Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Radial sandwich radial-bending composite transducer designed based on acoustic black hole theory

Liu Yang Chen Cheng Lin Shu-Yu

Citation:

Radial sandwich radial-bending composite transducer designed based on acoustic black hole theory

Liu Yang, Chen Cheng, Lin Shu-Yu
PDF
HTML
Get Citation
  • A novel radial sandwich radial bending composite transducer is proposed based on the increasing amplitude of bending waves in the structure of an acoustic black hole (ABH). The transducer consists of a radial sandwich circular ring transducer and an outer acoustic black hole structure. The existence of the ABH structure realizes the conversion between radial vibration and bending vibration of the transducer, and improves the acoustic radiation performance of the transducer. Based on the one-dimensional acoustic black hole bending vibration theory, the bending vibration equation of the circular ABH structure is given. An analytical model of the ABH structure bending vibration is established by using the method of geometrical-acoustics, and the eigen frequency of its bending vibration is given. The relationship between the electromechanical conversion performance and the size of the transducer is discussed by using the finite element method, and the results show that when the eigen frequency of the bending vibration of the ABH structure is close to the resonant frequency of the transducer, the electromechanical coupling coefficient of the transducer reaches a maximum value. The radiation sound pressure field, radiation sound intensity, and radiation directionality of the transducer in the air are also analyzed by the finite element method. The results indicate that the presence of the ABH structure can improve the electromechanical conversion performance of the bending vibration of the transducer, enhance the acoustic radiation performance of the transducer, make the transducer exhibit radiation directionality and the lower order of the bending vibration mode of the ABH structure, the stronger radiation directionality of the transducer towards the left side and the right side. Finally, in order to verify the accuracy of the simulation and theory, we made a prototype transducer and carried out the experimental test of transducer electrical impedance and vibration mode. The measured results are in good agreement with the simulation results. The displacement distribution of the radiation surface of the transducer at resonance frequency is measured, which verifies the bending vibration mode of the ABH structure. This type of transducer is expected to be used as acoustic projector in the air or water.
      Corresponding author: Lin Shu-Yu, sylin@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174240, 11674206, 11874253).
    [1]

    胡银丰 2017 声学与电子工程 39 25

    Hu Y F 2017 Acoust Electr Eng. 39 25

    [2]

    曹雪砷, 王易敏, 王申 2015 测井技术 39 160Google Scholar

    Cao X S, Wang Y M, Wang S 2015 Well Logging Technol. 39 160Google Scholar

    [3]

    刘世清, 麻磊磊 2020 陕西师范大学学报(自然科学版) 48 60

    Liu S Q, Ma L L 2020 J. Shaanxi Normal Univ. (Nat. Sci. Ed. ). 48 60

    [4]

    Mironov M A 1988 Sov. Phys. Acoustics. 34 318

    [5]

    Krylov V V 1989 Sov. Phys. Acoustics. 35 176

    [6]

    Krylov V V 1990 Mosc. U. Phys. B+. 45 65

    [7]

    Krylov V V, Tilman F 2004 J. Sound Vib. 274 605Google Scholar

    [8]

    Remillieux M C, Anderson B E, Le Bas P Y, Ulrich T J 2014 Ultrasonics 54 1409Google Scholar

    [9]

    Anderson B E, Remillieux M C, Le Bas P Y, Ulrich T J, Pieczonka L 2015 Ultrasonics 63 141Google Scholar

    [10]

    Aronov B S 2013 J. Acoust. Soc. Am. 134 1021Google Scholar

    [11]

    Aronov B S 2013 J. Acoust. Soc. Am. 133 3875Google Scholar

    [12]

    吴德林, 戴郁郁, 陈浩, 张海澜, 王秀明 2020 声学学报 45 103Google Scholar

    Wu D L, Dai Y Y, Chen H, Zhang H L, Wang X M 2020 Acta Acustica. 45 103Google Scholar

    [13]

    林书玉, 鲜小军 2014 陕西师范大学学报(自然科学版) 42 31

    Lin S Y, Xian X J 2014 J. Shaanxi Normal Univ. (Nat. Sci. Ed. ). 42 31

    [14]

