Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Modeling ferroelectric phase transitions with graph convolutional neural networks

Ouyang Xin-Jian Zhang Yan-Xing Wang Zhi-Long Zhang Feng Chen Wei-Jia Zhuang Yuan Jie Xiao Liu Lai-Jun Wang Da-Wei

Citation:

Modeling ferroelectric phase transitions with graph convolutional neural networks

Ouyang Xin-Jian, Zhang Yan-Xing, Wang Zhi-Long, Zhang Feng, Chen Wei-Jia, Zhuang Yuan, Jie Xiao, Liu Lai-Jun, Wang Da-Wei
PDF
HTML
Get Citation
  • Ferroelectric materials are widely used in functional devices, however, it has been a long-standing issue to achieve convenient and accurate theoretical modeling of them. Herein, a noval approach to modeling ferroelectric materials is proposed by using graph convolutional neural networks (GCNs). In this approach, the potential energy surface of ferroelectric materials is described by GCNs, which then serves as a calculator to conduct large-scale molecular dynamics simulations. Given atomic positions, the well-trained GCN model can provide accurate predictions of the potential energy and atomic forces, with an accuracy reaching up to 1 meV per atom. The accuracy of GCNs is comparable to that of ab inito calculations, while the computing speed is faster than that of ab inito calculations by a few orders. Benefiting from the high accuracy and fast prediction of the GCN model, we further combine it with molecular dynamics simulations to investigate two representative ferroelectric materials—bulk GeTe and CsSnI3, and successfully produce their temperature-dependent structural phase transitions, which are in good agreement with the experimental observations. For GeTe, we observe an unusual negative thermal expansion around the region of its ferroelectric phase transition, which has been reported in previous experiments. For CsSnI3, we correctly obtain the octahedron tilting patterns associated with its phase transition sequence. These results demonstrate the accuracy and reliability of GCNs in the modeling of potential energy surfaces for ferroelectric materials, thus providing a universal approach for investigating them theoretically.
      Corresponding author: Wang Da-Wei, dawei.wang@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974268, 12111530061).
    [1]

    Martin L W, Rappe A M 2016 Nat. Rev. Mater. 2 16087Google Scholar

    [2]

    Pal S, Sarath N, Priya K S, Murugavel P 2022 J. Phys. D: Appl. Phys. 55 283001Google Scholar

    [3]

    Qi L, Ruan S, Zeng Y J 2021 Adv. Mater. 33 2005098Google Scholar

    [4]

    欧阳鑫健, 张紫阳, 张锋, 张佳乐, 王大威 2023 物理学报 72 057502Google Scholar

    Ouyang X J, Zhang Z Y, Zhang F, Zhang J L, Wang D W 2023 Acta Phys. Sin. 72 057502Google Scholar

    [5]

    Zhong W, Vanderbilt D, Rabe K M 1994 Phys. Rev. Lett. 73 1861Google Scholar

    [6]

    Zhong W, Vanderbilt D, Rabe K M 1995 Phys. Rev. B 52 6301Google Scholar

    [7]

    Sepliarsky M, Wu Z, Asthagiri A, Cohen R E 2004 Ferroelectrics 301 55Google Scholar

    [8]

    Wu H H, Cohen R E 2017 Phys. Rev. B 96 054116Google Scholar

    [9]

    Behler J 2016 J. Chem. Phys. 145 170901Google Scholar

    [10]

    Behler J, Csányi G 2021 Eur. Phys. J. B 94 142Google Scholar

    [11]

    Mueller T, Hernandez A, Wang C 2020 J. Chem. Phys. 152 050902Google Scholar

    [12]

    Kang P L, Shang C, Liu Z P 2020 Acc. Chem. Res. 53 2119Google Scholar

    [13]

    曾启昱, 陈博, 康冬冬, 戴佳钰 2023 物理学报 72 187102Google Scholar

    Zeng Q Y, Chen B, Kang D D, Dai J Y 2023 Acta Phys. Sin. 72 187102Google Scholar

    [14]

    张嘉晖 2024 物理学报 73 069301Google Scholar

    Zhang J H 2024 Acta Phys. Sin. 73 069301Google Scholar

    [15]

    LeCun Y, Bengio Y, Hinton G 2015 Nature 521 436Google Scholar

    [16]

    Gilmer J, Schoenholz S S, Riley P F, Vinyals O, Dahl G E 2017 Proceedings of the 34th International Conference on Machine Learning Sydney, Australia, August 6–11, 2017 p1263

    [17]

    Schütt K T, Sauceda H E, Kindermans P J, Tkatchenko A, Müller K R 2018 J. Chem. Phys. 148 241722Google Scholar

    [18]

