-
Traditionally, ion microbeam is produced by focusing or/and collimating to reduce the beam size to submicron level. The traditional setup for producing the microbeam consists of an expensive focusing and collimating system with a large space, based on electromagnetic fields. Meanwhile, the microbeam obtained through pure collimation of metal micro-tubes is limited by the fabrication processing, i.e. the size of beam spot is largely limited to a few microns and its manufacture is not as simple as that of a glass capillary. Inspired by early studies of the guiding effect, the use of inexpensive and easy-to-make glass capillaries as the tool for ion external microbeam production has become a new direction. In this work, we use a glass capillary with an open outlet (108 μm in diameter), which serves as a vacuum differential and collimating component, to produce a 2.5 MeV-proton microbeam directly from the linear accelerator into the atmosphere for measurements. We measure the beam spot diameter and energy distribution of the microbeam as a function of the tilt angle of the capillary. We also conduct calculations and ion trajectory analysis on the scattering process of 2.5 MeV protons on the inner walls. The measurement results show that when the tilt angle is around 0°, there are a direct transmission part that maintains the initial incident energy, and a scattering part with the energy loss in the microbeam. It is found that the proportion of directly transmitted protons and the beam spot size are highest near zero tilt angle. As the tilt angle increases, the beam spot diameter decreases; when the tilt angle is greater than the geometric angle, all the microbeams come from the scattering with the energy loss. The simulation combined with the ion trajectory analysis based on the scattering process can explain the experimental results. It is found that the large angle scattering determines the entire external microbeam spot, and the central region of the beam spot is composed of directly penetrating ions, whose size is determined by the geometric shape of the glass capillary, i.e. the outlet diameter and aspect ratio. The natural advantage of producing external micobeames easily and inexpensively through glass capillaries is their relative safety and stable operation, and the last but not least point is to simply locate the microbeams on the sample without complex diagnostic tools. The microbeams are expected to be widely used in fields such as radiation biology, medicine, and materials. -
Keywords:
- ions external microbeam /
- MeV protons /
- conical glass capillary
1. 引 言
离子微束是指用聚焦或者狭缝准直的方法, 将加速器产生的带电离子束的束斑直径缩小到微米、亚微米级尺寸. 传统的MeV能区的离子微束聚焦设备, 由基于电磁场的高度复杂的多级离子聚焦系统组成[1,2], 设备占用空间大而且价格昂贵. 而通过金属准直微孔得到的微束, 受限于微孔加工技术, 微束的束斑直径在微米到毫米量级, 且制备需要一定的流程. 采用新的廉价且易于制作的玻璃毛细管作为离子微束外束产生介质成为一个新的方向, 这来源于早期导向效应研究的启发[3,4]. 2002年, Stolterfoht等[3]在3 keV的Ne7+穿透聚对苯二甲酸乙二醇酯(polyethylene terephthalate, PET)微孔膜的实验中发现导向效应, 他们在微孔倾角远大于微孔的几何张角时仍然观测到了大量穿透离子, 并且绝大部分穿透离子保持了初始电荷态和能量. 导向效应是由于入射的带电粒子将电荷沉积在微孔内壁表面, 形成排斥电场, 阻止后续入射离子与微孔壁接触而直接从微孔出射. 研究发现, 电荷沉积是随时间有序形成电荷斑[5,6]. 除纳米微孔膜外, 导向效应在单个玻璃毛细管中也被测量到[7–9], 并在多种绝缘材料中被验证, 如Al2O3[10,11], PC[12–15], SiO2[16]等. 导向效应的发现提供了一种发展带电粒子微束新方法的技术思路: 利用绝缘微管聚焦带电粒子束来产生微束. 绝缘微管造价低廉、体积小, 并且带电粒子在其中通过自组织调节的充电过程传输而不需要额外的供能设备. 因此, 除正离子外, 负离子[17–20]、电子[21–32]、正电子[33,34]、μ子[35,36]等各种不同性质的带电粒子在绝缘微管中输运机制的研究也被广泛开展.
基于绝缘微管产生离子微束的研究集中在两个方向[37]: keV高电荷态离子微束和MeV轻带电离子(H+, He+)微束. 低能高电荷态离子基于导向效应, 在绝缘微管中传输时被自组织形成的电场聚焦而形成微束[38–42]. 微束中的高电荷态离子保持初始能量和电荷态不变, 且微束的束斑直径与绝缘微管出口直径相同[37]. 目前, 玻璃微管的出口直径可以做到几十纳米[37]. 实验上, 基于绝缘玻璃毛细管的高电荷态离子微束直径已被聚焦到750 nm[42]. MeV能区的离子在绝缘微管中的传输主要由散射过程主导, 微束中的离子存在能量损失[4,37,43–45]. 其中最引人注意的应用工作是采用出口处封闭薄窗的玻璃毛细管[45,46]将微束引出到液体环境中, 用于单个活细胞的辐照生物效应研究[47–54], 这种方法也会对离子束微区域分析及改性[54]等新离子束应用技术方向产生积极的推动作用.
本文开展基于锥形玻璃毛细管的2.5 MeV质子大气环境微束的研究. 通过出口直径为108 μm的玻璃锥管将质子准直成微束并直接引出到大气中进行测量. 采用一个五维平移台有效地将玻璃毛细管与入射束流进行准直, 从而研究在玻璃毛细管处于不同的倾角时, 穿透质子的角分布以及能量分布的变化, 调整优化得到最佳微束. 此外, 也模拟了质子在玻璃锥管内传输时的散射过程, 对实验结果进行解释.
