Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on Acoustic Control of Coupled Vibration System of Transducers Using Acoustic Surface and Topological Defect Structures

Lin JiYan Chen cheng Guo LinWei Li Yao Lin ShuYu Sun Jiaoxia Xu Jie

Citation:

Research on Acoustic Control of Coupled Vibration System of Transducers Using Acoustic Surface and Topological Defect Structures

Lin JiYan, Chen cheng, Guo LinWei, Li Yao, Lin ShuYu, Sun Jiaoxia, Xu Jie
PDF
Get Citation
  • How to regulate the sound waves in the coupled vibration system of complex power ultrasonic transducers and design high-performance transducer systems has always been an urgent problem in the field of power ultrasound. Research has found that introducing various defects within the transducer system can improve the performance of the transducer coupled vibration system to a certain extent. However, the drawbacks of high loss, narrow frequency band, and sensitivity to structural parameters limit the further practical application of defect type phononic crystal transducer coupled vibration systems.
    In order to improve the limitations of the coupled vibration system of defect type phononic crystal transducers, effectively reduce energy loss, and improve the efficiency of energy transmission, this paper introduces a topological defect structure with energy localization effect and a sound surface structure with high energy transmission efficiency into the coupled vibration system of the transducer. In this study, the acoustic surface structure and topological defect structure were used to excite defect states with energy localization effects and high energy transmission efficiency surface states, effectively regulating the vibration of the transducer coupled vibration system, and constructing a transducer coupled vibration system with high quality factor, low loss, and high energy transmission efficiency. By flexibly designing the geometric size parameters of the acoustic surface structure and defects, the vibration of the transducer coupled vibration system can be effectively controlled, thereby meeting the different functional requirements of the transducer coupled vibration system.
    However, due to the excessive design parameters of surface structure and topological defect structure, the complexity of the design will be multiplied, greatly reducing the success rate of the design. Therefore, this study uses data analysis technology to establish a performance prediction model for the transducer coupled vibration system, in order to achieve accurate prediction of system performance and change the shortcomings of low design efficiency and low success rate brought by traditional empirical trial and error methods.
    In order to verify the effectiveness of the research, the paper simulated and experimentally processed the coupled vibration system of the transducer. The simulation and experimental results indicate that the acoustic surface structure and topological defect structure can effectively regulate sound waves to improve the performance of the transducer coupled vibration system.
  • [1]

    Wen J H 2005 Ph. D. Dissertation (Changsha: University of National Defense Science and Technology) (in Chinese)[ 温激鸿 2005 博士学位论文 (长沙: 国防科学技术大学)]

    [2]

    Li H Q 2011 Ph. D. Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)[ 李鸿秋 2011 博士学位论文 (南京: 南京航空航天大学)]

    [3]

    Song Y B 2015 Ph. D. Dissertation (Changsha: University of National Defense Science and Technology) (in Chinese)[ 宋玉宝 2015 博士学位论文 (长沙: 国防科学技术大学)]

    [4]

    Xiao Y 2012 Ph. D. Dissertation (Changsha: University of National Defense Science and Technology) (in Chinese)[ 肖勇 2012 博士学位论文 (长沙: 国防科学技术大学)]

    [5]

    Wang G 2005 Ph. D. Dissertation (Changsha: University of National Defense Science and Technology) (in Chinese)[ 王刚 2005 博士学位论文 (长沙: 国防科学技术大学)]

    [6]

    Liu D X, Yue Q W, Deng J, Lin D, Li X B, Di W N, Wang X A, Zhao X Y, Luo H S 2015 Sens. 15 6807.

    [7]

    Jadidian, B., Hagh, N. M., Winder, A. A., Safari, A 2009 IEEE Trans Ultra. Ferr. Freq Cont. 56 368.

    [8]

    Chen, Y., Sayer, M., Zou, L., Jen, C. K 1998 MRS Proc. 541 647.

    [9]

    Shang Hou, Xinyu Yang, Chunlong Fei, Xinhao Sun, Qifa Zhou 2018 Jour. Elec. Mater. 47 6842.

    [10]

    Kim, K B, Hsu, D K, Ahn, B, Kim, Y G, Barnard, D J. 2010 Ultra. 50 790.

    [11]

    Zhou, D.,Kwok Fung Cheung, Chen Y, Sien Ting Lau, Zhou Q F, Shung, K.K., Hao Su Luo, Dai J Y, Chan, H.L.W. 2011 IEEE Trans Ultra.Ferr. Freq Cont. 58 477.

    [12]

    Chen, C., Wang, S., Tian, H., Lin, S 2021 Ultra. 117 106546.