    Ouyang X J, Chen W J, Zhang Y X, Zhang F, Zhuang Y, Jie X, Liu L J, Wang D W 2023 Phys. Rev. B 108 L020103Google Scholar

    [19]

    Ouyang X J, Zhuang Y, Zhang J L, Zhang F, Jie X, Chen W J, Zhang Y X, Liu L J, Wang D W 2023 J. Phys. Chem. C 127 20890Google Scholar

    [20]

    Kong J G, Li Q X, Li J, Liu Y, Zhu J J 2022 Chin. Phys. Lett. 39 067503Google Scholar

    [21]

    Gasteiger J, Groß J, Günnemann S 2020 International Conference on Learning Representations Virtual, April 26–May 1, 2020

    [22]

    Gasteiger J, Giri S, Margraf J T, Günnemann S 2020 Machine Learning for Molecules Workshop, NeurIPS Virtual, December 6–12, 2020

    [23]

    Chattopadhyay T, Boucherle J X, vonSchnering H G 1987 J. Phys. C: Solid State Phys. 20 1431Google Scholar

    [24]

    Dangić D, Murphy A R, Murray E D, Fahy S, Savić I 2018 Phys. Rev. B 97 224106Google Scholar

    [25]

    Yamada K, Funabiki S, Horimoto H, Matsui T, Okuda T, Ichiba S 1991 Chem. Lett. 20 801Google Scholar

    [26]

    da Silva E L, Skelton J M, Parker S C, Walsh A 2015 Phys. Rev. B 91 144107Google Scholar

    [27]

    Schütt K, Unke O, Gastegger M 2021 Proceedings of the 38th International Conference on Machine Learning Virtual, July 18–24, 2021 p9377

    [28]

    He K, Zhang X, Ren S, Sun J 2016 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Las Vegas, USA, June 27–30, 2016 p770

    [29]

    Musaelian A, Batzner S, Johansson A, Sun L, Owen C J, Kornbluth M, Kozinsky B 2023 Nat. Commun. 14 579Google Scholar

    [30]

    Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S 2019 33rd Conference on Neural Information Processing Systems Vancouver, Canada, December 8–14, 2019 p8026

    [31]

    Batzner S, Musaelian A, Sun L, Geiger M, Mailoa J P, Kornbluth M, Molinari N, Smidt T E, Kozinsky B 2022 Nat. Commun. 13 2453Google Scholar

    [32]

    Frenkel D, Smit B 2002 Understanding Molecular Simulation: from Algorithms to Applications (Amsterdam: Elsevier

    [33]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [34]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [35]

    Enkovaara J, Rostgaard C, Mortensen J J, et al. 2010 J. Phys.: Condens. Matter 22 253202Google Scholar

    [36]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [37]

    Melchionna S, Ciccotti G, Lee Holian B 1993 Mol. Phys. 78 533Google Scholar

    [38]

    Melchionna S 2000 Phys. Rev. E 61 6165Google Scholar

    [39]

    Larsen A H, Mortensen J J, Blomqvist J, et al. 2017 J. Phys.: Condens. Matter 29 273002Google Scholar

    [40]

    Smith J S, Nebgen B, Lubbers N, Isayev O, Roitberg A E 2018 J. Chem. Phys. 148 241733Google Scholar

    [41]

    Nielsen O H, Martin R M 1985 Phys. Rev. B 32 3780Google Scholar

    [42]

    Thompson A P, Plimpton S J, Mattson W 2009 J. Chem. Phys. 131 154107Google Scholar

    [43]

    Loshchilov I, Hutter F 2019 7th International Conference on Learning Representations New Orleans, USA, May 6–9, 2019

    [44]

    Singh K, Kumari S, Singh H, Bala N, Singh P, Kumar A, Thakur A 2023 Appl. Nanosci. 13 95Google Scholar

    [45]

    Fan Z, Qu J, Wang T, Wen Y, An Z, Jiang Q, Xue W, Zhou P, Xu X 2023 Chin. Phys. B 32 128508Google Scholar

    [46]

    Chung I, Song J H, Im J, Androulakis J, Malliakas C D, Li H, Freeman A J, Kenney J T, Kanatzidis M G 2012 J. Am. Chem. Soc. 134 8579Google Scholar

    [47]

    Shum K, Chen Z, Qureshi J, Yu C, Wang J J, Pfenninger W, Vockic N, Midgley J, Kenney J T 2010 Appl. Phys. Lett. 9 6

    [48]

    Stoumpos C C, Kanatzidis M G 2015 Acc. Chem. Res 48 2791Google Scholar

    [49]

    Savory C N, Walsh A, Scanlon D O 2016 ACS Energy Lett. 1 949Google Scholar

    [50]

    Quan L N, García de Arquer F P, Sabatini R P, Sargent E H 2018 Adv. Mater. 30 1801996Google Scholar

