

    [28]

    Wang Y, Liu X, Zou X, Wang S, Luo L, Liu Y, Dong K, Yao X, Li Y, Chen X, Sheng L 2021 Pharmaceutics 13 598Google Scholar

    [29]

    Sobral P S, Luz V C C, Almeida J, Videira P A, Pereira F 2023 Int. J. Mol. Sci. 24 5908Google Scholar

    [30]

    Luo L, Zhong A, Wang Q, Zheng T 2021 Mar. Drugs 20 29Google Scholar

    [31]

    Acúrcio R C, Pozzi S, Carreira B, Pojo M, Gómez-Cebrián N, Casimiro S, Fernandes A, Barateiro A, Farricha V, Brito J, Leandro A P, Salvador J A R, Graça L, Puchades-Carrasco L, Costa L, Satchi-Fainaro R, Guedes R C, Florindo H F 2022 J. Immunother. Cancer 10 e004695Google Scholar

    [32]

    Lung J, Hung M S, Lin Y C, Hung C H, Chen C C, Lee K D, Tsai Y H 2020 Molecules 25 5293Google Scholar

    [33]

    Guo Y, Liang J, Liu B, Jin Y 2021 Int. J. Mol. Sci. 22 10924Google Scholar

    [34]

    Sterling T, Irwin J J 2015 J. Chem. Inf. Model. 55 2324Google Scholar

    [35]

    Bemis G W, Murcko M A 1996 J. Med. Chem. 39 2887Google Scholar

    [36]

    Rogers D, Hahn M 2010 J. Chem. Inf. Model. 50 742Google Scholar

    [37]

    Yap C W 2011 J. Comput. Chem. 32 1466Google Scholar

    [38]

    Durant J L, Leland B A, Henry D R, Nourse J G 2002 J. Chem. Inf. Comput. Sci. 42 1273Google Scholar

    [39]

    Moriwaki H, Tian Y S, Kawashita N, Takagi T 2018 J. Cheminform. 10 4Google Scholar

    [40]

    Bickerton G R, Paolini G V, Besnard J, Muresan S, Hopkins A L 2012 Nat. Chem. 4 90Google Scholar

    [41]

    Kosugi T, Ohue M 2021 Int. J. Mol. Sci. 22 10925Google Scholar

    [42]

    Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C, Yin M, Zeng X, Wu C, Lu A, Chen X, Hou T, Cao D 2021 Nucleic Acids Res. 49 W5Google Scholar

    [43]

    Jing T, Zhang Z, Kang Z, Mo J, Yue X, Lin Z, Fu X, Liu C, Ma H, Zhang X, Hu W 2023 J. Med. Chem. 66 6811Google Scholar

    [44]

    Qin M, Meng Y, Yang H, Liu L, Zhang H, Wang S, Liu C, Wu X, Wu D, Tian Y, Hou Y, Zhao Y, Liu Y, Xu C, Wang L 2021 J. Med. Chem. 64 5519Google Scholar

    [45]

    Trott O, Olson A J 2010 J. Comput. Chem. 31 455Google Scholar

    [46]

    Laskowski R A, Swindells M B 2011 J. Chem. Inf. Model. 51 2778Google Scholar

    [47]

    Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell Jr. A D 2010 J. Comput. Chem. 31 671Google Scholar

    [48]

    Yu W, He X, Vanommeslaeghe K, MacKerell Jr. A D 2012 J. Comput. Chem. 33 2451Google Scholar

    [49]

    Vanommeslaeghe K, MacKerell Jr. A D 2012 J. Chem. Inf. Model. 52 3144Google Scholar

    [50]

    Vanommeslaeghe K, Raman E P, MacKerell Jr. A D 2012 J. Chem. Inf. Model. 52 3155Google Scholar

    [51]

    Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B, Lindahl E 2015 SoftwareX 1 19Google Scholar

    [52]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182Google Scholar

    [53]

    Nosé S 1984 Mol. Phys. 52 255Google Scholar

    [54]

    Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar

    [55]

    Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, Pedersen L G 1995 J. Chem. Phys. 103 8577Google Scholar

    [56]

    Hess B, Bekker H, Berendsen H J C, Fraaije J G E M 1997 J. Comput. Chem. 18 1463Google Scholar

    [57]

    Valdés-Tresanco M S, Valdés-Tresanco M E, Valiente P A, Moreno E 2021 J. Chem. Theory Comput. 17 6281Google Scholar

    [58]

    Chupak L S, Ding M, Martin S W, Zheng X, Hewawasam P, Connolly T P, Xu N, Yeung K S, Zhu J, Langley D R, Tenney D J, Scola P M 2015 WO Patent 2015160641 A3

    [59]

    Wang T, Cai S, Wang M, Zhang W, Zhang K, Chen D, Li Z, Jiang S 2021 J. Med. Chem. 64 7390Google Scholar

    [60]

    Lu L, Qi Z, Wang T, Zhang X, Zhang K, Wang K, Cheng Y, Xiao Y, Li Z, Jiang S 2022 ACS Med. Chem. Lett. 13 586Google Scholar

    [61]

    Dai X, Wang K, Chen H, Huang X, Feng Z 2021 Bioorg. Chem. 114 105034Google Scholar

    [62]

    Le Biannic R, Magnez R, Klupsch F, Leleu-Chavain N, Thiroux B, Tardy M, El Bouazzati H, Dezitter X, Renault N, Vergoten G, Bailly C, Quesnel B, Thuru X, Millet R 2022 Eur. J. Med. Chem. 236 114343Google Scholar

    [63]

    Russomanno P, Assoni G, Amato J, D'Amore V M, Scaglia R, Brancaccio D, Pedrini M, Polcaro G, La Pietra V, Orlando P, Falzoni M, Cerofolini L, Giuntini S, Fragai M, Pagano B, Donati G, Novellino E, Quintavalle C, Condorelli G, Sabbatino F, Seneci P, Arosio D, Pepe S, Marinelli L 2021 J. Med. Chem. 64 16020Google Scholar

    [64]

    Liu L, Yao Z, Wang S, Xie T, Wu G, Zhang H, Zhang P, Wu Y, Yuan H, Sun H 2021 J. Med. Chem. 64 8391Google Scholar

    [65]

    Cheng B, Ren Y, Cao H, Chen J 2020 Eur. J. Med. Chem. 199 112377Google Scholar

    [66]

    Lipinski C A 2004 Drug Discov. Today Technol. 1 337Google Scholar

    [67]

    Liang J, Wang B, Yang Y, Liu B, Jin Y 2023 Int. J. Mol. Sci. 24 1280Google Scholar

  • 图 1  数据集聚类 (a)分类模型阳性样本骨架的14个簇; (b)回归模型样本骨架的13个簇. 环形树状图的颜色代表不同的分子结构骨架簇, 颜色越接近, 骨架越相似, 一旁的化学结构图是每个簇中最具代表性的骨架

    Figure 1.  Dataset clustering: (a) 14 clusters of scaffolds of active compounds in the classification models; (b) 13 clusters of scaffolds of compounds in the regression models. The colors of the circular dendrograms represent different clusters of scaffolds, and the closer the colors are, the more similar the scaffolds are. The chemical structure diagrams on the side are the most representative scaffolds of each cluster.

    图 2  分类模型性能表现 (a)灵敏度; (b)特异度; (c)准确度; (d)马修斯相关系数

    Figure 2.  Performance of binary models for classification tasks: (a) SE; (b) SP; (c) ACC; (d) MCC.

    图 3  分子结构片段在两类样本间的计数差异 (a)活性化合物计数占优的结构片段; (b)非活性化合物计数占优的结构片段. 结构片段的中心原子以蓝色突出显示; 芳香性原子被着色为黄色, 而脂肪烃链原子则被着色为灰色

    Figure 3.  Count difference of fragments of structures between active and inactive compounds: (a) Fragments in active compounds with a proportion higher than inactive compounds; (b) fragments in active compounds with a proportion lower than inactive compounds. The center atoms of substructure fragments are highlighted in blue; aromaticity atoms are colored in yellow and aliphatic hydrocarbon atoms are colored in gray.

