Processing math: 100%

Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Enhancement of NaYF4:Yb3+/Er3+ up-conversion luminescence based on anodized alumina template

Mu Li-Peng Zhou Yao Zhao Jian-Xing Wang Li Jiang Li Zhou Jian-Hong

Mu Li-Peng, Zhou Yao, Zhao Jian-Xing, Wang Li, Jiang Li, Zhou Jian-Hong. Enhancement of NaYF4:Yb3+/Er3+ up-conversion luminescence based on anodized alumina template. Acta Phys. Sin., 2024, 73(3): 037803. doi: 10.7498/aps.73.20231405
Citation: Mu Li-Peng, Zhou Yao, Zhao Jian-Xing, Wang Li, Jiang Li, Zhou Jian-Hong. Enhancement of NaYF4:Yb3+/Er3+ up-conversion luminescence based on anodized alumina template. Acta Phys. Sin., 2024, 73(3): 037803. doi: 10.7498/aps.73.20231405

Enhancement of NaYF4:Yb3+/Er3+ up-conversion luminescence based on anodized alumina template

Mu Li-Peng, Zhou Yao, Zhao Jian-Xing, Wang Li, Jiang Li, Zhou Jian-Hong
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Up-conversion nanoparticle (UCNP) can collect near-infrared (NIR) light and convert it into visible light. Therefore, UCNP has potential applications in fields such as biomedicine, anti-counterfeiting, and solar cells. However, the efficiency of traditional UCNP in the above-mentioned fields is relatively low, greatly limiting its use in related fields. Therefore, enhancing the up-conversion luminescence intensity of up-conversion nanoparticles is particularly important and urgently needed. In this work, anodic alumina templates are used to enhance the luminescence intensity of up-conversion nanocrystals. NaYF4:Yb3+, Er3+with a diameter of 35 nm is prepared by using co-precipitation method. Single pass AAO templates with pore size and pore spacing of 88 nm and 100 nm are prepared by using two-step anodization method. Finally, NaYF4:Yb3+, Er3+/AAO composite structures are formed by using spin coating method. The red green light emission intensity of NaYF4:Yb3+, Er3+/AAO sample can increase 4.4 and 9.0 times that of NaYF4:Yb3+, Er3+/Al reference sample, respectively. The enhancement mechanism is explored by using the finite difference time domain method, and the results show that the primary source of enhancement is the localized surface plasmon resonance effect of the pores in the anodic alumina template. At the same time, the relationship between the up-conversion luminescence intensity of NaYF4:Yb3+, Er3+/AAO sample and the incident angle is investigated. The experimental results show that as the incident angle increases, the luminescence intensity of the red and green light of NaYF4:Yb3+, Er3+/AAO samples first decrease and then increase. Due to the coupling of the local surface plasmon resonance with the excitation wavelength and emission wavelength, the up-conversion luminescence intensity of the sample can be affected. The relationship of AAO channel enhancement factor with incident angle at excitation wavelength and emission wavelength is studied by using the finite difference time domain method. The results indicate that as the incident angle increases, the enhancement factor at the excitation wavelength decreases, while the enhancement factor at the emission wavelength increases after being illuminated at an incident angle of 15°. Therefore, when the incident angle is less than 20°, the electric field intensity at 980 nm dominates, but when it is greater than 20°, the electric field intensity at 540 nm and 650 nm takes precedence. The above results provide a reference for putting them into practical applications in the fields of anti-counterfeiting and solar cells.
      PACS:
      78.55.-m(Photoluminescence, properties and materials)
      33.50.Dq(Fluorescence and phosphorescence spectra)
      Corresponding author: Zhou Jian-Hong, zjh@cust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12274042) and “111” Program (Grant Nos. D21009, D17017).

    上转换纳米晶(up-conversion nanoparticles, UCNPs)发光材料是一种可以连续吸收两个或多个光子并发射出一个比激发波长短的光子的光致发光材料[1]. 因其具有低细胞毒性, 大的反斯托克斯位移, 低自发光等优点[2], 被广泛应用在太阳能电池[3]、生物医学成像[4]、防伪[5]等领域. 但是由于传统材料上转换发光效率低, 其实际应用被极大地限制. 因此, 提高上转发换发光效率迫在眉睫. 目前, 已提出大量的研究方法来提高上转换的发光效率, 如核壳结构[6,7]、离子共掺杂[8,9]、光子晶体结构[10-12]、表面等离子共振效应[13]等. 其中利用表面等离子共振(surface plasmon resonance, SPR)增强上转换纳米晶发光取得了优异的成果, 具体可以通过构建金属纳米阵列[14,15]、光栅结构[16]、金属纳米颗粒[6,17] 、金属-核壳结构[18,19]等实现.

    本文提出利用阳极氧化铝(anodic aluminum oxide, AAO)孔道结构的局域表面等离子共振特性(local surface plasmon resonance, LSPR)实现NaYF4:Yb3+, Er3+上转换发光的增强, 还探究了激发光源不同入射角度对AAO增强NaYF4:Yb3+, Er3+发光的影响, 发现随着入射角度的增大, NaYF4:Yb3+, Er3+的红、绿光发光强度均先减小后增大. 并利用时域有限差分法(finite-difference time-domain, FDTD)进行模拟计算, 结果表明AAO模板孔道中出现了局域电磁场增强, 并且随着入射角度的增大, 激发波长下AAO孔道的增强因子呈下降趋势, 而发射波长下AAO孔道的增强因子在入射角15°以后有上升趋势.