    [51]

    Heidari Gourji F, Velauthapillai D 2021 Molecules 26 2010Google Scholar

    [52]

    Glazer A M 1972 Acta Crystallogr., Sect. B Struct. Crystallogr. Cryst. Chem. 28 3384Google Scholar

    [53]

    Xie N, Zhang J, Raza S, Zhang N, Chen X, Wang D 2020 J. Phys.: Condens. Matter. 32 315901Google Scholar

    [54]

    King-Smith R D, Vanderbilt D 1993 Phys. Rev. B 47 1651Google Scholar

    [55]

    Resta R, Vanderbilt D 2007 Theory of Polarization: A Modern Approach (Berlin: Springer) p31

    [56]

    Schubert K, Fricke H 1951 Zeitschrift für Naturforschung A 6 781

    [57]

    Wdowik U D, Parlinski K, Rols S, Chatterji T 2014 Phys. Rev. B 89 224306Google Scholar

    [58]

    Goldak J, Barrett C, Innes D, Youdelis W 1966 J. Chem. Phys. 44 3323Google Scholar

    [59]

    Gonze X, Amadon B, Anglade P M, et al. 2009 Comput. Phys. Commun. 180 2582Google Scholar

    [60]

    Ciucivara A, Sahu B R, Kleinman L 2006 Phys. Rev. B 73 214105Google Scholar

    [61]

    Shaltaf R, Gonze X, Cardona M, Kremer R K, Siegle G 2009 Phys. Rev. B 79 075204Google Scholar

    [62]

    Dangić D, Fahy S, Savić I 2022 Phys. Rev. B 106 134113Google Scholar

    [63]

    Bechtel J S, Van der Ven A 2018 Phys. Rev. Mater. 2 025401Google Scholar

    [64]

    Rabe K M, Joannopoulos J D 1987 Phys. Rev. B 36 6631Google Scholar

    [65]

    Kooi B J, Wuttig M 2020 Adv. Mater. 32 1908302Google Scholar

    [66]

    Ye Q J, Liu Z Y, Feng Y, Gao P, Li X Z 2018 Phys. Rev. Lett. 121 135702Google Scholar

    [67]

    吕程烨, 陈英炜, 谢牧廷, 李雪阳, 于宏宇, 钟阳, 向红军 2023 物理学报 72 237102Google Scholar

    Lü C Y, Chen Y W, Xie M T, Li X Y, Yu H Y, Zhong Y, Xiang H J 2023 Acta Phys. Sin. 72 237102Google Scholar

    [68]

    Zhang J L, Zhang F, Wei D N, Liu L, Liu X, Fang D, Zhang G X, Chen X, Wang D W 2022 Phys. Rev. B 105 094116Google Scholar

    [69]

    Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274Google Scholar

    [70]

    Wang B, Novendra N, Navrotsky A 2019 J. Am. Chem. Soc. 141 14501Google Scholar

    [71]

    Gao L, Yadgarov L, Sharma R, Korobko R, McCall K M, Fabini D H, Stoumpos C C, Kanatzidis M G, Rappe A M, Yaffe O 2021 Mater. Adv. 2 4610Google Scholar

    [72]

    Lee J H, Bristowe N C, Lee J H, Lee S H, Bristowe P D, Cheetham A K, Jang H M 2016 Chem. Mater. 28 4259Google Scholar

    [73]

    Chen L, Xu B, Yang Y, Bellaiche L 2020 Adv. Funct. Mater. 30 1909496Google Scholar

    [74]

    Jinnouchi R, Lahnsteiner J, Karsai F, Kresse G, Bokdam M 2019 Phys. Rev. Lett. 122 225701Google Scholar

    [75]

    Bartók A P, Payne M C, Kondor R, Csányi G 2010 Phys. Rev. Lett. 104 136403Google Scholar

    [76]

    Wang D W, Bokov A A, Ye Z G, Hlinka J, Bellaiche L 2016 Nat. Commun. 7 11014Google Scholar

    [77]

    Wang D W, Liu L J, Liu J, Zhang N, Wei X Y 2018 Chin. Phys. B 27 127702Google Scholar

    [78]

    Cohen A, Brenner T M, Klarbring J, Sharma R, Fabini D H, Korobko R, Nayak P K, Hellman O, Yaffe O 2022 Adv. Mater. 34 2107932Google Scholar

    [79]

    Zhang L, Han J, Wang H, Car R, E W 2018 Phys. Rev. Lett. 120 143001Google Scholar

    [80]

    Gu H Y, Yin W J, Gong X G 2021 Appl. Phys. Lett. 119 191101Google Scholar

    [81]

    陈基, 冯页新, 李新征, 王恩哥 2015 物理学报 64 183101Google Scholar

    Chen J, Feng Y X, Li X Z, Wang E G 2015 Acta Phys. Sin. 64 183101Google Scholar

    [82]