    图 4  回归模型性能表现 (a)平均绝对误差; (b)均方根误差

    Figure 4.  Performance of continuous models for regression tasks: (a) MAE; (b) RMSE.

    图 5  两种最佳性能回归模型预测结果 (a), (c)样本预测值与标签值分布; (b), (d)样本预测偏差

    Figure 5.  Prediction results of two best-performing continuous models: (a), (c) Distribution of predicted values and label values; (b), (d) prediction residuals.

    图 6  虚拟筛选流程

    Figure 6.  Workflow of virtual screening.

    图 7  RMSD (a) PD-L1二聚体骨架; (b)配体

    Figure 7.  RMSD: (a) Backbone of PD-L1 dimer; (b) ligand.

    图 8  配体与PD-L1结合模式和关键残基 (a) ZINC000021723762; (b) ZINC000021874692; (c) ZINC000175468610; (d) ZINC000019770413; (e) ZINC000021874694; (f) ZINC000952973550; (g) ZINC000064987401; (h) ZINC000003908573; (i) ZINC000020538424; (j) ZINC000004063088; (k) BMS202; (l) INCB086550

    Figure 8.  Ligand binding mode with PD-L1 and key residues: (a) ZINC000021723762; (b) ZINC000021874692; (c) ZINC000175468610; (d) ZINC000019770413; (e) ZINC000021874694; (f) ZINC000952973550; (g) ZINC000064987401; (h) ZINC000003908573; (i) ZINC000020538424; (j) ZINC000004063088; (k) BMS202; (l) NCB086550.

    表 1  最低对接评分的10种候选化合物及BMS202和INCB086550的对接结果

    Table 1.  Docking results for the top 10 hits with BMS202 and INCB086550.

    序号 化合物 化学结构式 对接分数/(kcal·mol–1)
    Hit 1 ZINC000021723762 –11.8
    Hit 2 ZINC000021874692 –10.7
    Hit 3 ZINC000175468610 –10.7
    Hit 4 ZINC000019770413 –10.6
    Hit 5 ZINC000021874694 –10.6
    Hit 6 ZINC000952973550 –10.5
    Hit 7 ZINC000064987401 –10.5
    Hit 8 ZINC000003908573 –10.4
    Hit 9 ZINC000020538424 –10.4
    Hit 10 ZINC000004063088 –10.3
    Ctr 1 BMS202 –11.1
    Ctr 2 INCB086550 –10.0
    DownLoad: CSV

    表 2  结合自由能计算结果

    Table 2.  Results of MMPBSA.

