Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of lower hybrid wave injection on peeling-ballooning modes

Fan Hao Chen Shao-Yong Mou Mao-Lin Liu Tai-Qi Zhang Ye-Min Tang Chang-Jian

Citation:

Influence of lower hybrid wave injection on peeling-ballooning modes

Fan Hao, Chen Shao-Yong, Mou Mao-Lin, Liu Tai-Qi, Zhang Ye-Min, Tang Chang-Jian
PDF
HTML
Get Citation
  • The high-confinement mode (H-mode) significantly enhances the energy and particle confinement in fusion plasma compared with the low-confinement mode (L-mode), and it is the basic operation scenario for ITER and CFETR. Edge localized mode (ELM) often appears in H-mode, helping to expel impurities to maintain a longer stable state. However, the particle burst and energy burst from ELM eruptions can severely damage the first wall of fusion device, so, it is necessary to control the ELM. Experiments on EAST tokamak and HL-2A tokamak have been conducted with ELM mitigation by lower hybrid wave (LHW), confirming the effect of LHW on ELMs, but the physical mechanism of ELM mitigation by LHW is still not fully understood. In this paper, the influences of LHW injection on the linear and nonlinear characteristics of peeling-ballooning mode (P-B mode) are investigated in the edge pedestal region of H-mode plasma in tokamak by using the BOUT++ code. The simulations take into consideration both the conventional main plasma current driven by LHW and the three-dimensional perturbed magnetic field generated by the scrape-off layer helical current filament (HCF) on the P-B mode. The linear results show that the core plasma current driven by LHW moves the linear toroidal mode spectrum towards higher mode numbers and lower growth rates by reducing the normalized pressure gradient and magnetic shear of the equilibrium. Nonlinear simulations indicate that due to the broadening of the linear mode spectrum, the core current driven by LHW can reduce the pedestal energy loss caused by ELM through globally suppressing different toroidal modes of the P-B mode, and the three-dimensional perturbed magnetic field generated by LHW-driven HCF can reduce the energy loss caused by ELMs through promoting the growth of modes other than the main mode and enhancing the coupling between different modes. It is found in the study that the P-B mode promoted by the three-dimensional perturbed magnetic field generated by HCF has a mode number threshold, and when the dominant mode of the P-B mode is far from the mode number threshold driven by the three-dimensional perturbed magnetic field, the energy loss due to ELMs is more significantly reduced. These results contribute to a more in-depth understanding of the physical mechanism in ELM control experiment by LHW.
      Corresponding author: Mou Mao-Lin, mlmou@scu.edu.cn
    • Funds: Project supported by the National Magnetic Confinement Fusion Energy R&D Program of China (Grant No. 2019YFE03090400) and the National Natural Science Foundation of China (Grant Nos. 12375222, 11775154).
    [1]

    Zohm H 1996 Plasma Phys. Control. Fusion 38 105Google Scholar

    [2]

    Leonard A W 2014 Phys. Plasmas 21 090501Google Scholar

    [3]

    Loarte A, Saibene G, Sartori R, et al. 2003 Plasma Phys. Control. Fusion 45 1549Google Scholar

    [4]

    Lang P T, Loarte A, Saibene G, et al. 2013 Nucl. Fusion 53 043004Google Scholar

    [5]

    Loarte A, Huijsmans G, Futatani S, et al. 2014 Nucl. Fusion 54 033007Google Scholar

    [6]

    Hughes J W, Hubbard A E, Wallace G, et al. 2010 Nucl. Fusion 50 064001Google Scholar

    [7]

    Wan B, Li J, Guo H, Liang Y, Xu G, Gong X Z for the EAST Team, International Collaborators 2013 Nucl. Fusion 53 104006Google Scholar

    [8]

    Rossel J X, Moret J M, Coda S, Sauter O, Goodman T P, Felici F, Testa D, Martin Y 2012 Nucl. Fusion 52 032004Google Scholar

    [9]

    Felici F, Rossel J X, Duval B P, Coda S, Goodman T P, Martin Y, Moret J M, Sauter O, the TCV Team 2013 Nucl. Fusion 53 113018Google Scholar

    [10]

    Baylor L R, Commaux N, Jernigan T C, et al. 2013 Phys. Rev. Lett. 110 245001Google Scholar

    [11]

    Chen S Y, Huang J, Sun T T, Wang Z H, Tang C J 2014 Phys. Plasmas 21 112512Google Scholar

    [12]