    本文采用共沉淀法合成UCNPs (NaYF4:Yb3+, Er3+), 将0.02 mmol的ErCl3·6H2O (99.9%)、0.20 mmol的YbCl3·6H2O (99.9%)和0.78 mmol的YCl3·6H2O(99.9%)作为溶质溶解于5 mL的油酸(99.9%)和16 mL的1-十八烯(99.9%)中, 室温下混合搅拌直至镧系元素颗粒消失, 将温度升温至160 ℃恒温加热30 min后冷却至30 ℃以下, 反应所得溶液作为前驱体溶液备用. 将2.5 mmol的NaOH、4 mmol的NH4F和20 mL甲醇混合搅拌完成后, 缓慢加入前驱体溶液当中, 在50℃下保持30 min, 以确保形成α-NaYF4:Yb3+, Er3+. 而后升温至75 ℃除去混合溶液中的液态甲醇, 继续升温至100 ℃除去混合溶液中水蒸气. 当反应溶液中的大量白色气泡消失后, 继续升温至300 ℃恒温加热30 min以确保形成β-NaYF4:Yb3+, Er3+, 反应完毕后将反应溶液冷却至室温即可. 样品用无水乙醇进行反复洗涤, 最后分散到甲苯溶液中, 全程反应均在氩气气氛下进行.

    AAO模板采用两步阳极氧化法进行制备. 首先将1.5 mm厚度的纯铝板(99.9999%)裁剪为2 cm2铝板, 在马弗炉中高温退火500 ℃保持2 h消除铝板本身的内应力, 使其重新结晶化. 退火完成后分别采用无水乙醇、丙酮和去离子水超声清洗5 min以去除铝板表面的污渍, 清洗完毕后烘干备用. 电化学抛光采用体积比为1∶4的HClO4 (99.99%)和无水乙醇混合溶液作为电解液, 在1 ℃和17 V电压环境下反应3 min去除铝板表面的缺陷. 一次阳极氧化采用0.3 mol/L草酸(99.99%)溶液作为电解液, 铝板作为阳极, 铂丝作为阴极在40 V电压下氧化7 h. 将一次氧化后样品放入60 ℃的质量分数为1.8%的H2CrO4 (99.99%)与质量分数为6%的H3PO4 (99.99%)混合溶液中静置1 h去除氧化层. 二次氧化与一次氧化条件相同, 二次氧化电压为40 V, 依照氧化速度为0.61 nm/s, 氧化时间为30 min[20], 将二次氧化结束后的样品放于质量分数为5%的H3PO4静置1 h扩孔处理.

    首先将50 μL NaYF4:Yb3+, Er3+与甲苯混合溶液滴加在阳极氧化铝样品表面, 静置10 s待溶液平铺均匀后以500 r/min的速率旋涂10 s, 使溶液均匀分散在阳极氧化铝样品中心区域. 而后采用1000 r/min的速率旋涂10 s将阳极氧化铝边缘的混合溶液离心去除, 使溶液更为均匀地分布在阳极氧化铝样品表面. 最后, 在温度为50 ℃空气环境下烘干2 h.

    NaYF4:Yb3+, Er3+与AAO使用(Smart SEM V05.03.00)场发射扫描电子显微镜(scanning electron microscope, SEM)来表征微观形貌和特征尺寸, 使用(JEOL JEM-2100F)型号的透射电子显微镜(transmission electron microscope, TEM)和高分辨率的透射电镜(high resolution transmission electron microscope, HRTEM)对NaYF4:Yb3+, Er3+的微观形貌和结构尺寸以及晶格间距进行表征, 通过(Rigaku D/Max-r A)靶X射线衍射仪(X-ray diffraction, XRD)来表征所制备的NaYF4:Yb3+/Er3+的相结构, 采用(LL980G-5W) 980 nm光纤激光作为激发源, 利用(IR2000+, Ocean Optics)型号光谱仪对光谱信号进行采集.

    基于FDTD方法对NaYF4:Yb3+, Er3+/AAO结构进行了数值模拟, 从AAO的SEM表征结果中获得了AAO的结构参数. 仿真采用平面波光源(plane wave)波长范围400—1200 nm, UCNPs折射率来自文献[12], Al2O3和Al介电常数均来自文献[21]. 周围环境折射率为1 (空气), 该结构沿x, y方向上采用周期性(periodic)边界条件、沿z方向采用完美匹配层(perfectly matched layer, PML)边界条件, Mesh精度为5 nm. 在上述基础上将平面波类型(plane wave type)由周期性(periodic)边界条件改变为宽带定角光源技术(broadband fixed angle source technique, BFAST), 改变入射光的θ角以探讨斜入射的情况.