    化合物 $ {E}_{{\mathrm{v}}{\mathrm{d}}{\mathrm{w}}} $/(kcal·mol–1) $ {E}_{{\mathrm{e}}{\mathrm{l}}{\mathrm{e}}} $/(kcal·mol–1) $ {E}_{{\mathrm{P}}{\mathrm{B}}} $/(kcal·mol–1) $ {E}_{{\mathrm{S}}{\mathrm{A}}} $/(kcal·mol–1) $ \Delta G $/(kcal·mol–1)
    ZINC000021723762 –58.86$ \pm 0.12 $ –8.76$ \pm $0.10 35.53$ \pm $0.09 –4.03$ \pm $0.00 –36.12$ \pm $0.12
    ZINC000021874692 –50.42$ \pm $0.11 –6.50$ \pm $0.14 35.65$ \pm $0.16 –4.50$ \pm $0.01 –25.78$ \pm 0.12 $
    ZINC000175468610 –42.46$ \pm 0.09 $ –14.34$ \pm 0.08 $ 36.20$ \pm 0.13 $ –4.02$ \pm $0.00 –24.61$ \pm 0.10 $
    ZINC000019770413 –47.31$ \pm 0.08 $ –3.45$ \pm 0.08 $ 26.32$ \pm 0.07 $ –3.48$ \pm $0.00 –27.91$ \pm 0.08 $
    ZINC000021874694 –55.17$ \pm 0.09 $ –17.87$ \pm 0.13 $ 45.67$ \pm 0.14 $ –4.59$ \pm $0.00 –31.97$ \pm 0.12 $
    ZINC000952973550 –55.82$ \pm 0.08 $ –13.47$ \pm 0.11 $ 45.83$ \pm 0.11 $ –4.19$ \pm $0.00 –27.65$ \pm 0.11 $
    ZINC000064987401 –48.50$ \pm 0.08 $ –14.71$ \pm 0.12 $ 38.59$ \pm 0.11 $ –4.06$ \pm $0.00 –28.68$ \pm 0.12 $
    ZINC000003908573 –44.75$ \pm 0.07 $ 4.59$ \pm 0.11 $ 20.20$ \pm 0.13 $ –3.74$ \pm $0.00 –23.70$ \pm 0.12 $
    ZINC000020538424 –49.50$ \pm 0.09 $ –8.50$ \pm 0.13 $ 32.61$ \pm 0.16 $ –4.17$ \pm $0.01 –29.57$ \pm 0.10 $
    ZINC000004063088 –64.14$ \pm 0.09 $ –5.38$ \pm 0.11 $ 36.75$ \pm 0.10 $ –4.21$ \pm $0.00 –36.98$ \pm 0.10 $
    BMS202 –40.23$ \pm 0.08 $ –3.57$ \pm 0.07 $ 22.35$ \pm 0.10 $ –4.31$ \pm $0.01 –25.75$ \pm 0.09 $
    INCB086550 –50.65$ \pm 0.14 $ –9.87$ \pm 0.17 $ 44.44$ \pm 0.27 $ –5.13$ \pm $0.02 –21.22$ \pm $0.15
    DownLoad: CSV
  • [1]

    Waldman A D, Fritz J M, Lenardo M J 2020 Nat. Rev. Immunol. 20 651Google Scholar

    [2]

    Wherry E J, Kurachi M 2015 Nat. Rev. Immunol. 15 486Google Scholar

    [3]

    Zou W, Wolchok J D, Chen L 2016 Sci. Transl. Med. 8 328rv4Google Scholar

    [4]

    Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, Wu X, Ma J, Zhou M, Li X, Li Y, Li G, Xiong W, Guo C, Zeng Z 2019 Mol. Cancer 18 10Google Scholar

    [5]

    Topalian S L, Drake C G, Pardoll D M 2015 Cancer Cell 27 450Google Scholar

    [6]

    Postow M A, Callahan M K, Wolchok J D 2015 J. Clin. Oncol. 33 1974Google Scholar

    [7]

    Tang Q, Chen Y, Li X, Long S, Shi Y, Yu Y, Wu W, Han L, Wang S 2022 Front. Immunol. 13 964442Google Scholar

    [8]

    Ai L, Xu A, Xu J 2020 Adv. Exp. Med. Biol. 1248 33Google Scholar

    [9]

    Dermani F K, Samadi P, Rahmani G, Kohlan A K, Najafi R 2019 J. Cell. Physiol. 234 1313Google Scholar

    [10]

    Parry R V, Chemnitz J M, Frauwirth K A, Lanfranco A R, Braunstein I, Kobayashi S V, Linsley P S, Thompson C B, Riley J L 2005 Mol. Cell. Biol. 25 9543Google Scholar

    [11]

    Patsoukis N, Brown J, Petkova V, Liu F, Li L, Boussiotis V A 2012 Sci. Signal. 5 ra46Google Scholar

    [12]

    Hui E, Cheung J, Zhu J, Su X, Taylor M J, Wallweber H A, Sasmal D K, Huang J, Kim J M, Mellman I, Vale R D 2017 Science 355 1428Google Scholar