    Evans T E, Moyer R A, Watkins J G, et al. 2005 J. Nucl. Mater. 337–339 691Google Scholar

    [13]

    Canik J M, Maingi R, Evans T E, et al. 2010 Nucl. Fusion 50 034012Google Scholar

    [14]

    Xiao W W, Diamond P H, Zou X L, et al. 2012 Nucl. Fusion 52 114027Google Scholar

    [15]

    Huang J, Chen S Y, Wang Z H, Tang C J 2015 Phys. Plasmas 22 122507Google Scholar

    [16]

    Degeling A W, Martin Y R, Lister J B, Villard L, Dokouka V N, Lukash V E, Khayrutdinov R R 2003 Plasma Phys. Control. Fusion 45 1637Google Scholar

    [17]

    Wu N, Chen S Y, Song X M, Mou M L, Huang J, Wang Z T, Tang C J, Song X, Xia F, Jiang M, HL-2A Team 2017 Phys. Plasmas 24 092507Google Scholar

    [18]

    Zhang H M, Wu J, Li J X, Yao L M, Xu J C, Wu Y Z, Liu Q Y, Guo P C 2021 Acta Phys. Sin. 70 235203Google Scholar

    [19]

    刘冠男, 李新霞, 刘洪波, 孙爱萍 2023 物理学报 72 245202Google Scholar

    Liu G N, Li X X, Liu H B, Sun A P 2023 Acta Phys. Sin. 72 245202Google Scholar

    [20]

    Zhou T T, Xiang N, Gan C Y, Jia G Z, Chen J L 2022 Chin. Phys. B 31 095201Google Scholar

    [21]

    Xu Z, Wu Z W, Zhang L, Huang Y H, Gao W, Cheng Y X, Lin X D, Gao X, Chen Y J, Li L, Jie Y X, Zang Q, Liu H Q, EAST Team 2021 Chin. Phys. B 30 075205Google Scholar

    [22]

    Liang Y, Gong X Z, Gan K F, et al. 2013 Phys. Rev. Lett. 110 235002Google Scholar

    [23]

    Xiao G L, Zhong W L, Zou X L, et al. 2017 Phys. Plasmas 24 122507Google Scholar

    [24]

    Cui B T, Ji X Q, Sun T F, Liang S Y, Zhang J Z, Wang A, He M Y 2021 Fusion Eng. Des. 173 112963Google Scholar

    [25]

    Li S H, Wang N C, Ding Y H, et al. 2022 Plasma Phys. Control. Fusion 64 075005Google Scholar

    [26]

    Snyder P B, Wilson H R, Ferron J R, Lao L L, Leonard A W, Osborne T H, Turnbull A D, Mossessian D, Murakami M, Xu X Q 2002 Phys. Plasmas 9 2037Google Scholar

    [27]

    Bernard L C, Helton F J, Moore R W 1981 Comput. Phys. Commun. 24 377Google Scholar

    [28]

    Pankin A Y, Bateman G, Brennan D P, Kritz A H, Kruger S, Snyder P B, Sovinec C, the NIMROD Team 2007 Plasma Phys. Control. Fusion 49 S63Google Scholar

    [29]

    Pamela S J P, Huijsmans G T A, Eich T, et al. 2017 Nucl. Fusion 57 076006Google Scholar

    [30]

    Dudson B D, Umansky M V, Xu X Q, Snyder P B, Wilson H R 2009 Comput. Phys. Commun. 180 1467Google Scholar

    [31]

    Xu X Q, Dudson B, Snyder P B, Umansky M V, Wilson H 2010 Phys. Rev. Lett. 105 175005Google Scholar

    [32]

    Xia T Y, Xu X Q 2013 Phys. Plasmas 20 052102Google Scholar

    [33]

    Xia T Y, Xu X Q, Xi P W 2013 Nucl. Fusion 53 073009Google Scholar

    [34]

    Mou M L, Huang J, Wu N, Chen S Y, Tang C J 2016 Phys. Lett. A 380 2544Google Scholar

    [35]

    Dong L K, Chen S Y, Mou M L, Tang C J 2020 Plasma Sci. Technol. 22 115101Google Scholar

    [36]

    Huang J, Chen S Y, Tang C J 2016 Phys. Plasmas 23 052513Google Scholar

    [37]

    Xia T Y, Gui B, Huang Y Q, Wu Y B, Xiao X T, EAST Team 2019 Nucl. Fusion 59 076043Google Scholar