    Zhang Y, Sun J, Perdew J P, Wu X 2017 Phys. Rev. B 96 035143Google Scholar

    [83]

    Wu Z, Cohen R E, Singh D J 2004 Phys. Rev. B 70 104112Google Scholar

    [84]

    Yuk S F, Pitike K C, Nakhmanson S M, Eisenbach M, Li Y W, Cooper V R 2017 Sci. Rep. 7 43482Google Scholar

  • 图 1  方法流程图, 包括从头算分子动力学(ab inito molecular dynamics, AIMD)采样、图卷积神经网络(graph convolutional neural network, GCN)搭建和分子动力学模拟三个部分

    Figure 1.  Workflow of this study, including ab inito molecular dynamics (AIMD) sampling, graph convolutional neural network (GCN) construction and MD simulations.

    图 2  (a)图卷积神经网络框架, 以改进后的DimeNet++为例. 各个模块的具体结构和文献[22]一致; (b)相互作用模块, 包括消息传递$ f_{{\rm{inter}}} $和消息更新$ f_{{\rm{update}}} $两个过程

    Figure 2.  (a) Architecture of the GCN model, a refined DimeNet++, where the design of blocks are inherited from Reference [22]; (b) interaction blocks, including message interaction and message update functions.

    图 3  (a) GeTe和(b) CsSnI3的DFT数据集的能量分布柱状图, 以优化后的立方相的能量为能量零点

    Figure 3.  The energy distribution for the data sets of (a) GeTe and (b) CsSnI3 relative to the energy of corresponding cubic phase.

    图 4  图卷积神经网络模型(GCN)关于GeTe ((a), (b))和CsSnI3 ((c), (d))的测试集和验证集势阱预测效果, 以优化后的立方相结构为能量零点

    Figure 4.  The test and validation results of the trained graph convolutional neural network (GCN) models for GeTe ((a), (b)) and CsSnI3 ((c), (d)) respectively, where the energy of the optimized cubic phase is set as the reference energy.

    图 5  GeTe块体的相变模拟结果 (a)晶格常数随温度发生的变化, 红色虚线框表示铁电相变附近负的热膨胀效应; (b) Ge原子和Te原子两者沿$ x, y, z $三个方向的平均相对位移(虚线)及其模长(黑色实线)、自发极化(红色实线)随温度的变化情况; (c) Ge原子和Te原子的平均相对位移随体系大小的收敛性测试

    Figure 5.  Phase transition simulations for bulk GeTe: (a) The temperature-dependence of simulated lattice parameters, where the red area indicates the negative volumetric thermal expansion of GeTe near the phase transition; (b) the average relative displacements between Ge and Te atoms during MD simulations and the spontaneous polarization; (c) the convergence of simulation with respect to the system size.

    图 6  CsSnI3块体的相变模拟结果 (a)晶格常数随温度发生的变化; (b) CsSnI3在立方相(C)、四方相(T)和正交相(O)下的八面体转动情况, OOP (out-of-phase)和IP (in-phase)分别表示反相和同相转动

    Figure 6.  Phase transition simulations for bulk CsSnI3: (a) The temperature-dependence of simulated lattice parameters; (b) the change of SnI6 octahedron tilting pattern during the cubic-tetragonal-orthorhombic (C-T-O) phase transition.

    表 1  GeTe和CsSnI3的图卷积神经网络模型在各自测试集上的精度

    Table 1.  Prediction accuracy of the trained GCN models for GeTe and CsSnI3 on their test data sets

    单位 能量 应力
    /(meV·atom–1) /(meV·Å–1·atom–1) /(meV·Å–3)
    GeTe 0.197 1.016 2.371
    CsSnI3 0.323 0.825 0.944
    DownLoad: CSV

    表 2  图卷积神经网络(GCN)分别用于GeTe和CsSnI3的结构优化结果

    Table 2.  The structure optimization for GeTe and CsSnI3 using their corresponding graph convolutional neural network (GCN) models

    Phases a b c α/(°) β/(°) γ/(°)
    GeTe $ Fm\bar{3}m $ DFT 5.997 5.997 5.997 90 90 90
    GCN 5.996 5.996 5.996 90 90 90
    error 0.017% 0.017% 0.017% 0% 0% 0%
    $ R3 m $ DFT 6.076 6.076 6.076 88.04 88.04 88.04
    GCN 6.061 6.061 6.061 88.37 88.37 88.37
    error 0.244% 0.244% 0.244% 0.375% 0.375% 0.375%
    CsSnI3 $ Pm\bar{3}m $ DFT 6.270 6.270 6.270 90 90 90
    GCN 6.270 6.270 6.270 90 90 90
    error 0% 0% 0% 0% 0% 0%
    $ P4/mbm $ DFT 6.337 6.224 6.224 90 90 90
    GCN 6.346 6.211 6.211 90 90 90
    error 0.148% 0.195% 0.195% 0% 0% 0%
    $ Pnma $ DFT 6.243 6.243 6.254 90 90 89.63
    GCN 6.225 6.225 6.235 90 90 89.72
    error 0.295% 0.295% 0.311% 0% 0% 0.103%
    DownLoad: CSV
  • [1]