    许龙, 林书玉 2012 声学学报 37 408Google Scholar

    Xu L, Lin S Y 2012 Acta Acustica. 37 408Google Scholar

    [15]

    李凤鸣, 刘世清, 许龙, 张海岛, 曾小梅, 陈赵江 2023 中国科学: 物理学 力学 天文学 53 198

    Li F M, Liu S Q, Xu L, Zhang H D, Zeng X M, Chen Z J 2023 Sci. Sin. Phys. Mech. Astron. 53 198

    [16]

    董宜雷, 陈诚, 林书玉 2023 物理学报 72 054304Google Scholar

    Dong Y L, Chen C, Lin S Y 2023 Acta Phys. Sin. 72 054304Google Scholar

    [17]

    高炳山, 林书玉 2010 应用声学 29 217Google Scholar

    Gao B S, Lin S Y 2010 J. Appl. Acoust. 29 217Google Scholar

    [18]

    胡静, 林书玉, 王成会, 莫润阳 2015 西北大学学报(自然科学版) 45 709

    Hu J, Lin S Y, Wang C H, Mo R Y 2015 J. Northwest Univ. (Nat. Sci. Ed.) 45 709

    [19]

    王帅军, 林书玉 2011 陕西师范大学学报(自然科学版) 39 23

    Wang S, Lin S 2011 J. Shaanxi Normal Univ. (Nat. Sci. Ed.) 39 23

    [20]

    Krylov V V 2020 J. Sound Vib. 468 115100Google Scholar

    [21]

    林书玉 2004 超声换能器的原理及设计 (北京: 科学出版社) 第20页

    Lin S Y 2004 The Theory and Design of Ultrasonic Transducers (Beijing: Science Press) p20

  • 图 1  径向夹心式径-弯复合换能器示意图 (a) 换能器总体示意图; (b) 外围环1/4部分的示意图; (c) 换能器振动模态示意图

    Figure 1.  The schematic diagram of a composite radial bending transducer: (a) The overall schematic diagram of the transducer; (b) a schematic diagram of the 1/4 part of the outer ring; (c) a schematic diagram of the vibration mode of the transducer.

    图 2  不同m下换能器的有效机电耦合系数、谐振频率以及ABH部分的弯曲振动本征频率 (a) a型号换能器; (b) b型号换能器; (c) c型号换能器

    Figure 2.  Effective electro-mechanical coupling coefficient, resonant frequency of transducer and eigen frequency of bending vibration of ABH part with different m: (a) Model a transducer; (b) model b transducer; (c) model c transducer.

    图 3  四种不同换能器在空气中的辐射声压分布图 (a) a型号换能器, fm = 18.766 kHz; (b) b型号换能器, fm = 18.829 kHz; (c) c型号换能器, fm = 18.841 kHz; (d) d型号换能器, fm = 19.01 kHz

    Figure 3.  The radiation sound pressure distribution of four different transducers in the air: (a) Model a transducer, fm = 18.766 kHz; (b) model b transducer, fm = 18.829 kHz; (c) model c transducer, fm = 18.841 kHz; (d) model d transducer, fm = 19.01 kHz.

    图 4  四种不同换能器在空气中的辐射声强分布图 (a) a型号换能器, fm = 18.766 kHz; (b) b型号换能器, fm = 18.829 kHz; (c) c型号换能器, fm = 18.841 kHz; (d) d型号换能器, fm = 19.01 kHz

    Figure 4.  The radiation sound intensity distribution of four different transducers in the air: (a) Model a transducer, fm = 18.766 kHz; (b) model b transducer, fm = 18.829 kHz; (c) model c transducer, fm = 18.841 kHz; (d) model d transducer, fm = 19.01 kHz.

    图 5  四种换能器的声场指向性图 (a) a型号换能器, fm = 18.766 kHz; (b) b型号换能器, fm = 18.829 kHz; (c) c型号换能器, fm = 18.841 kHz; (d) d型号换能器, fm = 19.01 kHz

    Figure 5.  Four types of transducer sound field directionality graphics: (a) Model a transducer, fm = 18.766 kHz; (b) model b transducer, fm = 18.829 kHz; (c) model c transducer, fm = 18.841 kHz; (d) model d transducer, fm = 19.01 kHz.