    [38]

    Shi Y J, Xu G S, Wang F D, et al. 2011 Phys. Rev. Lett. 106 235001Google Scholar

    [39]

    Rice J E, Podpaly Y A, Reinke M L, et al. 2013 Nucl. Fusion 53 093015Google Scholar

    [40]

    Chouli B, Fenzi C, Garbet X, et al. 2014 Plasma Phys. Control. Fusion 56 095018Google Scholar

    [41]

    Chen W, Wang Z X 2020 Chin. Phys. Lett. 37 125001Google Scholar

    [42]

    Fisch N J, Rax J M 1992 Phys. Rev. Lett. 69 612Google Scholar

    [43]

    Smirnov A P, Harvey R W 2001 The GENRAY Ray Tracing Code CompX Report No. CompX-2000-01

    [44]

    Ehst D A, Karney C F F 1991 Nucl. Fusion 31 1933Google Scholar

    [45]

    Crotinger J A, LoDestro L, Pearlstein L D, Tarditi A, Casper T A, Hooper E B 1997 CORSICA: A Comprehensive Simulation of Toroidal Magnetic-fusion Devices. Final Report to the LDRD Program (Livermore: Lawrence Livermore National Lab.) Report No: UCRL-ID-126284

    [46]

    Xu X Q, Ma J F, Li G Q 2014 Phys. Plasmas 21 120704Google Scholar

    [47]

    Burrell K H 1997 Phys. Plasmas 4 1499Google Scholar

    [48]

    Ding B J, Bonoli P T, Tuccillo A, et al. 2018 Nucl. Fusion 58 095003Google Scholar

    [49]

    Li G Q, Xu X Q, Snyder P B, Turnbull A D, Xia T Y, Ma C H, Xi P W 2014 Phys. Plasmas 21 102511Google Scholar

    [50]

    Zhang Y, Huang J, Chen S Y, Tang C J 2017 Phys. Plasmas 24 062108Google Scholar

    [51]

    Li J, Guo H Y, Wan B N, et al. 2013 Nat. Phys. 9 817Google Scholar

    [52]

    Dong L K, Chen S Y, Mou M L, Luo Y, Qin C C, Tang C J 2023 Nucl. Fusion 63 086023Google Scholar

    [53]

    Liu Y, Ham C J, Kirk A, Li L, Loarte A, Ryan D A, Sun Y, Suttrop W, Yang X, Zhou L 2016 Plasma Phys. Control. Fusion 58 114005Google Scholar

    [54]

    Oyama N, Sakamoto Y, Isayama A, et al. 2005 Nucl. Fusion 45 871Google Scholar

    [55]

    Aiba N, Giroud C, Honda M, et al. 2017 Nucl. Fusion 57 126001Google Scholar

    [56]

    Luo Y, Chen S Y, Huang J, Xiong Y Y, Tang C J 2016 Phys. Plasmas 23 042302Google Scholar

    [57]

    Xi P W, Xu X Q, Wang X G, Xia T Y 2012 Phys. Plasmas 19 092503Google Scholar

    [58]

    李春雨, 郝广周, 刘钺强, 王炼, 刘艺慧子 2022 物理学报 71 075202Google Scholar

    Li C Y, Hao G Z, Liu Y Q, Wang L, Liu Y H Z 2022 Acta Phys. Sin. 71 075202Google Scholar

  • 图 1  模拟中采用的平衡截面.

    Figure 1.  Cross-section of equilibrium used in the simulation.

    图 2  初始平衡的压强和电流剖面.

    Figure 2.  Pressure and current profiles of the original equilibrium.

    图 3  不同LHW驱动电流下的(a)平行电流剖面和(b)安全因子剖面

    Figure 3.  Parallel current profiles (a) and safety factor profiles (b) with different LHW-driven currents.

    图 4  LHW驱动的HCF的三维结构示意图

    Figure 4.  Schematic diagram of the three-dimensional structure of LHW-driven HCF.

    图 5  (a) P-B模归一化线性增长率, 其中$ {\omega }_{{\mathrm{A}}}=1/{\tau }_{{\mathrm{A}}} $为阿尔芬频率; (b)平衡的归一化压强梯度, 其中$ \alpha = $ $\left(2{\mu }_{0}{R}_{0}{q}^{2}{\mathrm{d}}p\right)/\left({B}^{2}{\mathrm{d}}r\right) $

    Figure 5.  (a) Linear growth rates of the P-B mode; (b) normalized pressure gradient of the equilibrium with different $ {J}_{{\mathrm{L}}{\mathrm{H}}{\mathrm{W}}} $. Here, $ \alpha =\left(2{\mu }_{0}{R}_{0}{q}^{2}{\mathrm{d}}p\right)/\left({B}^{2}{\mathrm{d}}r\right) $.