    Martin L W, Rappe A M 2016 Nat. Rev. Mater. 2 16087Google Scholar

    [2]

    Pal S, Sarath N, Priya K S, Murugavel P 2022 J. Phys. D: Appl. Phys. 55 283001Google Scholar

    [3]

    Qi L, Ruan S, Zeng Y J 2021 Adv. Mater. 33 2005098Google Scholar

    [4]

    欧阳鑫健, 张紫阳, 张锋, 张佳乐, 王大威 2023 物理学报 72 057502Google Scholar

    Ouyang X J, Zhang Z Y, Zhang F, Zhang J L, Wang D W 2023 Acta Phys. Sin. 72 057502Google Scholar

    [5]

    Zhong W, Vanderbilt D, Rabe K M 1994 Phys. Rev. Lett. 73 1861Google Scholar

    [6]

    Zhong W, Vanderbilt D, Rabe K M 1995 Phys. Rev. B 52 6301Google Scholar

    [7]

    Sepliarsky M, Wu Z, Asthagiri A, Cohen R E 2004 Ferroelectrics 301 55Google Scholar

    [8]

    Wu H H, Cohen R E 2017 Phys. Rev. B 96 054116Google Scholar

    [9]

    Behler J 2016 J. Chem. Phys. 145 170901Google Scholar

    [10]

    Behler J, Csányi G 2021 Eur. Phys. J. B 94 142Google Scholar

    [11]

    Mueller T, Hernandez A, Wang C 2020 J. Chem. Phys. 152 050902Google Scholar

    [12]

    Kang P L, Shang C, Liu Z P 2020 Acc. Chem. Res. 53 2119Google Scholar

    [13]

    曾启昱, 陈博, 康冬冬, 戴佳钰 2023 物理学报 72 187102Google Scholar

    Zeng Q Y, Chen B, Kang D D, Dai J Y 2023 Acta Phys. Sin. 72 187102Google Scholar

    [14]

    张嘉晖 2024 物理学报 73 069301Google Scholar

    Zhang J H 2024 Acta Phys. Sin. 73 069301Google Scholar

    [15]

    LeCun Y, Bengio Y, Hinton G 2015 Nature 521 436Google Scholar

    [16]

    Gilmer J, Schoenholz S S, Riley P F, Vinyals O, Dahl G E 2017 Proceedings of the 34th International Conference on Machine Learning Sydney, Australia, August 6–11, 2017 p1263

    [17]

    Schütt K T, Sauceda H E, Kindermans P J, Tkatchenko A, Müller K R 2018 J. Chem. Phys. 148 241722Google Scholar

    [18]

    Ouyang X J, Chen W J, Zhang Y X, Zhang F, Zhuang Y, Jie X, Liu L J, Wang D W 2023 Phys. Rev. B 108 L020103Google Scholar

    [19]

    Ouyang X J, Zhuang Y, Zhang J L, Zhang F, Jie X, Chen W J, Zhang Y X, Liu L J, Wang D W 2023 J. Phys. Chem. C 127 20890Google Scholar

    [20]

    Kong J G, Li Q X, Li J, Liu Y, Zhu J J 2022 Chin. Phys. Lett. 39 067503Google Scholar

    [21]

    Gasteiger J, Groß J, Günnemann S 2020 International Conference on Learning Representations Virtual, April 26–May 1, 2020

    [22]

    Gasteiger J, Giri S, Margraf J T, Günnemann S 2020 Machine Learning for Molecules Workshop, NeurIPS Virtual, December 6–12, 2020

    [23]

    Chattopadhyay T, Boucherle J X, vonSchnering H G 1987 J. Phys. C: Solid State Phys. 20 1431Google Scholar

    [24]

    Dangić D, Murphy A R, Murray E D, Fahy S, Savić I 2018 Phys. Rev. B 97 224106Google Scholar

    [25]

    Yamada K, Funabiki S, Horimoto H, Matsui T, Okuda T, Ichiba S 1991 Chem. Lett. 20 801Google Scholar

    [26]

    da Silva E L, Skelton J M, Parker S C, Walsh A 2015 Phys. Rev. B 91 144107Google Scholar

    [27]

