Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Topological corner states in acoustic honeycomb structure

Hu Jun-Rong Kong Peng Bi Ren-Gui Deng Ke Zhao He-Ping

Citation:

Topological corner states in acoustic honeycomb structure

Hu Jun-Rong, Kong Peng, Bi Ren-Gui, Deng Ke, Zhao He-Ping
PDF
HTML
Get Citation
  • In recent years, a new type of topological insulator, termed higher-order topological insulator, has attracted tremendous research interest. Such exotic lower-dimensional topological boundary states have been extended and reproduced in classical systems, such as optics and acoustics. In this paper, a two-dimensional acoustic honeycomb structure with a triangle resonant cavity is numerically studied. Topological phase transition is induced by gradually adjusting the intracell and intercell coupling, and then the topological phase is used to construct a second-order topological insulator. The topological properties of second-order topological insulators can be characterized by using the quantized quadrupole moments. When quantized quadrupole $ {Q_{ij}} = 0 $, the system is trivial, while $ {Q_{ij}} = 1/2 $, the system is topologically nontrivial. We investigate the acoustical higher-order states of triangular and hexagonal structures, respectively. The gapped zero-dimensional corner states are observed in both structures, but the robustness properties of the corner states emerge only in the hexagonal structures but not in the triangular-shaped ones. The topological corner modes will offer a new way to robustly confine the sound in a compact acoustic system.
      Corresponding author: Kong Peng, kongpeng@jsu.edu.cn ; Deng Ke, dengke@jsu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11964011, 11764016), the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 20C1530), and the Jishou University Foundation, China (Grant No. Jdy20026).
    [1]

    Zangeneh-Nejad F, Alu A, Fleury R 2020 CR. Phys. 21 467

    [2]

    Klitzing K v, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [3]

    Wang Z, Chong Y D, Joannopoulos J D, Soljacic M 2009 Nature 461 772Google Scholar

    [4]

    He C, Ni X, Ge H, Sun X C, Chen Y B, Lu M H, Liu X P, Chen Y F 2016 Nat. Phys. 12 1124Google Scholar

    [5]

    Lu J, Qiu C, Ke M, Liu Z 2016 Phys. Rev. Lett. 116 093901Google Scholar

    [6]

    严忠波 2019 物理学报 68 226101Google Scholar

    Yan Z B 2019 Acta Phys. Sin. 68 226101Google Scholar

    [7]

    Bao J, Zou D, Zhang W, He W, Sun H, Zhang X 2019 Phys. Rev. B 100 201406(RGoogle Scholar

    [8]

    Zheng S, Xia B, Man X, Tong L, Jiao J, Duan G, Yu D 2020 Phys. Rev. B 102 104113Google Scholar

    [9]

    El Hassan A, Kunst F K, Moritz A, Andler G, Bergholtz E J, Bourennane M 2019 Nat. Photon. 13 697Google Scholar

    [10]

    Xie B Y, Su G X, Wang H F, Su H, Shen X P, Zhan P, Lu M H, Wang Z L, Chen Y F 2019 Phys. Rev. Lett. 122 233903Google Scholar

    [11]

    Benalcazar W A, Bernevig B A, Hughes T L 2017 Science 357 61Google Scholar

    [12]

    Mittal S, Orre V V, Zhu G, Gorlach M A, Poddubny A, Hafezi M 2019 Nat. Photon. 13 692Google Scholar

    [13]

    Qi Y, Qiu C, Xiao M, He H, Ke M, Liu Z 2020 Phys. Rev. Lett. 124 206601Google Scholar

    [14]

    Imhof S, Berger C, Bayer F, Brehm J, Molenkamp L W, Kiessling T, Schindler F, Lee C H, Greiter M, Neupert T, Thomale R 2018 Nat. Phys. 14 925Google Scholar

    [15]

    Ezawa M 2018 Phys. Rev. Lett. 120 026801Google Scholar

    [16]

    Xue H, Yang Y, Gao F, Chong Y, Zhang B 2019 Nat. Mater. 18 108Google Scholar

    [17]

    Ni X, Weiner M, Alu A, Khanikaev A B 2019 Nat. Mater. 18 113Google Scholar

    [18]