    图 6  LHW驱动的不同大小$ {J}_{{\mathrm{L}}{\mathrm{H}}{\mathrm{W}}} $对ELMsize时间演化的影响​, 插图为0—75$ {\tau }_{{\mathrm{A}}} $时刻的放大

    Figure 6.  Influence of different $ {J}_{{\mathrm{L}}{\mathrm{H}}{\mathrm{W}}} $ driven by LHW on the time evolution of ELMsize, The inset in the lower right corner is an enlargement of the from 0 to 75$ {\tau }_{{\mathrm{A}}} $.

    图 7  P-B模非线性模式演化(红色虚线为ELMsize) (a)初始平衡; (b) JLHW = 0.2 MA; (c) JLHW = 0.3 MA; (d) JLHW = 0.4 MA

    Figure 7.  Temporal evolutions of the P-B mode spectrum: (a) Original equilibrium; (b) JLHW = 0.2 MA ; (c) JLHW = 0.3 MA; (d) JLHW = 0.4 MA. The red dashed line represents ELMsize.

    图 8  不同大小HCF产生的$ {A}_{//{\mathrm{H}}{\mathrm{C}}{\mathrm{F}}} $对ELMsize随时间演化的影响

    Figure 8.  Influence of $ {A}_{//{\mathrm{H}}{\mathrm{C}}{\mathrm{F}}} $​ generated by different amplitudes of HCF on the time evolution of ELMsize.

    图 9  P-B模非线性模式演化, 分别对应未加入$ {A}_{//{\mathrm{H}}{\mathrm{C}}{\mathrm{F}}} $ (a), 以及300 A HCF (b), 450 A HCF (c), 600 A HCF (d) 产生的$ {A}_{//{\mathrm{H}}{\mathrm{C}}{\mathrm{F}}} $下的模拟, 图中红色虚线为ELMsize

    Figure 9.  Temporal evolutions of the P-B mode spectrum, for cases without $ {A}_{//{\mathrm{H}}{\mathrm{C}}{\mathrm{F}}} $ (a) and with $ {A}_{//{\mathrm{H}}{\mathrm{C}}{\mathrm{F}}} $ generated by 300 A HCF (b), 450 A HCF (c), 600 A HCF (d). The red dashed line represents ELMsize.

    图 10  环向平均的$ E\times B $剪切流随时间的演化, 分别为未加入$ {A}_{//{\mathrm{H}}{\mathrm{C}}{\mathrm{F}}} $(a) 以及加入300 A HCF (b), 450 A HCF (c), 600 A HCF (d). 图中白色虚线为$ \psi =1 $的位置, 红色虚线为平衡压强梯度最大位置$ \psi =0.871 $

    Figure 10.  Temporal evolutions of the toroidal averaged $ E\times B $ shear flow, for cases without $ {A}_{//{\mathrm{H}}{\mathrm{C}}{\mathrm{F}}} $ (a) and with $ {A}_{//{\mathrm{H}}{\mathrm{C}}{\mathrm{F}}} $ generated by 300 A HCF (b), 450 A HCF (c), 600 A HCF (d). The white and red dashed lines represent locations of $ \psi =1 $ and the maximum pressure gradient location $ \psi =0.871 $, respectively.

    图 11  不同$ {J}_{{\mathrm{L}}{\mathrm{H}}{\mathrm{W}}} $电流条件下600 A HCF对ELMsize时间演化的影响

    Figure 11.  Influence of 600 A HCF on the time evolution of ELMsize under different $ {J}_{{\mathrm{L}}{\mathrm{H}}{\mathrm{W}}} $ current conditions.