    图1(a)给出了NaYF4:Yb3+, Er3+的SEM图, 结果表明NaYF4:Yb3+, Er3+颗粒直径均为35 nm, 颗粒大小均匀, 插图显示了波长980 nm激发下NaYF4:Yb3+, Er3+甲苯溶液的发光照片. 为了更清晰地观察NaYF4:Yb3+, Er3+颗粒的形貌特征, 通过图1(b) NaYF4:Yb3+, Er3+的TEM图可知NaYF4:Yb3+, Er3+颗粒具有六角形特征, 颗粒均匀一致, 粒径大小约为35 nm, 这与SEM表征结果一致. 图1(c)为NaYF4:Yb3+, Er3+的HRTEM图, 根据HRTEM图计算晶格间距为0.53 nm, 对应于β-NaYF4的{10¯10}晶面组的d[22]. 插图显示了NaYF4:Yb3+, Er3+的选区电子衍射图(selected area electron diffraction, SAED)与β-NaYF4结构一致, 表明了样品的单晶特性. 此外, 由图1(d) XRD结果可知, 共沉淀法制备的NaYF4:Yb3+, Er3+各个离子组分均包含在内, XRD衍射峰与标准卡(JCPDS 28-1192)位置一致, 结果表明NaYF4:Yb3+, Er3+具有六方晶相的结构特征. 图1(e)为AAO的SEM图, 通过SEM表征结果表明AAO的孔径和孔间距分别为88 nm和100 nm, 且AAO孔径大小均匀, 周期性良好. 图1(f)为NaYF4:Yb3+, Er3+/AAO的SEM图, 结果显示UCNPs可以有效地填充进AAO孔洞中. 图1(g)是根据图1(f)中的SEM表征结果绘制的NaYF4:Yb3+, Er3+/AAO的结构示意图.

    图 1 (a) β-NaYF4:Yb3+, Er3+ SEM图, 插图显示980 nm激光激发下纳米颗粒溶液的上转换发光照片; (b) NaYF4:Yb3+, Er3+的TEM图; (c) NaYF4:Yb3+, Er3+的HRTEM图, 插图为NaYF4:Yb3+, Er3+的SAED图; (d) β-NaYF4:Yb3+, Er3+ XRD谱图; (e)氧化电压40 V二次氧化时间 30 min 得D = 88 nm, P = 100 nm AAO的SEM图; (f) NaYF4:Yb3+, Er3+填充AAO孔道结构SEM图; (g)结构示意图\r\nFig. 1. (a) Scanning electron microscope image of β-NaYF4:Yb3+, Er3+, where the inset is up-conversion luminescence photo of nanoparticle solution under 980 nm laser excitation; (b) TEM diagram of NaYF4:Yb3+, Er3+; (c) HRTEM diagram of NaYF4:Yb3+, Er3+, illustration showing SAED diagram of NaYF4:Yb3+, Er3+; (d) β-NaYF4:Yb3+, Er3+ X-ray diffraction pattern; (e) the SEM images of D = 88 nm, P = 100 nm AAO obtained by oxidation voltage of 40 V and secondary oxidation time of 30 min; (f) SEM image of NaYF4:Yb3+, Er3+ filled AAO pore structure; (g) structural diagram.
    图 1  (a) β-NaYF4:Yb3+, Er3+ SEM图, 插图显示980 nm激光激发下纳米颗粒溶液的上转换发光照片; (b) NaYF4:Yb3+, Er3+的TEM图; (c) NaYF4:Yb3+, Er3+的HRTEM图, 插图为NaYF4:Yb3+, Er3+的SAED图; (d) β-NaYF4:Yb3+, Er3+ XRD谱图; (e)氧化电压40 V二次氧化时间 30 min 得D = 88 nm, P = 100 nm AAO的SEM图; (f) NaYF4:Yb3+, Er3+填充AAO孔道结构SEM图; (g)结构示意图
    Fig. 1.  (a) Scanning electron microscope image of β-NaYF4:Yb3+, Er3+, where the inset is up-conversion luminescence photo of nanoparticle solution under 980 nm laser excitation; (b) TEM diagram of NaYF4:Yb3+, Er3+; (c) HRTEM diagram of NaYF4:Yb3+, Er3+, illustration showing SAED diagram of NaYF4:Yb3+, Er3+; (d) β-NaYF4:Yb3+, Er3+ X-ray diffraction pattern; (e) the SEM images of D = 88 nm, P = 100 nm AAO obtained by oxidation voltage of 40 V and secondary oxidation time of 30 min; (f) SEM image of NaYF4:Yb3+, Er3+ filled AAO pore structure; (g) structural diagram.

    研究了NaYF4:Yb3+, Er3+/AAO的上转换发光强度, 通过对比参考样品NaYF4:Yb3+, Er3+/Al发现NaYF4:Yb3+, Er3+/AAO的绿光增强了9.0倍, 红光增强了4.4倍, 增强光谱图如图2(a)所示. 同时在980 nm激发下还测得了NaYF4:Yb3+, Er3+/AAO和NaYF4:Yb3+, Er3+/Al的不同激发功率密度P下的上转化发光强度Iucl, 其结果如图2(b), (c)所示. 研究表明, IuclP满足此关系式: IuclPn, 式中n为发射过程中的光子数量, 可用双对数拟合曲线斜率表示[23]. 从图2(b), (c)可以看出, NaYF4:Yb3+, Er3+/Al与NaYF4:Yb3+, Er3+/AAO的绿光(540 nm)和红光(650 nm)的功率密度曲线斜率均在2附近, 证明两种样品的红光和绿光的发射都为双光子吸收过程, 与上转换发射机制吻合. 但图2(b), (c)功率密度曲线斜率略大于2, 这可归因于980 nm激光照射下光热效应[24].