    [13]

    Zhao T T, Lin S Y, Duan Y L 2018 Acta Phys. Sin. 67 280(in Chinese) [赵甜甜, 林书玉 2018 物理学报 67 280]

    [14]

    Wang S, Lin S Y, Duan Y L 2018 Appl. Acous. 37 811(in Chinese) [王莎, 林书玉 2018 应用声学 37 811]

    [15]

    Chen C, Lin S Y 2021 Acta Phys. Sin. 70 347(in Chinese)[陈诚, 林书玉 2021 物理学报 70 347]

    [16]

    Hu L Q, Lin S Y 2021 Appl. Acous. 40 323(in Chinese) [胡理情, 林书玉 2021 应用声学 40 323]

    [17]

    Qi A Q 2023 M.S. Dissertation (Hangzhou: Hangzhou University of Electronic Science and Technology) (in Chinese)[ 戚安琪 2023 硕士学位论文 (杭州: 杭州电子科技大学)]

    [18]

    Lin J Y, Lin S Y, Wang S, Li Y 2021 SCIENTIA SINICA Physica, Mechanica & Astronomica. 51 100(in Chinese)[林基艳, 林书玉, 王升, 李耀 2021 中国科学: 物理学 力学 天文学 51 100]

    [19]

    Lin J Y, Lin S Y, Xu J, Wang S, Zhong X H 2023 SCIENTIA SINICA Physica, Mechanica & Astronomica. 53 64(in Chinese)[林基艳, 林书玉, 徐洁, 王升, 钟兴华 2023 中国科学: 物理学 力学 天文学 53 64]

    [20]

    Lin J Y, Lin S Y 2023 Acta Phys. Sin. 72 64(in Chinese) [林基艳, 林书玉 2023 物理学报 72 64]

    [21]

    Feng J J 2023 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)[ 冯俊瑾 2023 博士学位论文 (成都:电子科技大学)]

    [22]

    Christensen, J., Fernandez-Dominguez, A. I., De Leon-Perez, F., Martin-Moreno, L., Garcia-Vidal, F. J. 2007, Natu. Phys. 3 851.

    [23]

    Yu Zhou, Ming-Hui Lu†, Liang Feng, Xu Ni, Yan-Feng Chen†, Yong-Yuan Zhu, Shi-Ning Zhu, and Nai-Ben Ming 2010 Phys. Revi. Lett. 104 164301.

    [24]

    Estrada, H., Candelas, P., Uris, A., Belmar, F., Abajo, F. J. G. D., Meseguer, F. 2008 Phys. Revi. Lett. 101 118.

    [25]

    Liu, F., Cai, F., Ding, Y., Liu, Z. 2008 Appl. Phys. Lett. 92 103504-1.

    [26]

    He Z J, Jia H, Qiu C Y, Peng S S, Mei X F, Cai F Y, Peng P, Ke Manzhu Liu Z Y. 2010 Phys. Revi. Lett. 105 74301.1.

    [27]

    Ye Y T 2015 Ph. D. Dissertation (Wuhan: Wuhan University) (in Chinese)[ 叶扬韬 2015 博士学位论文 (武汉:武汉大学)]

    [28]

    Xiong S 2019 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)[ 熊帅 2019 博士学位论文 (成都:电子科技大学)]

    [29]

    Shu F F 2016 Ph. D. Dissertation (Changchun: Changchun Institute of Optics, Precision Mechanics and Physics, Chinese Academy of Sciences) (in Chinese)[ 舒风风 2016 博士学位论文 (长春:中国科学院长春光学精密机械与物理研究所)]

    [30]

    Li J Q 2008 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)[ 李金强 2008 博士学位论文 (哈尔滨:哈尔滨工业大学)]

    [31]

    Zhao Y C 2006 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)[ 赵言诚 2006 博士学位论文 (哈尔滨: 哈尔滨工程大学)]

    [32]

    Zhao F 2005 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)[ 赵芳 2005 博士学位论文 (哈尔滨: 哈尔滨工程大学)]

    [33]

    Xia M 2021 Ph. D. Dissertation (Guangzhou: Guangdong University of Technology) (in Chinese)[ 夏明 2021 博士学位论文 (广州: 广东工业大学)]

    [34]

    Zhao S D 2018 Ph. D. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese)[ 赵胜东 2018 博士学位论文 (北京: 北京交通大学)]

    [35]

    Han S K 2018 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)[ 韩士楷 2018 博士学位论文 (大连: 大连理工大学)]

    [36]

    Xie S J 2017 Ph. D. Dissertation (Jishou: Jishou University) (in Chinese)[ 谢素君 2017 博士学位论文 (吉首: 吉首大学)]

    [37]

    Zhao Y, Wu Y, Yuan L 2009 Phys. Scri. 80 065401:1.

    [38]

    Benchabane, S., Gaiffe, O., Salut, R., Ulliac, G., Laude, V., & Kokkonen, K. 2015 Appl. Phys. Lett. 106 081903-1.