    图 12  考虑HCF后的P-B模谱结构随时间的演化, 其中, 从上到下依次为初始平衡(a), (b); JLHW = 0.2 MA (c), (d); JLHW = 0.3 MA (e), (f); JLHW = 0.4 MA (g), (h)下的平衡. 左侧的一列(a), (c), (e), (g)为未加入$ {A}_{//{\mathrm{H}}{\mathrm{C}}{\mathrm{F}}} $的模拟; 右侧(b), (d), (f), (h)为加入600 A HCF产生的$ {A}_{//{\mathrm{H}}{\mathrm{C}}{\mathrm{F}}} $的模拟

    Figure 12.  Temporal evolutions of the P-B mode spectrum structure considering HCF. From top to bottom, the sequences are the orginal equilibrium (a), (b); equilibrium with JLHW = 0.2 MA (c), (d); JLHW = 0.3 MA (e), (f); JLHW = 0.4 MA (g), (h), respectively. The left column (a), (c), (e), (g) represent cases without $ {A}_{//{\mathrm{H}}{\mathrm{C}}{\mathrm{F}}} $; the right column (b), (d), (f), (h) represent cases with $ {A}_{//{\mathrm{H}}{\mathrm{C}}{\mathrm{F}}} $ from 600 A HCF.

  • [1]

    Zohm H 1996 Plasma Phys. Control. Fusion 38 105Google Scholar

    [2]

    Leonard A W 2014 Phys. Plasmas 21 090501Google Scholar

    [3]

    Loarte A, Saibene G, Sartori R, et al. 2003 Plasma Phys. Control. Fusion 45 1549Google Scholar

    [4]

    Lang P T, Loarte A, Saibene G, et al. 2013 Nucl. Fusion 53 043004Google Scholar

    [5]

    Loarte A, Huijsmans G, Futatani S, et al. 2014 Nucl. Fusion 54 033007Google Scholar

    [6]

    Hughes J W, Hubbard A E, Wallace G, et al. 2010 Nucl. Fusion 50 064001Google Scholar

    [7]

    Wan B, Li J, Guo H, Liang Y, Xu G, Gong X Z for the EAST Team, International Collaborators 2013 Nucl. Fusion 53 104006Google Scholar

    [8]

    Rossel J X, Moret J M, Coda S, Sauter O, Goodman T P, Felici F, Testa D, Martin Y 2012 Nucl. Fusion 52 032004Google Scholar

    [9]

    Felici F, Rossel J X, Duval B P, Coda S, Goodman T P, Martin Y, Moret J M, Sauter O, the TCV Team 2013 Nucl. Fusion 53 113018Google Scholar

    [10]

    Baylor L R, Commaux N, Jernigan T C, et al. 2013 Phys. Rev. Lett. 110 245001Google Scholar

    [11]

    Chen S Y, Huang J, Sun T T, Wang Z H, Tang C J 2014 Phys. Plasmas 21 112512Google Scholar

    [12]

    Evans T E, Moyer R A, Watkins J G, et al. 2005 J. Nucl. Mater. 337–339 691Google Scholar

    [13]

    Canik J M, Maingi R, Evans T E, et al. 2010 Nucl. Fusion 50 034012Google Scholar

    [14]

    Xiao W W, Diamond P H, Zou X L, et al. 2012 Nucl. Fusion 52 114027Google Scholar

    [15]

    Huang J, Chen S Y, Wang Z H, Tang C J 2015 Phys. Plasmas 22 122507Google Scholar

    [16]

    Degeling A W, Martin Y R, Lister J B, Villard L, Dokouka V N, Lukash V E, Khayrutdinov R R 2003 Plasma Phys. Control. Fusion 45 1637Google Scholar

    [17]

    Wu N, Chen S Y, Song X M, Mou M L, Huang J, Wang Z T, Tang C J, Song X, Xia F, Jiang M, HL-2A Team 2017 Phys. Plasmas 24 092507Google Scholar

    [18]

    Zhang H M, Wu J, Li J X, Yao L M, Xu J C, Wu Y Z, Liu Q Y, Guo P C 2021 Acta Phys. Sin. 70 235203Google Scholar

    [19]

    刘冠男, 李新霞, 刘洪波, 孙爱萍 2023 物理学报 72 245202Google Scholar

    Liu G N, Li X X, Liu H B, Sun A P 2023 Acta Phys. Sin. 72 245202Google Scholar

    [20]

    Zhou T T, Xiang N, Gan C Y, Jia G Z, Chen J L 2022 Chin. Phys. B 31 095201Google Scholar

    [21]

    Xu Z, Wu Z W, Zhang L, Huang Y H, Gao W, Cheng Y X, Lin X D, Gao X, Chen Y J, Li L, Jie Y X, Zang Q, Liu H Q, EAST Team 2021 Chin. Phys. B 30 075205Google Scholar

    [22]