    Wu J, Huang X, Lu J, Wu Y, Deng W, Li F, Liu Z 2020 Phys. Rev. B 102 104109Google Scholar

    [19]

    Liu F, Wakabayashi K 2017 Phys. Rev. Lett. 118 076803Google Scholar

    [20]

    Zhang Z, Rosendo López M, Cheng Y, Liu X, Christensen J 2019 Phys. Rev. Lett. 122 195501Google Scholar

    [21]

    Chen Z-G, Xu C, Al Jahdali R, Mei J, Wu Y 2019 Phys. Rev. B 100 075120Google Scholar

    [22]

    Fan H, Xia B, Tong L, Zheng S, Yu D 2019 Phys. Rev. Lett. 122 204301Google Scholar

    [23]

    Liu F, Deng H Y, Wakabayashi K 2019 Phys. Rev. Lett. 122 086804Google Scholar

    [24]

    Yang Y, Jia Z, Wu Y, Xiao R-C, Hang Z H, Jiang H, Xie X C 2020 Sci. Bull. 65 531Google Scholar

    [25]

    Zhang Z, Hu B, Liu F, Cheng Y, Liu X, Christensen J 2020 Phys. Rev. B 101 220102(RGoogle Scholar

    [26]

    Zhang Z, Wei Q, Cheng Y, Zhang T, Wu D, Liu X 2017 Phys. Rev. Lett. 118 084303Google Scholar

    [27]

    Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901Google Scholar

    [28]

    Liu F, Yamamoto M, Wakabayashi K 2017 J. Phys. Soc. Jpn. 86 123707Google Scholar

    [29]

    Yang Z Z, Li X, Peng Y Y, Zou X Y, Cheng J C 2020 Phys. Rev. Lett. 125 255502Google Scholar

    [30]

    Jiho N, Hassan A, Benalcazar W A, Huang S, Collins M J, Chen K P, Hughes T L 2018 Nat. Photon. 12 408Google Scholar

  • 图 1  (a)声学蜂窝结构, 蓝色区域表示单胞; (b)单胞三维结构图; (c)单胞二维结构放大图; (d)单胞对应的第一布里渊区, ${{\boldsymbol{b}}_1}$${{\boldsymbol{b}}_2}$为倒格子基矢, 其中${{{{\boldsymbol{b}}}}_1} = {{2{\text{π }}}}/{a}( 0, {{2\sqrt 3 }}/{3} )$, ${{{{\boldsymbol{b}}}}_2} = {{2{\text{π }}}}/{a}( {1, {{\sqrt 3 }}/{3}} )$

    Figure 1.  (a) Acoustic honeycomb structure, theunit cell depicted in blue areas; (b) three-dimensional structure diagram of a unit cell; (c) enlarged image of two-dimensional structure a unit cell; (d) the first Brillouin zone (BZ) of the unit cell, where the reciprocal lattice vectors are ${{\boldsymbol{b}}_1} = {{2{\text{π }}}}/{a}( {0, {{2\sqrt 3 }}/{3}} )$ and ${{{{\boldsymbol{b}}}}_2} = {{2{\text{π }}}}/{a}( {1, {{\sqrt 3 }}/{3}} )$.

    图 2  (a)当${l_{{\text{inter}}}}/{l_{{\text{intra}}}} = 0.4,$ 1.0, 2.0时, 蜂窝结构的体能带, $ + \left( - \right) $号表示偶(奇)宇称; (b) $\varGamma$点的本征模式; $ {{\text{p}}_x} $$ {{\text{p}}_y} $表示赝自旋偶极模式, ${{\text{d}}_{xy}}$${{\text{d}}_{{x^2} - {y^2}}}$表示赝自旋四极模式; (c)拓扑相与能带反转; 蜂窝结构具有平庸相($ {l_{{\text{inter}}}}/{l_{{\text{intra}}}} < 1 $)和拓扑相($ {l_{{\text{inter}}}}/{l_{{\text{intra}}}} > 1 $); 从图中也可以清楚地看出能带反转伴随着拓扑相变