    图 6  换能器样机图片

    Figure 6.  The picture of the prototype transducer.

    图 7  换能器阻抗仿真结果曲线

    Figure 7.  Simulation result of the transducer electrical impedance curve.

    图 8  换能器阻抗分析实验装置以及阻抗测量结果 (a) WK6500B阻抗分析仪及换能器; (b) 换能器阻抗曲线

    Figure 8.  Impedance analyzer experimental equipment of transducer and impedance measurement results: (a) WK6500B impedance analyzer and transducer; (b) impedance curves of the transducer.

    图 9  换能器振型仿真结果, 频率为23.682 kHz

    Figure 9.  Simulation result of transducer vibration mode, the frequency is 23.682 kHz.

    图 10  PSV-400全场扫描式激光振动测量系统及换能器振幅分布测量结果 (a) 激光测振实验装置; (b) 换能器侧面振幅测量结果

    Figure 10.  PSV-400 laser vibrometer measurement system and transducer displacement distribution measurement result: (a) Laser vibrometer experimental equipment; (b) the side displacement measurement result of the transducer.

    表 1  几种不同换能器的尺寸

    Table 1.  The sizes of several different transducers.

    换能器编号 $ {r}_{1}/{\mathrm{m}}{\mathrm{m}} $ $ {r}_{2}/{\mathrm{m}}{\mathrm{m}} $ $ {r}_{3}/{\mathrm{m}}{\mathrm{m}} $ $ {r}_{4}/{\mathrm{m}}{\mathrm{m}} $ p $ {h}_{1}/{\mathrm{m}}{\mathrm{m}} $ $ {h}_{0}/{\mathrm{m}}{\mathrm{m}} $
    a 30 35 40 45 3 5 1.0
    b 30 35 40 45 2 5 1.5
    c 30 35 40 45 2 5 2.0
    d 30 35 40 45
    DownLoad: CSV

    表 2  换能器尺寸参数

    Table 2.  Size parameters of the transducer.

    尺寸
    参数
    r1/mm r2/mm r3/mm r4/mm p h1/mm h0/mm m
    22 26 30 34 2 4 1 0.65
    DownLoad: CSV
  • [1]

    胡银丰 2017 声学与电子工程 39 25

    Hu Y F 2017 Acoust Electr Eng. 39 25

    [2]

    曹雪砷, 王易敏, 王申 2015 测井技术 39 160Google Scholar

    Cao X S, Wang Y M, Wang S 2015 Well Logging Technol. 39 160Google Scholar

    [3]

    刘世清, 麻磊磊 2020 陕西师范大学学报(自然科学版) 48 60

    Liu S Q, Ma L L 2020 J. Shaanxi Normal Univ. (Nat. Sci. Ed. ). 48 60

    [4]

    Mironov M A 1988 Sov. Phys. Acoustics. 34 318

    [5]

    Krylov V V 1989 Sov. Phys. Acoustics. 35 176

    [6]

    Krylov V V 1990 Mosc. U. Phys. B+. 45 65

    [7]

    Krylov V V, Tilman F 2004 J. Sound Vib. 274 605Google Scholar

    [8]

    Remillieux M C, Anderson B E, Le Bas P Y, Ulrich T J 2014 Ultrasonics 54 1409Google Scholar

    [9]

    Anderson B E, Remillieux M C, Le Bas P Y, Ulrich T J, Pieczonka L 2015 Ultrasonics 63 141Google Scholar

    [10]

    Aronov B S 2013 J. Acoust. Soc. Am. 134 1021Google Scholar

    [11]

    Aronov B S 2013 J. Acoust. Soc. Am. 133 3875Google Scholar

    [12]