    Liang Y, Gong X Z, Gan K F, et al. 2013 Phys. Rev. Lett. 110 235002Google Scholar

    [23]

    Xiao G L, Zhong W L, Zou X L, et al. 2017 Phys. Plasmas 24 122507Google Scholar

    [24]

    Cui B T, Ji X Q, Sun T F, Liang S Y, Zhang J Z, Wang A, He M Y 2021 Fusion Eng. Des. 173 112963Google Scholar

    [25]

    Li S H, Wang N C, Ding Y H, et al. 2022 Plasma Phys. Control. Fusion 64 075005Google Scholar

    [26]

    Snyder P B, Wilson H R, Ferron J R, Lao L L, Leonard A W, Osborne T H, Turnbull A D, Mossessian D, Murakami M, Xu X Q 2002 Phys. Plasmas 9 2037Google Scholar

    [27]

    Bernard L C, Helton F J, Moore R W 1981 Comput. Phys. Commun. 24 377Google Scholar

    [28]

    Pankin A Y, Bateman G, Brennan D P, Kritz A H, Kruger S, Snyder P B, Sovinec C, the NIMROD Team 2007 Plasma Phys. Control. Fusion 49 S63Google Scholar

    [29]

    Pamela S J P, Huijsmans G T A, Eich T, et al. 2017 Nucl. Fusion 57 076006Google Scholar

    [30]

    Dudson B D, Umansky M V, Xu X Q, Snyder P B, Wilson H R 2009 Comput. Phys. Commun. 180 1467Google Scholar

    [31]

    Xu X Q, Dudson B, Snyder P B, Umansky M V, Wilson H 2010 Phys. Rev. Lett. 105 175005Google Scholar

    [32]

    Xia T Y, Xu X Q 2013 Phys. Plasmas 20 052102Google Scholar

    [33]

    Xia T Y, Xu X Q, Xi P W 2013 Nucl. Fusion 53 073009Google Scholar

    [34]

    Mou M L, Huang J, Wu N, Chen S Y, Tang C J 2016 Phys. Lett. A 380 2544Google Scholar

    [35]

    Dong L K, Chen S Y, Mou M L, Tang C J 2020 Plasma Sci. Technol. 22 115101Google Scholar

    [36]

    Huang J, Chen S Y, Tang C J 2016 Phys. Plasmas 23 052513Google Scholar

    [37]

    Xia T Y, Gui B, Huang Y Q, Wu Y B, Xiao X T, EAST Team 2019 Nucl. Fusion 59 076043Google Scholar

    [38]

    Shi Y J, Xu G S, Wang F D, et al. 2011 Phys. Rev. Lett. 106 235001Google Scholar

    [39]

    Rice J E, Podpaly Y A, Reinke M L, et al. 2013 Nucl. Fusion 53 093015Google Scholar

    [40]

    Chouli B, Fenzi C, Garbet X, et al. 2014 Plasma Phys. Control. Fusion 56 095018Google Scholar

    [41]

    Chen W, Wang Z X 2020 Chin. Phys. Lett. 37 125001Google Scholar

    [42]

    Fisch N J, Rax J M 1992 Phys. Rev. Lett. 69 612Google Scholar

    [43]

    Smirnov A P, Harvey R W 2001 The GENRAY Ray Tracing Code CompX Report No. CompX-2000-01

    [44]

    Ehst D A, Karney C F F 1991 Nucl. Fusion 31 1933Google Scholar

    [45]

    Crotinger J A, LoDestro L, Pearlstein L D, Tarditi A, Casper T A, Hooper E B 1997 CORSICA: A Comprehensive Simulation of Toroidal Magnetic-fusion Devices. Final Report to the LDRD Program (Livermore: Lawrence Livermore National Lab.) Report No: UCRL-ID-126284

    [46]

    Xu X Q, Ma J F, Li G Q 2014 Phys. Plasmas 21 120704Google Scholar

    [47]

    Burrell K H 1997 Phys. Plasmas 4 1499Google Scholar

    [48]

    Ding B J, Bonoli P T, Tuccillo A, et al. 2018 Nucl. Fusion 58 095003Google Scholar

    [49]

    Li G Q, Xu X Q, Snyder P B, Turnbull A D, Xia T Y, Ma C H, Xi P W 2014 Phys. Plasmas 21 102511Google Scholar

    [50]

    Zhang Y, Huang J, Chen S Y, Tang C J 2017 Phys. Plasmas 24 062108Google Scholar

    [51]