    图 2 (a)增强光谱图; (b) NaYF4:Yb3+, Er3+/Al功率密度曲线; (c) NaYF4:Yb3+, Er3+/AAO功率密度曲线\r\nFig. 2. (a) Enhanced spectral diagram; (b) NaYF4:Yb3+, Er3+/Al power density curve; (c) NaYF4:Yb3+, Er3+/AAO power density curve.
    图 2  (a)增强光谱图; (b) NaYF4:Yb3+, Er3+/Al功率密度曲线; (c) NaYF4:Yb3+, Er3+/AAO功率密度曲线
    Fig. 2.  (a) Enhanced spectral diagram; (b) NaYF4:Yb3+, Er3+/Al power density curve; (c) NaYF4:Yb3+, Er3+/AAO power density curve.

    为了更好探究AAO增强NaYF4:Yb3+, Er3+上转换发光的主要机制, 本文利用FDTD方法对AAO增强NaYF4:Yb3+, Er3+进行模拟计算. 图3(a)为在空气环境下NaYF4:Yb3+, Er3+置于AAO孔道当中的吸收光谱图, NaYF4:Yb3+, Er3+/AAO在波长980 nm处存在一个吸收峰, 峰值为13.8%. 样品吸收率A由公式A=1RT定义, 其中R为反射, T为透射. 接着研究NaYF4:Yb3+, Er3+/AAO在此吸收峰下的电场分布, 其结果如图3(b)所示. 由图3(b)可知, 在980 nm波长下, AAO孔道NaYF4:Yb3+, Er3+所在位置的电磁场得到增强, 产生这种现象可归因于局域表面等离子共振的产生. 目前理论研究表明, 上转换发光增强对增强因子EF具有4次方(|E/EE0E0|4)的依赖性, 而不是平方(|E/EE0E0|2)的依赖性[9,25]. 由此可知, AAO孔道的增强因子|E|2/|E0|2为3.8, 其EF在理论上可达到14.4倍, 其中|E||E0|是激发电场强度和入射电场强度. 综上所述, AAO增强NaYF4:Yb3+, Er3+发光的主要作用机制为局域表面等离子共振效应.

    图 3 (a)吸收光谱图; (b)波长980 nm近场增强图像\r\nFig. 3. (a) Absorption spectrogram; (b) near-field enhancement image with wavelength 980 nm.
    图 3  (a)吸收光谱图; (b)波长980 nm近场增强图像
    Fig. 3.  (a) Absorption spectrogram; (b) near-field enhancement image with wavelength 980 nm.

    在上述实验的基础上, 又研究了波长980 nm激发光源不同入射角对AAO增强NaYF4:Yb3+, Er3+发光强度的影响. 图4(a)为测试光路示意图, 设定激发光源与法线的夹角为入射角θ, 通过旋转NaYF4:Yb3+, Er3+/AAO样品以达到改变激发光源入射角θ的目的. 图4(b)为不同激发光源入射角度下的NaYF4:Yb3+, Er3+/AAO的红绿光的上转换发光强度曲线. 由图4(b)可知, 随着激发光源入射角的增大, NaYF4:Yb3+, Er3+/AAO的红绿光上转换发光强度整体出现先降低后略微升高的趋势, 绿光的发光强度始终强于红光, 当θ = 5°时, 红光出现了增强. 为了解释此变化趋势, 利用FDTD方法计算了激发光源不同入射角度下NaYF4:Yb3+, Er3+/AAO的吸收曲线. 由图4(c)吸收曲线可知, 当θ = 5°时NaYF4:Yb3+, Er3+/AAO对650 nm发射峰有一定的共振增强作用, 导致红光出现了略微的增强. NaYF4:Yb3+, Er3+发光增强不仅与激发波长(980 nm)共振耦合有关, 也与发射波长(540 nm, 650 nm)的共振耦合相关. 因此探究激发波长(980 nm)和发射波长(540 nm, 650 nm)下的AAO孔道电场增强因子与光源入射角的关系. 如图4(d)所示, 对于980 nm波长下AAO的电场增强因子随入射角的增大有下降趋势; 当入射角大于15°时, 540 nm和650 nm波长AAO孔道的电场增强因子随着入射角的增大有明显的增大. 结合图4(b), 当入射角大于20°时, 540 nm和650 nm电场强度对上转换发光强度起主要调制作用. 通过实验与仿真结果来看AAO孔道结构中的NaYF4:Yb3+, Er3+发光对激发光源入射角度存在一定的依赖关系, 对红绿光的增强强度起到了一定的调制作用.

    图 4 (a)测试光路示意图; (b) AAO增强NaYF4:Yb3+, Er3+的红绿上转换发光对入射角度的依赖关系; (c) FDTD仿真模拟计算不同入射角下NaYF4:Yb3+, Er3+/AAO吸收曲线; (d) NaYF4:Yb3+, Er3+/AAO的980 nm, 650 nm, 540 nm电场增强因子与入射角度的关系\r\nFig. 4. (a) Test optical path schematic; (b) the dependence of the red-green up-conversion luminescence of NaYF4:Yb3+, Er3+/AAO on the angle of incidence; (c) the absorption curves of NaYF4:Yb3+, Er3+/AAO at different incidence angles calculated by FDTD simulation; (d) 980 nm, 650 nm, 540 nm electric field enhancement factor vs. incidence angle curve of NaYF4:Yb3+, Er3+/AAO.
    图 4  (a)测试光路示意图; (b) AAO增强NaYF4:Yb3+, Er3+的红绿上转换发光对入射角度的依赖关系; (c) FDTD仿真模拟计算不同入射角下NaYF4:Yb3+, Er3+/AAO吸收曲线; (d) NaYF4:Yb3+, Er3+/AAO的980 nm, 650 nm, 540 nm电场增强因子与入射角度的关系
    Fig. 4.  (a) Test optical path schematic; (b) the dependence of the red-green up-conversion luminescence of NaYF4:Yb3+, Er3+/AAO on the angle of incidence; (c) the absorption curves of NaYF4:Yb3+, Er3+/AAO at different incidence angles calculated by FDTD simulation; (d) 980 nm, 650 nm, 540 nm electric field enhancement factor vs. incidence angle curve of NaYF4:Yb3+, Er3+/AAO.