    吴德林, 戴郁郁, 陈浩, 张海澜, 王秀明 2020 声学学报 45 103Google Scholar

    Wu D L, Dai Y Y, Chen H, Zhang H L, Wang X M 2020 Acta Acustica. 45 103Google Scholar

    [13]

    林书玉, 鲜小军 2014 陕西师范大学学报(自然科学版) 42 31

    Lin S Y, Xian X J 2014 J. Shaanxi Normal Univ. (Nat. Sci. Ed. ). 42 31

    [14]

    许龙, 林书玉 2012 声学学报 37 408Google Scholar

    Xu L, Lin S Y 2012 Acta Acustica. 37 408Google Scholar

    [15]

    李凤鸣, 刘世清, 许龙, 张海岛, 曾小梅, 陈赵江 2023 中国科学: 物理学 力学 天文学 53 198

    Li F M, Liu S Q, Xu L, Zhang H D, Zeng X M, Chen Z J 2023 Sci. Sin. Phys. Mech. Astron. 53 198

    [16]

    董宜雷, 陈诚, 林书玉 2023 物理学报 72 054304Google Scholar

    Dong Y L, Chen C, Lin S Y 2023 Acta Phys. Sin. 72 054304Google Scholar

    [17]

    高炳山, 林书玉 2010 应用声学 29 217Google Scholar

    Gao B S, Lin S Y 2010 J. Appl. Acoust. 29 217Google Scholar

    [18]

    胡静, 林书玉, 王成会, 莫润阳 2015 西北大学学报(自然科学版) 45 709

    Hu J, Lin S Y, Wang C H, Mo R Y 2015 J. Northwest Univ. (Nat. Sci. Ed.) 45 709

    [19]

    王帅军, 林书玉 2011 陕西师范大学学报(自然科学版) 39 23

    Wang S, Lin S 2011 J. Shaanxi Normal Univ. (Nat. Sci. Ed.) 39 23

    [20]

    Krylov V V 2020 J. Sound Vib. 468 115100Google Scholar

    [21]

    林书玉 2004 超声换能器的原理及设计 (北京: 科学出版社) 第20页

    Lin S Y 2004 The Theory and Design of Ultrasonic Transducers (Beijing: Science Press) p20