    Li J, Guo H Y, Wan B N, et al. 2013 Nat. Phys. 9 817Google Scholar

    [52]

    Dong L K, Chen S Y, Mou M L, Luo Y, Qin C C, Tang C J 2023 Nucl. Fusion 63 086023Google Scholar

    [53]

    Liu Y, Ham C J, Kirk A, Li L, Loarte A, Ryan D A, Sun Y, Suttrop W, Yang X, Zhou L 2016 Plasma Phys. Control. Fusion 58 114005Google Scholar

    [54]

    Oyama N, Sakamoto Y, Isayama A, et al. 2005 Nucl. Fusion 45 871Google Scholar

    [55]

    Aiba N, Giroud C, Honda M, et al. 2017 Nucl. Fusion 57 126001Google Scholar

    [56]

    Luo Y, Chen S Y, Huang J, Xiong Y Y, Tang C J 2016 Phys. Plasmas 23 042302Google Scholar

    [57]

    Xi P W, Xu X Q, Wang X G, Xia T Y 2012 Phys. Plasmas 19 092503Google Scholar

    [58]

    李春雨, 郝广周, 刘钺强, 王炼, 刘艺慧子 2022 物理学报 71 075202Google Scholar

    Li C Y, Hao G Z, Liu Y Q, Wang L, Liu Y H Z 2022 Acta Phys. Sin. 71 075202Google Scholar