    [13]

    Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N 2002 Proc. Natl. Acad. Sci. U.S.A. 99 12293Google Scholar

    [14]

    Iwai Y, Terawaki S, Honjo T 2005 Int. Immunol. 17 133Google Scholar

    [15]

    Gong J, Chehrazi-Raffle A, Reddi S, Salgia R 2018 J. Immunother. Cancer 6 8Google Scholar

    [16]

    Akinleye A, Rasool Z 2019 J. Hematol. Oncol. 12 92Google Scholar

    [17]

    Shiravand Y, Khodadadi F, Kashani S M A, Hosseini-Fard S R, Hosseini S, Sadeghirad H, Ladwa R, O'Byrne K, Kulasinghe A 2022 Curr. Oncol. 29 3044Google Scholar

    [18]

    Zhang J, Zhang Y, Qu B, Yang H, Hu S, Dong X 2021 Eur. J. Med. Chem. 218 113356Google Scholar

    [19]

    Johnson D B, Nebhan C A, Moslehi J J, Balko J M 2022 Nat. Rev. Clin. Oncol. 19 254Google Scholar

    [20]

    Mould D R, Meibohm B 2016 BioDrugs 30 275Google Scholar

    [21]

    Wu Q, Jiang L, Li S C, He Q J, Yang B, Cao J 2021 Acta Pharmacol. Sin. 42 1Google Scholar

    [22]

    Zhan M M, Hu X Q, Liu X X, Ruan B F, Xu J, Liao C 2016 Drug Discov. Today 21 1027Google Scholar

    [23]

    Liu C, Seeram N P, Ma H 2021 Cancer Cell Int. 21 239Google Scholar

    [24]

    Chupak L S, Zheng X 2015 WO Patent 2015034820 A1

    [25]

    Zak K M, Grudnik P, Guzik K, Zieba B J, Musielak B, Dömling A, Dubin G, Holak T A 2016 Oncotarget 7 30323Google Scholar

    [26]

    Koblish H K, Wu L, Wang L S, Liu P C C, Wynn R, Rios-Doria J, Spitz S, Liu H, Volgina A, Zolotarjova N, Kapilashrami K, Behshad E, Covington M, Yang Y O, Li J, Diamond S, Soloviev M, O'Hayer K, Rubin S, Kanellopoulou C, Yang G, Rupar M, DiMatteo D, Lin L, Stevens C, Zhang Y, Thekkat P, Geschwindt R, Marando C, Yeleswaram S, Jackson J, Scherle P, Huber R, Yao W, Hollis G 2022 Cancer Discov. 12 1482Google Scholar

    [27]

    Jiang J, Zou X, Liu Y, Liu X, Dong K, Yao X, Feng Z, Chen X, Sheng L, Li Y 2021 Front. Pharmacol. 12 677120Google Scholar

    [28]

    Wang Y, Liu X, Zou X, Wang S, Luo L, Liu Y, Dong K, Yao X, Li Y, Chen X, Sheng L 2021 Pharmaceutics 13 598Google Scholar

    [29]

    Sobral P S, Luz V C C, Almeida J, Videira P A, Pereira F 2023 Int. J. Mol. Sci. 24 5908Google Scholar

    [30]

    Luo L, Zhong A, Wang Q, Zheng T 2021 Mar. Drugs 20 29Google Scholar

    [31]

    Acúrcio R C, Pozzi S, Carreira B, Pojo M, Gómez-Cebrián N, Casimiro S, Fernandes A, Barateiro A, Farricha V, Brito J, Leandro A P, Salvador J A R, Graça L, Puchades-Carrasco L, Costa L, Satchi-Fainaro R, Guedes R C, Florindo H F 2022 J. Immunother. Cancer 10 e004695Google Scholar

    [32]

    Lung J, Hung M S, Lin Y C, Hung C H, Chen C C, Lee K D, Tsai Y H 2020 Molecules 25 5293Google Scholar

    [33]