  • [1] Zhang Yi-Shuang, Sang Yong-Jie, Chen Yong-Yao, Wu Shuai. Theoretical study on resonance frequencies of vibration modes of Janus-Helmholtz transducer. Acta Physica Sinica, 2024, 73(3): 034303. doi: 10.7498/aps.73.20231251
    [2] Lin Ji-Yan, Chen Cheng, Guo Lin-Wei, Li Yao, Lin Shu-Yu, Sun Jiao-Xia, Xu Jie. Research on acoustic control of coupled vibration system of transducers using acoustic surface and topological defect structures. Acta Physica Sinica, 2024, 73(22): 224301. doi: 10.7498/aps.73.20241199
    [3] Pan Rui, Mo Xi-Ping, Chai Yong, Zhang Xiu-Zhen, Tian Zhi-Feng. Study of radial bending vibration and excitation of piezoelectric rings. Acta Physica Sinica, 2024, 73(19): 194301. doi: 10.7498/aps.73.20240887
    [4] Dong Yi-Lei, Chen Cheng, Lin Shu-Yu. Arbitrary variable thickness annular piezoelectric ultrasonic transducer based on transfer matrix method. Acta Physica Sinica, 2023, 72(5): 054304. doi: 10.7498/aps.72.20222110
    [5] Zhao Li-Xia, Wang Cheng-Hui, Mo Run-Yang. Nonlinear acoustic characteristics of multilayer magnetic microbubbles. Acta Physica Sinica, 2021, 70(1): 014301. doi: 10.7498/aps.70.20200973
    [6] Zhang Tao-Ran, Mo Run-Yang, Hu Jing, Chen Shi, Wang Cheng-Hui, Guo Jian-Zhong. Dynamic analysis of bubble in liquid cavity wrapped by viscoelastic medium. Acta Physica Sinica, 2021, 70(12): 124301. doi: 10.7498/aps.70.20201876
    [7] Chen Cheng, Lin Shu-Yu. A new broadband radial vibration ultrasonic transducer based on 2-2 piezoelectric composite material. Acta Physica Sinica, 2021, 70(1): 017701. doi: 10.7498/aps.70.20201352
    [8] Liu Zhen-Li, Song Liang-Hua, Bai Liang, Xu Kai-Liang, Ta De-An. Vibro-acoustic stimulating ultrasonic guided waves in long bone. Acta Physica Sinica, 2017, 66(15): 154303. doi: 10.7498/aps.66.154303
    [9] Du Chun-Yang, Yu Dian-Long, Liu Jiang-Wei, Wen Ji-Hong. Flexural vibration band gaps for a phononic crystal beam with X-shaped local resonance metadamping structure. Acta Physica Sinica, 2017, 66(14): 140701. doi: 10.7498/aps.66.140701
    [10] Dai Xian-Zhi, Liu Xiao-Ya, Chen Lei. A broadband vibration energy harvester using double transducers and pendulum-type structures. Acta Physica Sinica, 2016, 65(13): 130701. doi: 10.7498/aps.65.130701
    [11] Zhang Xiao-Li, Lin Shu-Yu, Fu Zhi-Qiang, Wang Yong. Study on resonance frequency and equivalent circuit parameters of a thin disk in flexural vibration. Acta Physica Sinica, 2013, 62(3): 034301. doi: 10.7498/aps.62.034301
    [12] Wen Qi-Hua, Zuo Shu-Guang, Wei Huan. Locally resonant elastic wave band gaps in flexural vibration of multi-oscillators beam. Acta Physica Sinica, 2012, 61(3): 034301. doi: 10.7498/aps.61.034301
    [13] Ma Huan-Pei, He Xi-Ping, Lan Zheng-Kang, Abulizi·Abulaiti. Calculations of radiation impedance of a rectangular plate with flexural vibration. Acta Physica Sinica, 2012, 61(19): 194302. doi: 10.7498/aps.61.194302
    [14] He Xi-Ping. Calculation method of the radiation impedance of stepped circular plate. Acta Physica Sinica, 2010, 59(5): 3290-3293. doi: 10.7498/aps.59.3290
    [15] Dai Xian-Zhi, Wen Yu-Mei, Li Ping, Yang Jin, Jiang Xiao-Fang. Vibration energy harvester based on magnetoelectric transducer. Acta Physica Sinica, 2010, 59(3): 2137-2146. doi: 10.7498/aps.59.2137
    [16] Pan Xiao-Juan, He Xi-Ping. Analysis of flexural vibration thick disk. Acta Physica Sinica, 2010, 59(11): 7911-7916. doi: 10.7498/aps.59.7911
    [17] Shen Hui-Jie, Wen Ji-Hong, Yu Dian-Long, Wen Xi-Sen. Flexural vibration property of periodic pipe system conveying fluid based on Timoshenko beam equation. Acta Physica Sinica, 2009, 58(12): 8357-8363. doi: 10.7498/aps.58.8357
    [18] Xu Xiao-Hui, Li Hui. Scanning photoacoustic mammography with a focused transducer featuring extended focal zone. Acta Physica Sinica, 2008, 57(7): 4623-4628. doi: 10.7498/aps.57.4623
    [19] Liu Yan-Zhu. Planar vibration of a thin elastic rod with circular cross section in viscous medium. Acta Physica Sinica, 2005, 54(11): 4989-4993. doi: 10.7498/aps.54.4989
    [20] YAO KAI-LUN, LI ZHAN-JIE, XING BIAO. BOND-BENDING EFFECT ON LOCALIZED VIBRATIONS OF SOLITON FOR TRANS-(CH)x. Acta Physica Sinica, 1992, 41(1): 87-96. doi: 10.7498/aps.41.87
Metrics
  • Abstract views:  2149
  • PDF Downloads:  60
  • Cited By: 0
Publishing process
  • Received Date:  19 December 2023
  • Accepted Date:  31 January 2024
  • Available Online:  06 February 2024
  • Published Online:  20 April 2024

/

返回文章
返回