    Schütt K, Unke O, Gastegger M 2021 Proceedings of the 38th International Conference on Machine Learning Virtual, July 18–24, 2021 p9377

    [28]

    He K, Zhang X, Ren S, Sun J 2016 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Las Vegas, USA, June 27–30, 2016 p770

    [29]

    Musaelian A, Batzner S, Johansson A, Sun L, Owen C J, Kornbluth M, Kozinsky B 2023 Nat. Commun. 14 579Google Scholar

    [30]

    Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S 2019 33rd Conference on Neural Information Processing Systems Vancouver, Canada, December 8–14, 2019 p8026

    [31]

    Batzner S, Musaelian A, Sun L, Geiger M, Mailoa J P, Kornbluth M, Molinari N, Smidt T E, Kozinsky B 2022 Nat. Commun. 13 2453Google Scholar

    [32]

    Frenkel D, Smit B 2002 Understanding Molecular Simulation: from Algorithms to Applications (Amsterdam: Elsevier

    [33]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [34]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [35]

    Enkovaara J, Rostgaard C, Mortensen J J, et al. 2010 J. Phys.: Condens. Matter 22 253202Google Scholar

    [36]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [37]

    Melchionna S, Ciccotti G, Lee Holian B 1993 Mol. Phys. 78 533Google Scholar

    [38]

    Melchionna S 2000 Phys. Rev. E 61 6165Google Scholar

    [39]

    Larsen A H, Mortensen J J, Blomqvist J, et al. 2017 J. Phys.: Condens. Matter 29 273002Google Scholar

    [40]

    Smith J S, Nebgen B, Lubbers N, Isayev O, Roitberg A E 2018 J. Chem. Phys. 148 241733Google Scholar

    [41]

    Nielsen O H, Martin R M 1985 Phys. Rev. B 32 3780Google Scholar

    [42]

    Thompson A P, Plimpton S J, Mattson W 2009 J. Chem. Phys. 131 154107Google Scholar

    [43]

    Loshchilov I, Hutter F 2019 7th International Conference on Learning Representations New Orleans, USA, May 6–9, 2019

    [44]

    Singh K, Kumari S, Singh H, Bala N, Singh P, Kumar A, Thakur A 2023 Appl. Nanosci. 13 95Google Scholar

    [45]

    Fan Z, Qu J, Wang T, Wen Y, An Z, Jiang Q, Xue W, Zhou P, Xu X 2023 Chin. Phys. B 32 128508Google Scholar

    [46]

    Chung I, Song J H, Im J, Androulakis J, Malliakas C D, Li H, Freeman A J, Kenney J T, Kanatzidis M G 2012 J. Am. Chem. Soc. 134 8579Google Scholar

    [47]

    Shum K, Chen Z, Qureshi J, Yu C, Wang J J, Pfenninger W, Vockic N, Midgley J, Kenney J T 2010 Appl. Phys. Lett. 9 6

    [48]

    Stoumpos C C, Kanatzidis M G 2015 Acc. Chem. Res 48 2791Google Scholar

    [49]

    Savory C N, Walsh A, Scanlon D O 2016 ACS Energy Lett. 1 949Google Scholar

    [50]

    Quan L N, García de Arquer F P, Sabatini R P, Sargent E H 2018 Adv. Mater. 30 1801996Google Scholar

    [51]

    Heidari Gourji F, Velauthapillai D 2021 Molecules 26 2010Google Scholar

    [52]

    Glazer A M 1972 Acta Crystallogr., Sect. B Struct. Crystallogr. Cryst. Chem. 28 3384Google Scholar

    [53]

    Xie N, Zhang J, Raza S, Zhang N, Chen X, Wang D 2020 J. Phys.: Condens. Matter. 32 315901Google Scholar

    [54]

    King-Smith R D, Vanderbilt D 1993 Phys. Rev. B 47 1651Google Scholar

    [55]

    Resta R, Vanderbilt D 2007 Theory of Polarization: A Modern Approach (Berlin: Springer) p31

    [56]

    Schubert K, Fricke H 1951 Zeitschrift für Naturforschung A 6 781

    [57]

    Wdowik U D, Parlinski K, Rols S, Chatterji T 2014 Phys. Rev. B 89 224306Google Scholar

    [58]

    Goldak J, Barrett C, Innes D, Youdelis W 1966 J. Chem. Phys. 44 3323Google Scholar

    [59]

    Gonze X, Amadon B, Anglade P M, et al. 2009 Comput. Phys. Commun. 180 2582Google Scholar

    [60]

    Ciucivara A, Sahu B R, Kleinman L 2006 Phys. Rev. B 73 214105Google Scholar

    [61]

    Shaltaf R, Gonze X, Cardona M, Kremer R K, Siegle G 2009 Phys. Rev. B 79 075204Google Scholar