    Guo Y, Liang J, Liu B, Jin Y 2021 Int. J. Mol. Sci. 22 10924Google Scholar

    [34]

    Sterling T, Irwin J J 2015 J. Chem. Inf. Model. 55 2324Google Scholar

    [35]

    Bemis G W, Murcko M A 1996 J. Med. Chem. 39 2887Google Scholar

    [36]

    Rogers D, Hahn M 2010 J. Chem. Inf. Model. 50 742Google Scholar

    [37]

    Yap C W 2011 J. Comput. Chem. 32 1466Google Scholar

    [38]

    Durant J L, Leland B A, Henry D R, Nourse J G 2002 J. Chem. Inf. Comput. Sci. 42 1273Google Scholar

    [39]

    Moriwaki H, Tian Y S, Kawashita N, Takagi T 2018 J. Cheminform. 10 4Google Scholar

    [40]

    Bickerton G R, Paolini G V, Besnard J, Muresan S, Hopkins A L 2012 Nat. Chem. 4 90Google Scholar

    [41]

    Kosugi T, Ohue M 2021 Int. J. Mol. Sci. 22 10925Google Scholar

    [42]

    Xiong G, Wu Z, Yi J, Fu L, Yang Z, Hsieh C, Yin M, Zeng X, Wu C, Lu A, Chen X, Hou T, Cao D 2021 Nucleic Acids Res. 49 W5Google Scholar

    [43]

    Jing T, Zhang Z, Kang Z, Mo J, Yue X, Lin Z, Fu X, Liu C, Ma H, Zhang X, Hu W 2023 J. Med. Chem. 66 6811Google Scholar

    [44]

    Qin M, Meng Y, Yang H, Liu L, Zhang H, Wang S, Liu C, Wu X, Wu D, Tian Y, Hou Y, Zhao Y, Liu Y, Xu C, Wang L 2021 J. Med. Chem. 64 5519Google Scholar

    [45]

    Trott O, Olson A J 2010 J. Comput. Chem. 31 455Google Scholar

    [46]

    Laskowski R A, Swindells M B 2011 J. Chem. Inf. Model. 51 2778Google Scholar

    [47]

    Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell Jr. A D 2010 J. Comput. Chem. 31 671Google Scholar

    [48]

    Yu W, He X, Vanommeslaeghe K, MacKerell Jr. A D 2012 J. Comput. Chem. 33 2451Google Scholar

    [49]

    Vanommeslaeghe K, MacKerell Jr. A D 2012 J. Chem. Inf. Model. 52 3144Google Scholar

    [50]

    Vanommeslaeghe K, Raman E P, MacKerell Jr. A D 2012 J. Chem. Inf. Model. 52 3155Google Scholar

    [51]

    Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B, Lindahl E 2015 SoftwareX 1 19Google Scholar

    [52]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182Google Scholar

    [53]

    Nosé S 1984 Mol. Phys. 52 255Google Scholar

    [54]

    Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar

    [55]

    Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, Pedersen L G 1995 J. Chem. Phys. 103 8577Google Scholar

    [56]

    Hess B, Bekker H, Berendsen H J C, Fraaije J G E M 1997 J. Comput. Chem. 18 1463Google Scholar

    [57]

    Valdés-Tresanco M S, Valdés-Tresanco M E, Valiente P A, Moreno E 2021 J. Chem. Theory Comput. 17 6281Google Scholar

    [58]

    Chupak L S, Ding M, Martin S W, Zheng X, Hewawasam P, Connolly T P, Xu N, Yeung K S, Zhu J, Langley D R, Tenney D J, Scola P M 2015 WO Patent 2015160641 A3

    [59]

    Wang T, Cai S, Wang M, Zhang W, Zhang K, Chen D, Li Z, Jiang S 2021 J. Med. Chem. 64 7390Google Scholar

    [60]

    Lu L, Qi Z, Wang T, Zhang X, Zhang K, Wang K, Cheng Y, Xiao Y, Li Z, Jiang S 2022 ACS Med. Chem. Lett. 13 586Google Scholar