    Figure 2.  (a) The bulk band of the honeycomb lattice when${l_{{\text{inter}}}}/{l_{{\text{intra}}}} = 0.4,$ 1.0, 2.0, ; $ + $and –, for even and odd parities, respectively; (b) the corresponding acoustic eigenmodesat the $\varGamma$point; $ {{\text{p}}_x} $and$ {{\text{p}}_y} $display pseudospin dipole modes, while ${{\text{d}}_{xy}}$and ${{\text{d}}_{{x^2} - {y^2}}}$mark pseudospinquadrupole modes; (c) topological phase and band inversion;The honeycomb structure has trivial phase ($ {l_{{\text{inter}}}}/{l_{{\text{intra}}}} < 1 $) and topological phase ($ {l_{{\text{inter}}}}/{l_{{\text{intra}}}} > 1 $); it can also be clearly seen from the figure that the band inversion is accompanied by a topological phase transition.

    图 3  (a)六边形蜂窝结构; (b)和(c)分别为拓扑和平庸六边形蜂窝结构的本征频谱; 黑色、蓝色和红色的点分别表示体态、边界态和角态. (d)—(f)分别为体态(1327.5 Hz)、边界态(1543.4 Hz)和角态(1566.1 Hz)的本征场分布. 在(f)的插图中给出了角点的顺时针箭头表示赝自旋向下, 符号$ “\pm ” $类似于拓扑荷

    Figure 3.  (a) Hexagonal honeycomb structure; (b) and (c) are the frequency spectrum of the topological and trivial hexagonal honeycomb structure; the black, blue and red dots represent the bulk, edge and corner states, respectively. (d)–(f) The eigen fields distribution of bulk state (1327.5 Hz), edge state (1543.4 Hz) and corner state (1566.1 Hz). The inserted clockwise arrow represents the spin-down pseudospin. The $ “+(–)” $signs are similar to the topological charge on the corners.

    图 4  (a)引入缺陷后的六边形蜂窝结构; (b)频谱; (c)角态(1592.5 Hz)的本征场分布

    Figure 4.  (a) Hexagonal honeycomb structure with defects introduced; (b) frequency spectrum; (c) the eigenfield distribution of corner state (1592.5 Hz).

    图 5  (a)三角形蜂窝结构; (b)三角形蜂窝结构的本征频谱; (c)角态(1604.5 Hz)的本征场分布; (d)—(f)分别为引入缺陷后的三角形蜂窝结构、本征频谱和角态(1660.2 Hz)的本征场分布

    Figure 5.  (a) Triangular honeycomb structure; (b) the frequency spectrumof triangular honeycomb structure; (c) the eigenfield distribution of corner state (1604.5 Hz); (d)–(f) triangular honeycomb structure with defects introduced, frequency spectrum and the eigenfield distribution of corner state (1660.2 Hz).

  • [1]

    Zangeneh-Nejad F, Alu A, Fleury R 2020 CR. Phys. 21 467

    [2]

    Klitzing K v, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [3]

    Wang Z, Chong Y D, Joannopoulos J D, Soljacic M 2009 Nature 461 772Google Scholar

    [4]

    He C, Ni X, Ge H, Sun X C, Chen Y B, Lu M H, Liu X P, Chen Y F 2016 Nat. Phys. 12 1124Google Scholar

    [5]

    Lu J, Qiu C, Ke M, Liu Z 2016 Phys. Rev. Lett. 116 093901Google Scholar

    [6]

    严忠波 2019 物理学报 68 226101Google Scholar

    Yan Z B 2019 Acta Phys. Sin. 68 226101Google Scholar

    [7]

    Bao J, Zou D, Zhang W, He W, Sun H, Zhang X 2019 Phys. Rev. B 100 201406(RGoogle Scholar

    [8]

    Zheng S, Xia B, Man X, Tong L, Jiao J, Duan G, Yu D 2020 Phys. Rev. B 102 104113Google Scholar

    [9]

    El Hassan A, Kunst F K, Moritz A, Andler G, Bergholtz E J, Bourennane M 2019 Nat. Photon. 13 697Google Scholar

    [10]

    Xie B Y, Su G X, Wang H F, Su H, Shen X P, Zhan P, Lu M H, Wang Z L, Chen Y F 2019 Phys. Rev. Lett. 122 233903Google Scholar

    [11]

    Benalcazar W A, Bernevig B A, Hughes T L 2017 Science 357 61Google Scholar

    [12]