    本文制备了NaYF4:Yb3+, Er3+/AAO结构, 在近红外980 nm激发光源激发下, 相对于NaYF4:Yb3+, Er3+/Al上转换发光强度, 其绿光和红光分别增强了9.0倍和4.4倍. 利用FDTD方法模拟计算证实了AAO增强NaYF4:Yb3+, Er3+发光的主要机制为局域表面等离子共振效应. 同时发现NaYF4:Yb3+, Er3+/AAO上转换发光强度受激发光源入射角的影响, 并运用FDTD方法进行探究, 发现入射角小于20°时, 980 nm电场强度对NaYF4:Yb3+, Er3+发光强度起主要作用, 当入射角大于20°时, 540 nm和650 nm电场强度对NaYF4:Yb3+, Er3+发光强度起主要作用. 综上, 此研究结果为NaYF4:Yb3+, Er3+在医疗成像、太阳能电池以及防伪等领域的相关应用提供了新思路.

    [1]

    Haase M, Schäfer H 2011 Angew. Chem. Int. Ed. 50 5808Google Scholar

    [2]

    Shao B, Yang Z W, Li J, Yang J Z, Wang Y D, Qiu J B, Song Z G 2017 Opt. Mater. Express 7 1188Google Scholar

    [3]

    Zhang J, Shen H O, Guo W, Wang S H, Zhu C T, Xue F, Hou J F, Su H Q, Yuan Z B 2013 J. Power Sources 226 47Google Scholar

    [4]

    He L, Dragavon J, Cho S, Mao C, Yildirim A, Ma K, Chattaraj R, Goodwin A P, Park W, Cha J N 2016 J. Mater. Chem. B 4 4455Google Scholar

    [5]

    Kumar A, Tiwari S P, Esteves Da Silva J C G, Kumar K 2018 Laser Phys. Lett. 15 075901Google Scholar

    [6]

    Janjua R A, Iqbal O, Ahmed M A, Al-Kahtani A A, Saeed S, Imran M, Wattoo A G 2021 RSC Adv. 11 20746Google Scholar

    [7]

    Chen D, Huang P 2014 Dalton Trans. 43 11299Google Scholar

    [8]

    Zhu W, Wu Q, Zhao S, Liang Z, Yang Y, Zhang J, Xu Z 2016 Opt. Mater. Express 6 3001Google Scholar

    [9]

    高伟, 董军, 王瑞博, 王朝晋, 郑海荣 2016 物理学报 65 084205Google Scholar

    Gao W, Dong J, Wang R B, Wang Z J, Zheng H R 2016 Acta Phys. Sin. 65 084205Google Scholar

    [10]

    Niu W, Su L T, Chen R, Chen H, Wang Y, Palaniappan A, Sun H, Yoong Tok A I 2014 Nanoscale 6 817Google Scholar

    [11]

    Xu W, Zhu Y, Chen X, Wang J, Tao L, Xu S, Liu T, Song H 2013 Nano Res. 6 795Google Scholar

    [12]

    Wang H, Zhan S, Wu X, Wu L, Liu Y 2021 RSC Adv. 11 565Google Scholar

    [13]

    高伟, 王博扬, 韩庆艳, 韩珊珊, 程小同, 张晨雪, 孙泽煜, 刘琳, 严学文, 王勇凯, 董军 2020 物理学报 69 184213Google Scholar

    Gao W, Wang B Y, Han Q Y, Han S S, Cheng X T, Zhang C X, Sun Z Y, Liu L, Yan X W, Wang Y K, Dong J 2020 Acta Phys. Sin. 69 184213Google Scholar

    [14]

    Verhagen E, Kuipers L, Polman A 2009 Opt. Express 17 14586Google Scholar

    [15]

    Saboktakin M, Ye X, Chettiar U K, Engheta N, Murray C B, Kagan C R 2013 ACS Nano 7 7186Google Scholar

    [16]

    Chu A, He H, Yin Z, Peng R, Yang H, Gao X, Luo D, Chen R, Xing G, Liu Y J 2020 ACS Appl. Mater. Interfaces 12 1292Google Scholar

    [17]

    薛映仙, 戎有英, 马强, 潘诚达, 陈凌霄, 武愕, 吴伯涛 2017 光学学报 37 0724002Google Scholar

    Xue Y X, Rong Y Y, Ma Q, Pan C D, Chen L X, Wu E, Wu B T 2017 Acta Opt. Sin. 37 0724002Google Scholar

    [18]

    Yin D, Wang C, Ouyang J, Zhang X, Jiao Z, Feng Y, Song K, Liu B, Cao X, Zhang L, Han Y, Wu M 2014 ACS Appl. Mater. Interfaces 6 18480Google Scholar

    [19]

    Yuan P, Lee Y H, Gnanasammandhan M K, Guan Z, Zhang Y, Xu Q H 2012 Nanoscale 4 5132Google Scholar