    [62]

    Dangić D, Fahy S, Savić I 2022 Phys. Rev. B 106 134113Google Scholar

    [63]

    Bechtel J S, Van der Ven A 2018 Phys. Rev. Mater. 2 025401Google Scholar

    [64]

    Rabe K M, Joannopoulos J D 1987 Phys. Rev. B 36 6631Google Scholar

    [65]

    Kooi B J, Wuttig M 2020 Adv. Mater. 32 1908302Google Scholar

    [66]

    Ye Q J, Liu Z Y, Feng Y, Gao P, Li X Z 2018 Phys. Rev. Lett. 121 135702Google Scholar

    [67]

    吕程烨, 陈英炜, 谢牧廷, 李雪阳, 于宏宇, 钟阳, 向红军 2023 物理学报 72 237102Google Scholar

    Lü C Y, Chen Y W, Xie M T, Li X Y, Yu H Y, Zhong Y, Xiang H J 2023 Acta Phys. Sin. 72 237102Google Scholar

    [68]

    Zhang J L, Zhang F, Wei D N, Liu L, Liu X, Fang D, Zhang G X, Chen X, Wang D W 2022 Phys. Rev. B 105 094116Google Scholar

    [69]

    Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274Google Scholar

    [70]

    Wang B, Novendra N, Navrotsky A 2019 J. Am. Chem. Soc. 141 14501Google Scholar

    [71]

    Gao L, Yadgarov L, Sharma R, Korobko R, McCall K M, Fabini D H, Stoumpos C C, Kanatzidis M G, Rappe A M, Yaffe O 2021 Mater. Adv. 2 4610Google Scholar

    [72]

    Lee J H, Bristowe N C, Lee J H, Lee S H, Bristowe P D, Cheetham A K, Jang H M 2016 Chem. Mater. 28 4259Google Scholar

    [73]

    Chen L, Xu B, Yang Y, Bellaiche L 2020 Adv. Funct. Mater. 30 1909496Google Scholar

    [74]

    Jinnouchi R, Lahnsteiner J, Karsai F, Kresse G, Bokdam M 2019 Phys. Rev. Lett. 122 225701Google Scholar

    [75]

    Bartók A P, Payne M C, Kondor R, Csányi G 2010 Phys. Rev. Lett. 104 136403Google Scholar

    [76]

    Wang D W, Bokov A A, Ye Z G, Hlinka J, Bellaiche L 2016 Nat. Commun. 7 11014Google Scholar

    [77]

    Wang D W, Liu L J, Liu J, Zhang N, Wei X Y 2018 Chin. Phys. B 27 127702Google Scholar

    [78]

    Cohen A, Brenner T M, Klarbring J, Sharma R, Fabini D H, Korobko R, Nayak P K, Hellman O, Yaffe O 2022 Adv. Mater. 34 2107932Google Scholar

    [79]

    Zhang L, Han J, Wang H, Car R, E W 2018 Phys. Rev. Lett. 120 143001Google Scholar

    [80]

    Gu H Y, Yin W J, Gong X G 2021 Appl. Phys. Lett. 119 191101Google Scholar

    [81]

    陈基, 冯页新, 李新征, 王恩哥 2015 物理学报 64 183101Google Scholar

    Chen J, Feng Y X, Li X Z, Wang E G 2015 Acta Phys. Sin. 64 183101Google Scholar

    [82]

    Zhang Y, Sun J, Perdew J P, Wu X 2017 Phys. Rev. B 96 035143Google Scholar

    [83]

    Wu Z, Cohen R E, Singh D J 2004 Phys. Rev. B 70 104112Google Scholar

    [84]

    Yuk S F, Pitike K C, Nakhmanson S M, Eisenbach M, Li Y W, Cooper V R 2017 Sci. Rep. 7 43482Google Scholar