    [61]

    Dai X, Wang K, Chen H, Huang X, Feng Z 2021 Bioorg. Chem. 114 105034Google Scholar

    [62]

    Le Biannic R, Magnez R, Klupsch F, Leleu-Chavain N, Thiroux B, Tardy M, El Bouazzati H, Dezitter X, Renault N, Vergoten G, Bailly C, Quesnel B, Thuru X, Millet R 2022 Eur. J. Med. Chem. 236 114343Google Scholar

    [63]

    Russomanno P, Assoni G, Amato J, D'Amore V M, Scaglia R, Brancaccio D, Pedrini M, Polcaro G, La Pietra V, Orlando P, Falzoni M, Cerofolini L, Giuntini S, Fragai M, Pagano B, Donati G, Novellino E, Quintavalle C, Condorelli G, Sabbatino F, Seneci P, Arosio D, Pepe S, Marinelli L 2021 J. Med. Chem. 64 16020Google Scholar

    [64]

    Liu L, Yao Z, Wang S, Xie T, Wu G, Zhang H, Zhang P, Wu Y, Yuan H, Sun H 2021 J. Med. Chem. 64 8391Google Scholar

    [65]

    Cheng B, Ren Y, Cao H, Chen J 2020 Eur. J. Med. Chem. 199 112377Google Scholar

    [66]

    Lipinski C A 2004 Drug Discov. Today Technol. 1 337Google Scholar

    [67]

    Liang J, Wang B, Yang Y, Liu B, Jin Y 2023 Int. J. Mol. Sci. 24 1280Google Scholar