    [20]

    刘忆森 2012 博士学位论文 (广州: 华南理工大学)

    Sen L Y 2012 Ph. D. Dissertation (Guangzhou: South China University of Technology of China

    [21]

    Smith D Y, Shiles E, Inokuti M, Palik E D 1997 Handbook of Optical Constants of Solids (Burlington: Academic Press) pp369–406

    [22]

    Li C, Quan Z, Yang P, Huang S, Lian H, Lin J 2008 J. Phys. Chem. C 112 13395Google Scholar

    [23]

    Tang H, Xu Y, Cheng X 2020 J. Solid State Chem. 285 121229Google Scholar

    [24]

    Bhiri N M, Dammak M, Carvajal J J, Aguiló M, Díaz F, Pujol M C 2022 Mater. Res. Bull. 151 111801Google Scholar

    [25]

    Zhan S, Wu X, Tan C, Xiong J, Hu S, Hu J, Wu S, Gao Y, Liu Y 2018 J. Alloys Compd. 735 372Google Scholar

    期刊类型引用(0)

    其他类型引用(1)

  • 图 1  (a) β-NaYF4:Yb3+, Er3+ SEM图, 插图显示980 nm激光激发下纳米颗粒溶液的上转换发光照片; (b) NaYF4:Yb3+, Er3+的TEM图; (c) NaYF4:Yb3+, Er3+的HRTEM图, 插图为NaYF4:Yb3+, Er3+的SAED图; (d) β-NaYF4:Yb3+, Er3+ XRD谱图; (e)氧化电压40 V二次氧化时间 30 min 得D = 88 nm, P = 100 nm AAO的SEM图; (f) NaYF4:Yb3+, Er3+填充AAO孔道结构SEM图; (g)结构示意图

    Figure 1.  (a) Scanning electron microscope image of β-NaYF4:Yb3+, Er3+, where the inset is up-conversion luminescence photo of nanoparticle solution under 980 nm laser excitation; (b) TEM diagram of NaYF4:Yb3+, Er3+; (c) HRTEM diagram of NaYF4:Yb3+, Er3+, illustration showing SAED diagram of NaYF4:Yb3+, Er3+; (d) β-NaYF4:Yb3+, Er3+ X-ray diffraction pattern; (e) the SEM images of D = 88 nm, P = 100 nm AAO obtained by oxidation voltage of 40 V and secondary oxidation time of 30 min; (f) SEM image of NaYF4:Yb3+, Er3+ filled AAO pore structure; (g) structural diagram.

    图 2  (a)增强光谱图; (b) NaYF4:Yb3+, Er3+/Al功率密度曲线; (c) NaYF4:Yb3+, Er3+/AAO功率密度曲线

    Figure 2.  (a) Enhanced spectral diagram; (b) NaYF4:Yb3+, Er3+/Al power density curve; (c) NaYF4:Yb3+, Er3+/AAO power density curve.

    图 3  (a)吸收光谱图; (b)波长980 nm近场增强图像

    Figure 3.  (a) Absorption spectrogram; (b) near-field enhancement image with wavelength 980 nm.

    图 4  (a)测试光路示意图; (b) AAO增强NaYF4:Yb3+, Er3+的红绿上转换发光对入射角度的依赖关系; (c) FDTD仿真模拟计算不同入射角下NaYF4:Yb3+, Er3+/AAO吸收曲线; (d) NaYF4:Yb3+, Er3+/AAO的980 nm, 650 nm, 540 nm电场增强因子与入射角度的关系

    Figure 4.  (a) Test optical path schematic; (b) the dependence of the red-green up-conversion luminescence of NaYF4:Yb3+, Er3+/AAO on the angle of incidence; (c) the absorption curves of NaYF4:Yb3+, Er3+/AAO at different incidence angles calculated by FDTD simulation; (d) 980 nm, 650 nm, 540 nm electric field enhancement factor vs. incidence angle curve of NaYF4:Yb3+, Er3+/AAO.

  • [1]

    Haase M, Schäfer H 2011 Angew. Chem. Int. Ed. 50 5808Google Scholar

    [2]

    Shao B, Yang Z W, Li J, Yang J Z, Wang Y D, Qiu J B, Song Z G 2017 Opt. Mater. Express 7 1188Google Scholar

    [3]

    Zhang J, Shen H O, Guo W, Wang S H, Zhu C T, Xue F, Hou J F, Su H Q, Yuan Z B 2013 J. Power Sources 226 47Google Scholar

    [4]

    He L, Dragavon J, Cho S, Mao C, Yildirim A, Ma K, Chattaraj R, Goodwin A P, Park W, Cha J N 2016 J. Mater. Chem. B 4 4455Google Scholar

    [5]

    Kumar A, Tiwari S P, Esteves Da Silva J C G, Kumar K 2018 Laser Phys. Lett. 15 075901Google Scholar

    [6]

    Janjua R A, Iqbal O, Ahmed M A, Al-Kahtani A A, Saeed S, Imran M, Wattoo A G 2021 RSC Adv. 11 20746Google Scholar

    [7]

    Chen D, Huang P 2014 Dalton Trans. 43 11299Google Scholar

    [8]

    Zhu W, Wu Q, Zhao S, Liang Z, Yang Y, Zhang J, Xu Z 2016 Opt. Mater. Express 6 3001Google Scholar

    [9]