  • [1] Li Rui-Ying, Luo Ting-Ting, Li Mao, Chen Shuo, Yan Yong-Gao, Wu Jin-Song, Su Xian-Li, Zhang Qing-Jie, Tang Xin-Feng. Defect structure regulation and thermoelectric transfer performance in n-type Bi2–x SbxTe3–ySey-based compounds. Acta Physica Sinica, doi: 10.7498/aps.73.20240098
    [2] Wang Yue, Wang Lun, Sun Bai-Xun, Lang Peng, Xu Yang, Zhao Zhen-Long, Song Xiao-Wei, Ji Bo-Yu, Lin Jing-Quan. Near-field control of gold nanostructure under joint action of surface plasmon polariton and incident light. Acta Physica Sinica, doi: 10.7498/aps.72.20230514
    [3] Shi Peng-Fei, Ma Xin-Ying, Xiang Chuan, Zhao Hong-Ge, Li Yuan, Gao Ren-Jing, Liu Shu-Tian. Topology optimization design of dual-channel metasurface structure with controllable amplitude of retroreflection and mirror reflection. Acta Physica Sinica, doi: 10.7498/aps.72.20230775
    [4] Lin Ji-Yan, Lin Shu-Yu. Large-scale piezoelectric ultrasonic transducers with tubular near-period phononic crystal point defect structure. Acta Physica Sinica, doi: 10.7498/aps.72.20230195
    [5] Hu Jun-Rong, Kong Peng, Bi Ren-Gui, Deng Ke, Zhao He-Ping. Topological corner states in acoustic honeycomb structure. Acta Physica Sinica, doi: 10.7498/aps.71.20211848
    [6] Gao Dong-Bao, Zhu Ji-Lin, Zhang Sai, Zhou He-Feng, Zeng Xin-Wu. Rayleigh-Bloch mode based monolayer bend waveguide. Acta Physica Sinica, doi: 10.7498/aps.70.20201270
    [7] Guo Wen-Ti, Huang Lu, Xu Gui-Gui, Zhong Ke-Hua, Zhang Jian-Min, Huang Zhi-Gao. Pressure strain control of electronic structure of intrinsic magnetic topological insulator MnBi2Te4. Acta Physica Sinica, doi: 10.7498/aps.70.20201237
    [8] Tan Cong-Bing, Zhong Xiang-Li, Wang Jin-Bin. Polar topological structures in ferroelectric materials. Acta Physica Sinica, doi: 10.7498/aps.69.20200311
    [9] Pei Dong-Liang, Yang Tao, Chen Meng, Liu Yu, Xu Wen-Shuai, Zhang Man-Gong, Jiang Heng, Wang Yu-Ren. Broadband periodic and aperiodic acoustic topological insulator based on composite honeycomb structure. Acta Physica Sinica, doi: 10.7498/aps.69.20191454
    [10] Chen Lu, Chen Yue-Gang. Surface plasmon polaritons’ propagation controlled by metal-photorefractive material composite holographical structure. Acta Physica Sinica, doi: 10.7498/aps.68.20181664
    [11] Li Xin, Wu Li-Xiang, Yang Yuan-Jie. Enhanced near field focus steering of rectangular nanoslit metasurface structure. Acta Physica Sinica, doi: 10.7498/aps.68.20190728
    [12] Wang Yi-He, Zhang Zhi-Wang, Cheng Ying, Liu Xiao-Jun. Pseudospin modes of surface acoustic wave and topologically protected sound transmission in phononic crystal. Acta Physica Sinica, doi: 10.7498/aps.68.20191363
    [13] Zhao Tian-Tian, Lin Shu-Yu, Duan Yi-Lin. Suppression of lateral vibration in rectangular ultrasonic plastic welding tool based on phononic crystal structure. Acta Physica Sinica, doi: 10.7498/aps.67.20181150
    [14] Lin Ying-Ying, Li Kui-Ying, Shan Qing-Song, Yin Hua, Zhu Rui-Ping. Photoacoustic and surface photovoltaic characteristics of L-Cysteine-capped ZnSe quantum dots with a core-shell structure. Acta Physica Sinica, doi: 10.7498/aps.65.038101
    [15] Dai Xian-Zhi, Liu Xiao-Ya, Chen Lei. A broadband vibration energy harvester using double transducers and pendulum-type structures. Acta Physica Sinica, doi: 10.7498/aps.65.130701
    [16] Wang Ya-Dong, Gan Xue-Tao, Ju Pei, Pang Yan, Yuan Lin-Guang, Zhao Jian-Lin. Control of topological structure in high-order optical vortices by use of noncanonical helical phase. Acta Physica Sinica, doi: 10.7498/aps.64.034204
    [17] Zhou Zhen-Kai, Wei Li-Ming, Feng Jie. Simulation of characteristics of ZnO/diamond/Si structure surface acoustic wave. Acta Physica Sinica, doi: 10.7498/aps.62.104601
    [18] Nie Liu-Ying, Li Chun-Xian, Zhou Xiao-Ping, Cheng Fang, Wang Cheng-Zhi. Effects of controllable defects on thermal conductance in a nanowire with a quantum box. Acta Physica Sinica, doi: 10.7498/aps.60.116301
    [19] Wu Fu-Gen, Liu You-Yan. . Acta Physica Sinica, doi: 10.7498/aps.51.1434
    [20] SHI JUN-JIE, PAN SHAO-HUA. SURFACE AND INTERFACE OPTICAL-PHONON MODES IN A FOUR-LAYER HETEROSTRUCTURE. Acta Physica Sinica, doi: 10.7498/aps.43.790
Metrics
  • Abstract views:  56
  • PDF Downloads:  7
  • Cited By: 0
Publishing process
  • Available Online:  16 October 2024

/

返回文章
返回