  • [1] GUO Yan, LYU Heng, DING Chunling, YUAN Chenzhi, JIN Ruibo. Machine learning identification of fractional-order vortex beam diffraction process. Acta Physica Sinica, 2025, 74(1): 014203. doi: 10.7498/aps.74.20241458
    [2] ZHANG Tong, WANG Jiahao, TIAN Shuai, SUN Xuran, LI Ri. Machine learning-based study of dynamic shrinkage behavior during solidification of castings. Acta Physica Sinica, 2025, 74(2): 028103. doi: 10.7498/aps.74.20241581
    [3] Zhang Xu, Ding Jin-Min, Hou Chen-Yang, Zhao Yi-Ming, Liu Hong-Wei, Liang Sheng. Machine learning based laser homogenization method. Acta Physica Sinica, 2024, 73(16): 164205. doi: 10.7498/aps.73.20240747
    [4] Ouyang Xin-Jian, Zhang Yan-Xing, Wang Zhi-Long, Zhang Feng, Chen Wei-Jia, Zhuang Yuan, Jie Xiao, Liu Lai-Jun, Wang Da-Wei. Modeling ferroelectric phase transitions with graph convolutional neural networks. Acta Physica Sinica, 2024, 73(8): 086301. doi: 10.7498/aps.73.20240156
    [5] Zhang Jia-Hui. Machine learning for in silico protein research. Acta Physica Sinica, 2024, 73(6): 069301. doi: 10.7498/aps.73.20231618
    [6] Guo Wei-Chen, Ai Bao-Quan, He Liang. Reveal flocking phase transition of self-propelled active particles by machine learning regression uncertainty. Acta Physica Sinica, 2023, 72(20): 200701. doi: 10.7498/aps.72.20230896
    [7] Liu Ye, Niu He-Ran, Li Bing-Bing, Ma Xin-Hua, Cui Shu-Wang. Application of machine learning in cosmic ray particle identification. Acta Physica Sinica, 2023, 72(14): 140202. doi: 10.7498/aps.72.20230334
    [8] Chen Guang-Lin, Zhang Zhi-Yong. Exploring proten’s conformational space by using encoding layer supervised auto-encoder. Acta Physica Sinica, 2023, 72(24): 248705. doi: 10.7498/aps.72.20231060
    [9] Luo Qi-Rui, Shen Yi-Fan, Luo Meng-Bo. Computer simulation and machine learning of polymer collapse and critical adsorption phase transitions. Acta Physica Sinica, 2023, 72(24): 240502. doi: 10.7498/aps.72.20231058
    [10] Guan Xing-Yue, Huang Heng-Yan, Peng Hua-Qi, Liu Yan-Hang, Li Wen-Fei, Wang Wei. Machine learning in molecular simulations of biomolecules. Acta Physica Sinica, 2023, 72(24): 248708. doi: 10.7498/aps.72.20231624
    [11] Zhang Jia-Wei, Yao Hong-Bo, Zhang Yuan-Zheng, Jiang Wei-Bo, Wu Yong-Hui, Zhang Ya-Ju, Ao Tian-Yong, Zheng Hai-Wu. Self-powered sensing based on triboelectric nanogenerator through machine learning and its application. Acta Physica Sinica, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [12] Ai Fei, Liu Zhi-Bing, Zhang Yuan-Tao. Numerical study of discharge characteristics of atmospheric dielectric barrier discharges by integrating machine learning. Acta Physica Sinica, 2022, 71(24): 245201. doi: 10.7498/aps.71.20221555
    [13] Lin Jian, Ye Meng, Zhu Jia-Wei, Li Xiao-Peng. Machine learning assisted quantum adiabatic algorithm design. Acta Physica Sinica, 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [14] Chen Jiang-Zhi, Yang Chen-Wen, Ren Jie. Machine learning based on wave and diffusion physical systems. Acta Physica Sinica, 2021, 70(14): 144204. doi: 10.7498/aps.70.20210879
    [15] Xin Yong, Bao Hong-Wei, Sun Zhi-Peng, Zhang Ji-Bin, Liu Shi-Chao, Guo Zi-Xuan, Wang Hao-Yu, Ma Fei, Li Yuan-Ming. Effects of Th doping on mechanical properties of U1–xThxO2: An atomistic simulation. Acta Physica Sinica, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [16] Wang Wei, Jie Quan-Lin. Identifying phase transition point of J1-J2 antiferromagnetic Heisenberg spin chain by machine learning. Acta Physica Sinica, 2021, 70(23): 230701. doi: 10.7498/aps.70.20210711
    [17] Liu Wu, Zhu Cheng-Wan, Li Hao-Tian, Zhao Su-Ling, Qiao Bo, Xu Zheng, Song Dan-Dan. Optimization of Ga content gradient in Cu(In,Ga)Se2 solar cells through machine learning and device simulation. Acta Physica Sinica, 2021, 70(23): 238802. doi: 10.7498/aps.70.20211234
    [18] Yang Zi-Xin, Gao Zhang-Ran, Sun Xiao-Fan, Cai Hong-Ling, Zhang Feng-Ming, Wu Xiao-Shan. High critical transition temperature of lead-based perovskite ferroelectric crystals: A machine learning study. Acta Physica Sinica, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [19] Xiong Kai-Xin, Xi Kun, Bao Lei, Zhang Zhong-Liang, Tan Zhi-Jie. Molecular dynamics simulations on DNA flexibility: a comparative study of Amber bsc1 and bsc0 force fields. Acta Physica Sinica, 2018, 67(10): 108701. doi: 10.7498/aps.67.20180326
    [20] Dong Lei, Wang Wei-Guo. Molecular dynamics simulation on the struatural stability of [0 1 1] tilt incoherent 3 gain boundaries in pure copper. Acta Physica Sinica, 2013, 62(15): 156102. doi: 10.7498/aps.62.156102
  • supplement 2023年72卷240501补充材料.pdf supplement
Metrics
  • Abstract views:  3975
  • PDF Downloads:  147
  • Cited By: 0
Publishing process
  • Received Date:  29 June 2023
  • Accepted Date:  10 August 2023
  • Available Online:  12 September 2023
  • Published Online:  20 December 2023

/

返回文章
返回