    高伟, 董军, 王瑞博, 王朝晋, 郑海荣 2016 物理学报 65 084205Google Scholar

    Gao W, Dong J, Wang R B, Wang Z J, Zheng H R 2016 Acta Phys. Sin. 65 084205Google Scholar

    [10]

    Niu W, Su L T, Chen R, Chen H, Wang Y, Palaniappan A, Sun H, Yoong Tok A I 2014 Nanoscale 6 817Google Scholar

    [11]

    Xu W, Zhu Y, Chen X, Wang J, Tao L, Xu S, Liu T, Song H 2013 Nano Res. 6 795Google Scholar

    [12]

    Wang H, Zhan S, Wu X, Wu L, Liu Y 2021 RSC Adv. 11 565Google Scholar

    [13]

    高伟, 王博扬, 韩庆艳, 韩珊珊, 程小同, 张晨雪, 孙泽煜, 刘琳, 严学文, 王勇凯, 董军 2020 物理学报 69 184213Google Scholar

    Gao W, Wang B Y, Han Q Y, Han S S, Cheng X T, Zhang C X, Sun Z Y, Liu L, Yan X W, Wang Y K, Dong J 2020 Acta Phys. Sin. 69 184213Google Scholar

    [14]

    Verhagen E, Kuipers L, Polman A 2009 Opt. Express 17 14586Google Scholar

    [15]

    Saboktakin M, Ye X, Chettiar U K, Engheta N, Murray C B, Kagan C R 2013 ACS Nano 7 7186Google Scholar

    [16]

    Chu A, He H, Yin Z, Peng R, Yang H, Gao X, Luo D, Chen R, Xing G, Liu Y J 2020 ACS Appl. Mater. Interfaces 12 1292Google Scholar

    [17]

    薛映仙, 戎有英, 马强, 潘诚达, 陈凌霄, 武愕, 吴伯涛 2017 光学学报 37 0724002Google Scholar

    Xue Y X, Rong Y Y, Ma Q, Pan C D, Chen L X, Wu E, Wu B T 2017 Acta Opt. Sin. 37 0724002Google Scholar

    [18]

    Yin D, Wang C, Ouyang J, Zhang X, Jiao Z, Feng Y, Song K, Liu B, Cao X, Zhang L, Han Y, Wu M 2014 ACS Appl. Mater. Interfaces 6 18480Google Scholar

    [19]

    Yuan P, Lee Y H, Gnanasammandhan M K, Guan Z, Zhang Y, Xu Q H 2012 Nanoscale 4 5132Google Scholar

    [20]

    刘忆森 2012 博士学位论文 (广州: 华南理工大学)

    Sen L Y 2012 Ph. D. Dissertation (Guangzhou: South China University of Technology of China

    [21]

    Smith D Y, Shiles E, Inokuti M, Palik E D 1997 Handbook of Optical Constants of Solids (Burlington: Academic Press) pp369–406

    [22]

    Li C, Quan Z, Yang P, Huang S, Lian H, Lin J 2008 J. Phys. Chem. C 112 13395Google Scholar

    [23]

    Tang H, Xu Y, Cheng X 2020 J. Solid State Chem. 285 121229Google Scholar

    [24]

    Bhiri N M, Dammak M, Carvajal J J, Aguiló M, Díaz F, Pujol M C 2022 Mater. Res. Bull. 151 111801Google Scholar

    [25]

    Zhan S, Wu X, Tan C, Xiong J, Hu S, Hu J, Wu S, Gao Y, Liu Y 2018 J. Alloys Compd. 735 372Google Scholar