  • [1] Song Rui, Liu Xue-Mei, Wang Hai-Bin, Lu Hao Song, Xiao-Yan. Hardness Prediction of WC-Co Cemented Carbide Based on Machine Learning Model. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20240284
    [2] Zhang Jia-Hui. Machine learning for in silico protein research. Acta Physica Sinica, 2024, 73(6): 069301. doi: 10.7498/aps.73.20231618
    [3] Zhang Yi-Fan, Ren Wei, Wang Wei-Li, Ding Shu-Jian, Li Nan, Chang Liang, Zhou Qian. Machine learning combined with solid solution strengthening model for predicting hardness of high entropy alloys. Acta Physica Sinica, 2023, 72(18): 180701. doi: 10.7498/aps.72.20230646
    [4] Liu Ye, Niu He-Ran, Li Bing-Bing, Ma Xin-Hua, Cui Shu-Wang. Application of machine learning in cosmic ray particle identification. Acta Physica Sinica, 2023, 72(14): 140202. doi: 10.7498/aps.72.20230334
    [5] Guan Xing-Yue, Huang Heng-Yan, Peng Hua-Qi, Liu Yan-Hang, Li Wen-Fei, Wang Wei. Machine learning in molecular simulations of biomolecules. Acta Physica Sinica, 2023, 72(24): 248708. doi: 10.7498/aps.72.20231624
    [6] Luo Qi-Rui, Shen Yi-Fan, Luo Meng-Bo. Computer simulation and machine learning of polymer collapse and critical adsorption phase transitions. Acta Physica Sinica, 2023, 72(24): 240502. doi: 10.7498/aps.72.20231058
    [7] Guo Wei-Chen, Ai Bao-Quan, He Liang. Reveal flocking phase transition of self-propelled active particles by machine learning regression uncertainty. Acta Physica Sinica, 2023, 72(20): 200701. doi: 10.7498/aps.72.20230896
    [8] Li Wei, Long Lian-Chun, Liu Jing-Yi, Yang Yang. Classification of magnetic ground states and prediction of magnetic moments of inorganic magnetic materials based on machine learning. Acta Physica Sinica, 2022, 71(6): 060202. doi: 10.7498/aps.71.20211625
    [9] Kang Jun-Feng, Feng Song-Jiang, Zou Qian, Li Yan-Jie, Ding Rui-Qiang, Zhong Quan-Jia. Machine learning based method of correcting nonlinear local Lyapunov vectors ensemble forecasting. Acta Physica Sinica, 2022, 71(8): 080503. doi: 10.7498/aps.71.20212260
    [10] Zhang Jia-Wei, Yao Hong-Bo, Zhang Yuan-Zheng, Jiang Wei-Bo, Wu Yong-Hui, Zhang Ya-Ju, Ao Tian-Yong, Zheng Hai-Wu. Self-powered sensing based on triboelectric nanogenerator through machine learning and its application. Acta Physica Sinica, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [11] Lin Jian, Ye Meng, Zhu Jia-Wei, Li Xiao-Peng. Machine learning assisted quantum adiabatic algorithm design. Acta Physica Sinica, 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [12] Chen Jiang-Zhi, Yang Chen-Wen, Ren Jie. Machine learning based on wave and diffusion physical systems. Acta Physica Sinica, 2021, 70(14): 144204. doi: 10.7498/aps.70.20210879
    [13] Wang Wei, Jie Quan-Lin. Identifying phase transition point of J1-J2 antiferromagnetic Heisenberg spin chain by machine learning. Acta Physica Sinica, 2021, 70(23): 230701. doi: 10.7498/aps.70.20210711
    [14] Wang Peng-Ju, Fan Jun-Yu, Su Yan, Zhao Ji-Jun. Energetic potential of hexogen constructed by machine learning. Acta Physica Sinica, 2020, 69(23): 238702. doi: 10.7498/aps.69.20200690
    [15] Yang Zi-Xin, Gao Zhang-Ran, Sun Xiao-Fan, Cai Hong-Ling, Zhang Feng-Ming, Wu Xiao-Shan. High critical transition temperature of lead-based perovskite ferroelectric crystals: A machine learning study. Acta Physica Sinica, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [16] Yang Yao-Dong. Isothermal phase transition was found in ferroelectric materials. Acta Physica Sinica, 2016, 65(7): 070101. doi: 10.7498/aps.65.070101(R)
    [17] Gan Yong-Chao, Cao Wan-Qiang. Random field effect of polarization and dielectric permittivity in ferroelectric transitions. Acta Physica Sinica, 2013, 62(12): 127701. doi: 10.7498/aps.62.127701
    [18] Zhou Nai-Gen, Hu Qiu-Fa, Xu Wen-Xiang, Li Ke, Zhou Lang. A comparative study of different potentials for molecular dynamics simulations of melting process of silicon. Acta Physica Sinica, 2013, 62(14): 146401. doi: 10.7498/aps.62.146401
    [19] Li Hui-Shan, Li Peng-Cheng, Zhou Xiao-Xin. Role of potential function in high order harmonic generation of model hydrogen atoms in intense laser field. Acta Physica Sinica, 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [20] Ai Shu-Tao, Cai Yuan-Zhen. Ferroelectric-paraelectric interface dynamics related to latent heat and its finite-size effects. Acta Physica Sinica, 2006, 55(7): 3721-3724. doi: 10.7498/aps.55.3721
Metrics
  • Abstract views:  876
  • PDF Downloads:  47
  • Cited By: 0
Publishing process
  • Received Date:  23 January 2024
  • Accepted Date:  08 February 2024
  • Available Online:  21 February 2024
  • Published Online:  20 April 2024

/

返回文章
返回