  • [1] Zhang Wen-Bo, Liu Shao-Cheng, Liao Liang, Wei Wen-Yin, Li Le-Tian, Wang Liang, Yan Ning, Qian Jin-Ping, Zang Qing. Development of charge-discharge circuitry based on supercapacitor and its application to limiter probe diagnostics in EAST. Acta Physica Sinica, 2024, 73(6): 065203. doi: 10.7498/aps.73.20231697
    [2] Liu Guan-Nan, LI Xin-Xia, Liu Hong-Bo, Sun Ai-Ping. Synergistic current drive of helicon wave and lower hybrid wave in HL-2M. Acta Physica Sinica, 2023, 72(24): 245202. doi: 10.7498/aps.72.20231077
    [3] Qin Chen-Chen, Mou Mao-Lin, Chen Shao-Yong. Nonlinear evolution characteristics of peeling-ballooning mode under negative triangularity. Acta Physica Sinica, 2023, 72(4): 045203. doi: 10.7498/aps.72.20222138
    [4] Sun Zi-Yuan, Wang Yuan-Zhen, Liu Yue. Numerical study on predicting MHD stability of HL-2A tokamak pedestal structure. Acta Physica Sinica, 2022, 71(22): 225201. doi: 10.7498/aps.71.20221098
    [5] Li Chun-Yu, Hao Guang-Zhou, Liu Yue-Qiang, Wang Lian, Liu Yi-Hui-Zi. Influence of toroidal rotation on plasma response to external RMP fields in tokamak. Acta Physica Sinica, 2022, 71(7): 075202. doi: 10.7498/aps.71.20211975
    [6] Yang Jin, Chen Jun, Wang Fu-Di, Li Ying-Ying, Lyu Bo, Xiang Dong, Yin Xiang-Hui, Zhang Hong-Ming, Fu Jia, Liu Hai-Qing, Zang Qing, Chu Yu-Qi, Liu Jian-Wen, Wang Xun-Yu, Bin Bin, He Liang, Wan Shun-Kuan, Gong Xue-Yu, Ye Min-You. Experimental investigation of lower hybrid current drive induced plasma rotation on the experimental advanced superconducting tokamak. Acta Physica Sinica, 2020, 69(5): 055201. doi: 10.7498/aps.69.20191716
    [7] Yang You-Lei, Hu Ye-Min, Xiang Nong. Effects of trapping electrons on synergy of lower-hybrid wave and electron cyclotron wave. Acta Physica Sinica, 2017, 66(24): 245202. doi: 10.7498/aps.66.245202
    [8] Li Zhi-Quan, Zhang Ming, Peng Tao, Yue Zhong, Gu Er-Dan, Li Wen-Chao. Improvement of the local characteristics of graphene surface plasmon based on guided-mode resonance effect. Acta Physica Sinica, 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [9] Xu Jing-Cui, Wang Fu-Di, L� Bo, Shen Yong-Cai, Li Ying-Ying, Fu Jia, Shi Yue-Jiang, Sanggon Lee, M. Bitter, K. Hill. Behaviors of ion and electron temperatures on EAST with lower hybrid current drive and lithium wall coating. Acta Physica Sinica, 2012, 61(14): 145203. doi: 10.7498/aps.61.145203
    [10] Liu Chun-Hua, Nie Lin, Huang Yuan, Ji Xiao-Quan, Yu De-Liang, Liu Yi, Feng Zhen, Yao Ke, Cui Zheng-Ying, Yan Long-Wen, Ding Xuan-Tong, Dong Jia-Qi, Duan Xu-Ru. Preliminary behavior studies of edge localized modes on HL-2A. Acta Physica Sinica, 2012, 61(20): 205201. doi: 10.7498/aps.61.205201
    [11] Hong Bin-Bin, Chen Shao-Yong, Tang Chang-Jian, Zhang Xin-Jun, Hu You-Jun. Study on synergy of electron-cyclotron and lower-hybrid current drive in Tokamak. Acta Physica Sinica, 2012, 61(11): 115207. doi: 10.7498/aps.61.115207
    [12] Lu Hong-Wei, Hu Li-Qun, Zhou Rui-Jie, Xu Ping, Zhong Guo-Qiang, Lin Shi-Yao, Wang Shao-Feng. Runaway electrons behaviors during ion cycolotron range of frequency and lower hybrid wave plasmas in the HT-7 Tokamak. Acta Physica Sinica, 2010, 59(10): 7175-7181. doi: 10.7498/aps.59.7175
    [13] LI JIAN-GANG LUO, JIA-RONG, WAN BAO-NIAN, LIU YUE-XIU, GONG XIAN-ZU, LI DUO-CHUAN, JIE YIN-XIAN, LI ZHI-XIU, XU XIANG-DONG. IMPROVEMENT OF CONFINEMENT BY LOWER HYBRID WAVES. Acta Physica Sinica, 2000, 49(12): 2414-2419. doi: 10.7498/aps.49.2414
    [14] HUANG RONG, DENG CHUAN-BAO, XIE JI-KANG, ZHONG FANG-CHUAN, WANG SHU-YA, ZHANG SHOU-YIN, ZHAO JUN-YU. SPECTROSCOPIC DIAGNOSTIC RESULTS OF THE IMPROVED PLASMA CONFINEMENT BY LOW HYBRID CURRENT DRIVE. Acta Physica Sinica, 1994, 43(3): 395-403. doi: 10.7498/aps.43.395
    [15] SHEN LIN-FANG, YU GUO-YANG. THE EFFECT OF ION CYCLOTRON RESONANCE HEATING ON LOWER HYBRID CURRENT DRIVE IN TOKAMAK PLASMA. Acta Physica Sinica, 1992, 41(4): 587-593. doi: 10.7498/aps.41.587
    [16] Wang Mao-quan. THE EFFECT OF FLOWING PLASMA IN TOKAMAK ON TEARTING MODES. Acta Physica Sinica, 1986, 35(9): 1227-1232. doi: 10.7498/aps.35.1227
    [17] PAN CHUAN-HONG, DING HOU-CHANG, WU LING-QIAO. KINETIC THEORY ON BALLOONING-MODE IN COLLISIONAL PLASMAS. Acta Physica Sinica, 1986, 35(11): 1411-1425. doi: 10.7498/aps.35.1411
    [18] CHEN YAN-PING, ZHANG CHUN-YUAN. THE EFFECT OF PARTICLE ORBIT LOSS ON ION STOCHASTIC HEATING WITH LH WAVES. Acta Physica Sinica, 1984, 33(4): 457-464. doi: 10.7498/aps.33.457
    [19] DONG JIA-QI. DOUBLE TEARING MODE IN PLASMA WITH MAGNETIC BRAIDING. Acta Physica Sinica, 1984, 33(10): 1341-1349. doi: 10.7498/aps.33.1341
    [20] SHI BING-REN. ON THE SECOND STABILITY REGION OF TOKAMAK PLASMAS AGAINST HIGH-n BALLOONING MODES. Acta Physica Sinica, 1983, 32(11): 1398-1406. doi: 10.7498/aps.32.1398
Metrics
  • Abstract views:  1873
  • PDF Downloads:  44
  • Cited By: 0
Publishing process
  • Received Date:  19 January 2024
  • Accepted Date:  04 March 2024
  • Available Online:  19 March 2024
  • Published Online:  05 May 2024

/

返回文章
返回