  • [1] Arepati Xiakeer, Wang Lin-Xiang, Li Qing, Bai Yun-Feng, Munire Maimaiti. Preparation and temperature sensing properties of Tm3+, Yb3+ co-doped Bi2WO6 upconversion luminescent materials. Acta Physica Sinica, 2023, 72(6): 060701. doi: 10.7498/aps.72.20222143
    [2] Gao Wei, Luo Yi-Fan, Xing Yu, Ding Peng, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Zhang Cheng-Yun, Dong Jun. Red upconversion emission of Er3+ enhanced by building NaErF4@ NaYbF4:2%Er3+ core-shell structure. Acta Physica Sinica, 2023, 72(17): 174204. doi: 10.7498/aps.72.20230762
    [3] Chen Gui-Ling, Ma Jia-Jia, Sun Jia-Shi, Zhang Jin-Su, Li Xiang-Ping, Xu Sai, Zhang Xi-Zhen, Cheng Li-Hong, Chen Bao-Jiu. Preparation and upconversion luminescence properties of GdTaO4:RE/Yb(RE=Tm, Er) phosphor through experimental optimization design. Acta Physica Sinica, 2022, 71(16): 163301. doi: 10.7498/aps.71.20220474
    [4] Gao Wei, Sun Ze-Yu, Guo Li-Chun, Han Shan-Shan, Chen Bin-Hui, Han Qing-Yan, Yan Xue-Wen, Wang Yong-Kai, Liu Ji-Hong, Dong Jun. Upconversion luminescence characteristics of Ho3+ ion doped single-particle fluoride micron core-chell structure. Acta Physica Sinica, 2022, 71(3): 034207. doi: 10.7498/aps.71.20211719
    [5] Upconversion luminescence characteristics of Ho3+ ion doped single-particle fluoride micron core-chell structure*. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211719
    [6] Gao Wei, Wang Bo-Yang, Sun Ze-Yu, Gao Lu, Zhang Chen-Xue, Han Qing-Yan, Dong Jun. Tuning upconversion emissions of Ho3+ through changing excitation conditions. Acta Physica Sinica, 2020, 69(3): 034207. doi: 10.7498/aps.69.20191333
    [7] Yan Xue-Wen, Wang Zhao-Jin, Wang Bo-Yang, Sun Ze-Yu, Zhang Chen-Xue, Han Qing-Yan, Qi Jian-Xia, Dong Jun, Gao Wei. Enhanced red upconversion fluorescence emission of Ho3+ ions in NaLuF4 nanocrystals through building core-shell structure. Acta Physica Sinica, 2019, 68(17): 174204. doi: 10.7498/aps.68.20190441
    [8] Mao Xin-Guang, Wang Jun, Shen Jie. Upconversion luminescence properties in Er3+/Yb3+ codoped TiO2 films prepared by magnetron sputtering. Acta Physica Sinica, 2014, 63(8): 087803. doi: 10.7498/aps.63.087803
    [9] Zhu Xiao-Min, Ren Xin-Cheng, Guo Li-Xin. Study on wide-band scattering from rectangular cross-section above rough land surface with exponential type distribution using FDTD. Acta Physica Sinica, 2014, 63(5): 054101. doi: 10.7498/aps.63.054101
    [10] Liu Jian-Xiao, Zhang Jun-Liang, Su Ming-Min. Finite-difference time domain method for the analysis of radar scattering characteristic of metal target coated with anisotropic ferrite. Acta Physica Sinica, 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [11] Qin Fei-Fei, Zhang Hai-Ming, Wang Cai-Xia, Guo Cong, Zhang Jing-Jing. Design and simulation of anodic aluminum oxide nanograting double light trapping structure for thin film silicon solar cells. Acta Physica Sinica, 2014, 63(19): 198802. doi: 10.7498/aps.63.198802
    [12] Ren Xin-Cheng, Guo Li-Xin, Jiao Yong-Chang. Investigation of electromagnetic scattering interaction between the column with rectangular cross-section and rough land surface covered with snow using finite difference time domain method. Acta Physica Sinica, 2012, 61(14): 144101. doi: 10.7498/aps.61.144101
    [13] Wang Da-Gang, Zhou Ya-Xun, Wang Xun-Si, Dai Shi-Xun, Shen Xiang, Chen Fei-Fei, Wang Sen. Upconversion luminescence of Tm3+/Ho3+/Yb3+ codoped tellurite glass used for white light emission. Acta Physica Sinica, 2010, 59(9): 6256-6260. doi: 10.7498/aps.59.6256
    [14] Wu Zhi-Guo, Zhang Peng-Ju, Xu Liang, Li Shuan-Kui, Wang Jun, Li Xu-Dong, Yan Peng-Xun. Field emission properties of amorphous carbon nanodot arrays in a novel anodic aluminum oxide template by self-assembly technique. Acta Physica Sinica, 2010, 59(1): 438-442. doi: 10.7498/aps.59.438
    [15] Yuan Ning-Yi, Chen Xiao-Shuang, Ding Jian-Ning, He Ze-Jun, Li Feng, Lu Wei. Quantum effect and up-conversion luminescence of ZnO-SiO2 composite films synthesized by sol-gel technique. Acta Physica Sinica, 2009, 58(4): 2649-2653. doi: 10.7498/aps.58.2649
    [16] Gan Zong-Song, Yu Hua, Li Yan-Ming, Wang Ya-Nan, Chen Hui, Zhao Li-Juan. Investigation on up-conversion luminescence of Tm3+ and Yb3+ codoped oxy-fluorosilicate glass ceramics. Acta Physica Sinica, 2008, 57(9): 5699-5704. doi: 10.7498/aps.57.5699
    [17] Jin Zhe, Nie Qiu-Hua, Xu Tie-Feng, Dai Shi-Xun, Shen Xiang, Zhang Xiang-Hua. Energy transfer and upconversion luminescence of Tm3+/Yb3+ co-doped lanthanum-zinc-lead-tellurite glasses. Acta Physica Sinica, 2007, 56(4): 2261-2267. doi: 10.7498/aps.56.2261
    [18] Wen Lei, Zhang Li-Yan, Yang Jian-Hu, Wang Guo-Nian, Chen Wei, Hu Li- Li. Upconversion emission properties of Er3+ in fluoride (halide) phosphate tellurite glasses. Acta Physica Sinica, 2006, 55(3): 1486-1490. doi: 10.7498/aps.55.1486
    [19] Chen Xiao-Bo, Liu Kai, Zhang Jian, Wang Guo-Wen, Chen Chang-Tian. . Acta Physica Sinica, 2002, 51(3): 690-695. doi: 10.7498/aps.51.690
    [20] Zhao Li-Juan, Sun Ling-Dong, Xu Jing-Jun, Zhang Guang-Yin. . Acta Physica Sinica, 2001, 50(1): 63-67. doi: 10.7498/aps.50.63
  • 期刊类型引用(0)

    其他类型引用(1)

Metrics
  • Abstract views:  3015
  • PDF Downloads:  55
  • Cited By: 1
Publishing process
  • Received Date:  30 August 2023
  • Accepted Date:  16 October 2023
  • Available Online:  02 November 2023
  • Published Online:  05 February 2024

/

返回文章
返回