    Mittal S, Orre V V, Zhu G, Gorlach M A, Poddubny A, Hafezi M 2019 Nat. Photon. 13 692Google Scholar

    [13]

    Qi Y, Qiu C, Xiao M, He H, Ke M, Liu Z 2020 Phys. Rev. Lett. 124 206601Google Scholar

    [14]

    Imhof S, Berger C, Bayer F, Brehm J, Molenkamp L W, Kiessling T, Schindler F, Lee C H, Greiter M, Neupert T, Thomale R 2018 Nat. Phys. 14 925Google Scholar

    [15]

    Ezawa M 2018 Phys. Rev. Lett. 120 026801Google Scholar

    [16]

    Xue H, Yang Y, Gao F, Chong Y, Zhang B 2019 Nat. Mater. 18 108Google Scholar

    [17]

    Ni X, Weiner M, Alu A, Khanikaev A B 2019 Nat. Mater. 18 113Google Scholar

    [18]

    Wu J, Huang X, Lu J, Wu Y, Deng W, Li F, Liu Z 2020 Phys. Rev. B 102 104109Google Scholar

    [19]

    Liu F, Wakabayashi K 2017 Phys. Rev. Lett. 118 076803Google Scholar

    [20]

    Zhang Z, Rosendo López M, Cheng Y, Liu X, Christensen J 2019 Phys. Rev. Lett. 122 195501Google Scholar

    [21]

    Chen Z-G, Xu C, Al Jahdali R, Mei J, Wu Y 2019 Phys. Rev. B 100 075120Google Scholar

    [22]

    Fan H, Xia B, Tong L, Zheng S, Yu D 2019 Phys. Rev. Lett. 122 204301Google Scholar

    [23]

    Liu F, Deng H Y, Wakabayashi K 2019 Phys. Rev. Lett. 122 086804Google Scholar

    [24]

    Yang Y, Jia Z, Wu Y, Xiao R-C, Hang Z H, Jiang H, Xie X C 2020 Sci. Bull. 65 531Google Scholar

    [25]

    Zhang Z, Hu B, Liu F, Cheng Y, Liu X, Christensen J 2020 Phys. Rev. B 101 220102(RGoogle Scholar

    [26]

    Zhang Z, Wei Q, Cheng Y, Zhang T, Wu D, Liu X 2017 Phys. Rev. Lett. 118 084303Google Scholar

    [27]

    Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901Google Scholar

    [28]

    Liu F, Yamamoto M, Wakabayashi K 2017 J. Phys. Soc. Jpn. 86 123707Google Scholar

    [29]

    Yang Z Z, Li X, Peng Y Y, Zou X Y, Cheng J C 2020 Phys. Rev. Lett. 125 255502Google Scholar

    [30]

    Jiho N, Hassan A, Benalcazar W A, Huang S, Collins M J, Chen K P, Hughes T L 2018 Nat. Photon. 12 408Google Scholar

  • [1] Wang Yu, Liang Yu-Lin, Xing Yan-Xi. Topological Anderson insulator phase in graphene. Acta Physica Sinica, 2025, 74(4): . doi: 10.7498/aps.74.20241031
    [2] Jiang Jing, Wang Xiao-Yun, Kong Peng, Zhao He-Ping, He Zhao-Jian, Deng Ke. Dislocation defect states in acoustic quadrupole topological insulators. Acta Physica Sinica, 2024, 73(15): 154302. doi: 10.7498/aps.73.20240640
    [3] Liu Chang, Wang Ya-Yu. Quantum transport phenomena in magnetic topological insulators. Acta Physica Sinica, 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [4] Huang Yue-Lei, Shan Yin-Fei, Du Ling-Jie, Du Rui-Rui. Experimental progress of topological exciton insulators. Acta Physica Sinica, 2023, 72(17): 177101. doi: 10.7498/aps.72.20230634
    [5] Meng Yu-Xin, Zhao Yi-Fan, Li Shao-Chun. Research progress of puckered honeycomb monolayers. Acta Physica Sinica, 2021, 70(14): 148101. doi: 10.7498/aps.70.20210638
    [6] Guo Wen-Ti, Huang Lu, Xu Gui-Gui, Zhong Ke-Hua, Zhang Jian-Min, Huang Zhi-Gao. Pressure strain control of electronic structure of intrinsic magnetic topological insulator MnBi2Te4. Acta Physica Sinica, 2021, 70(4): 047101. doi: 10.7498/aps.70.20201237
    [7] Xu Jia-Ling, Jia Li-Yun, Liu Chao, Wu Quan, Zhao Ling-Jun, Ma Li, Hou Deng-Lu. Band structure of topological insulator Li(Na)AuS. Acta Physica Sinica, 2021, 70(2): 027101. doi: 10.7498/aps.70.20200885
    [8] Fang Yun-Tuan, Wang Zhang-Xin, Fan Er-Pan, Li Xiao-Xue, Wang Hong-Jin. Topological phase transition based on structure reversal of two-dimensional photonic crystals and construction of topological edge states. Acta Physica Sinica, 2020, 69(18): 184101. doi: 10.7498/aps.69.20200415
    [9] Pei Dong-Liang, Yang Tao, Chen Meng, Liu Yu, Xu Wen-Shuai, Zhang Man-Gong, Jiang Heng, Wang Yu-Ren. Broadband periodic and aperiodic acoustic topological insulator based on composite honeycomb structure. Acta Physica Sinica, 2020, 69(2): 024302. doi: 10.7498/aps.69.20191454
    [10] Zhang Zhi-Mo, Zhang Wen-Hao, Fu Ying-Shuang. Scanning tunneling microscopy study on two-dimensional topological insulators. Acta Physica Sinica, 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [11] Liu Chang, Liu Xiang-Rui. Angle resolved photoemission spectroscopy studies on three dimensional strong topological insulators and magnetic topological insulators. Acta Physica Sinica, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [12] Jia Ding, Ge Yong, Yuan Shou-Qi, Sun Hong-Xiang. Dual-band acoustic topological insulator based on honeycomb lattice sonic crystal. Acta Physica Sinica, 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [13] Gao Yi-Xuan,  Zhang Li-Zhi,  Zhang Yu-Yang,  Du Shi-Xuan. Research progress of two-dimensional organic topological insulators. Acta Physica Sinica, 2018, 67(23): 238101. doi: 10.7498/aps.67.20181711
    [14] Jing Yu-Mei, Huang Shao-Yun, Wu Jin-Xiong, Peng Hai-Lin, Xu Hong-Qi. Magnetotransport in antidot arrays of three-dimensional topological insulators. Acta Physica Sinica, 2018, 67(4): 047301. doi: 10.7498/aps.67.20172346
    [15] Li Zhao-Guo, Zhang Shuai, Song Feng-Qi. Universal conductance fluctuations of topological insulators. Acta Physica Sinica, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [16] Wang Qing, Sheng Li. Edge mode of InAs/GaSb quantum spin hall insulator in magnetic field. Acta Physica Sinica, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [17] Zeng Lun-Wu, Zhang Hao, Tang Zhong-Liang, Song Run-Xia. Electromagnetic wave scattering by a topological insulator prolate spheroid particle. Acta Physica Sinica, 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
    [18] Guan Chun-Ying, Yuan Li-Bo. Analysis of band gap in honeycomb photonic crystal heterostructure. Acta Physica Sinica, 2006, 55(3): 1244-1247. doi: 10.7498/aps.55.1244
    [19] SONG QING-GONG, CONG XUAN-ZHONG, ZHANG QING-JUN, MO WEN-LING, DAI ZHAN-HAI. ORDERED STRUCTURES OF HEXAGONAL HONEYCOMB LATTICE. Acta Physica Sinica, 2000, 49(10): 2011-2016. doi: 10.7498/aps.49.2011
    [20] QU WEI-XING, XU ZHI-ZHAN. EFFECTS OF SECOND-ORDER IONIZATION ON THE STABILITY OF DRESSED STATE. Acta Physica Sinica, 1993, 42(3): 373-378. doi: 10.7498/aps.42.373
Metrics
  • Abstract views:  6590
  • PDF Downloads:  369
  • Cited By: 0
Publishing process
  • Received Date:  05 October 2021
  • Accepted Date:  15 November 2021
  • Available Online:  26 January 2022
  • Published Online:  05 March 2022

/

返回文章
返回