2. 实验设备
本实验在兰州大学核科学院与技术学院与中科院近代物理研究所共建的2.5 MeV质子直线加速器上进行, 此加速器主要由自主制作的双等离子体离子源(双等源)、低能电四极透镜、射频四极直线加速器(RFQ)加速腔与双束漂移管直线加速器(DB-DTL)加速腔、高能电四极透镜、降能装置、二极分析磁铁、微束测量终端等组成(见图1)[55,56]. 本实验中质子束流从离子源引出时能量为20 keV, 之后通过RFQ加速腔加速后达到560 keV, 再通过DB-DTL加速腔加速至2.5 MeV. 加速后质子经由降能膜组降能, 之后进入分析磁铁, 筛选出所需能量的质子. 降能膜组由不同层厚的PET膜组成, 用于得到其他低能量质子. 最后质子束进入玻璃锥管被准直成为微束, 并进入大气环境被探测系统测量. 本实验采用出口敞开的玻璃锥管本身作为差分系统隔绝真空与大气环境, 在微束产生过程中系统各部分真空: 离子源工作真空为3.1×10–3 Pa, RFQ的工作真空为7.1×10–4 Pa, DB-DTL的工作真空为6.3×10–5 Pa, 玻璃管安装区真空为0.27 Pa.
本实验中所用的锥形玻璃毛细管是将高硼硅玻璃直毛细管加热后, 在重力方向上施加恒定拉力拉伸制备而成. 锥角可以通过改变加热的温度以及拉伸的力来控制. 入口的内外径尺寸分别为0.5和1 mm, 出口截面内外径分别为108和184 μm. 图2为该玻璃毛细管的示意图(插入部分为实物图), 玻璃毛细管的几何张角α = 0.9°. 锥角为玻璃管内壁的切面与玻璃管轴线间的夹角(记为β), 使用光学显微镜仔细测量了毛细管壁距出口不同距离的锥角. 锥角随距离先增大, 出口处为0.2°, 距离为5.5 mm最大为2.4°, 之后减小, 到8 mm时变为0°. 玻璃毛细管外壁均匀涂抹导电胶以隔绝二次电子充电以及提供良好的接地电位[31]. 玻璃毛细管通过标准法兰安装, 并进行真空密封处理.
玻璃毛细管安装法兰通过波纹管与真空束流线连接并固定在五维平移台上. 大气环境下, 质子微束的角分布和能量分布分别由CR-39固体径迹探测器和金硅面垒探测器测得, 它们被安装在靠近毛细管出口处的小型精密三维平移台, 这个三维平移台固定在用于调节玻璃毛细管与束流相对位置的五维平移台上. 小型精密平移台可以精密调节毛细管出口与CR-39固体径迹探测器以及金硅面垒探测器之间的相对位置. 五维平移台的横向、纵向及垂直方向的调节精度均为0.1 mm, 倾角与仰角的调节精度为0.1°. 通过五维平移台调节毛细管位置和轴向方向与束流方向对准. 扫描玻璃管位置、倾角和仰角, 观察金硅面垒探测器的能谱和计数. 当直接穿透离子最强时, 毛细管入口对准束流且毛细管轴向与束流方向平行(即倾角θ = 0°).
CR-39固体径迹探测器被从锥形玻璃毛细管出射的质子辐照后, 在6 mol/L的70 ℃ NaOH溶液中蚀刻2 h[57], 然后用光学显微镜拍取束斑轮廓, 其尺寸由显微镜专用测微校正尺刻度. 金硅面垒探测器由2.5 MeV质子、穿过降能装置的质子及241Am放射源发射的α粒子在真空中进行了刻度. 图3是探测器能量刻度曲线. 该探测器对于241Am 5.486 MeV α粒子的能量分辨是16.5 keV.
3. 实验结果
在不同倾角下, 测量了2.5 MeV质子穿过锥形玻璃毛细管后的微束轮廓, 得到的束斑轮廓如图4(a)所示, 倾角在0°左右时, 得到的束斑外围轮廓直径最大(760 μm), 随着倾角远离0°, 轮廓逐渐变小. 倾角为1.2°时, 得到的束斑外围轮廓直径变为300 μm.
外束微束能谱如图4(b)所示, 倾角为0°时在2.5 MeV附近有尖锐的单能峰, 是不与管壁碰撞而直接穿过玻璃管的质子, 而散射的质子造成了连续平缓的平台. 随着倾角远离0°, 直接穿透峰相对变矮. 当倾角大于几何张角0.9°时, 能谱中几乎没有直接穿透峰.
为了分析穿透能谱中的直接穿透部分和散射部分, 基于1.2°倾角下的纯散射能谱的拟合, 通过减去散射能谱部分得到直接穿透粒子能谱(图5插图是倾角0°为例的说明), 进而得到直接穿透离子的占比. 不同倾角下的直接穿透率和全部穿透率如图5所示, 倾角在0°附近时, 穿透率基本保持不变, 直接穿透占全部穿透约35%. 倾角在0°时全部穿透率(0.0013)小于几何穿透率0.05, 原因是实际的质子束流是以一定的角发散而非平行束进入毛细管的. 倾角偏离变大时, 全部穿透率和直接穿透率减小. 当倾角大于几何张角0.9°时全部穿透和直接穿透率均迅速减小, 直接穿透离子消失. 图5中左右两侧虚线显示玻璃毛细管的张角(0.9°), 可以看出主要的穿透过程发生在几何张角以内, 而没有像低能离子导向效应那样发现大于几何张角的可观穿透过程[3].
图 5 玻璃毛细管在不同倾角下外束微束的全部穿透率(圆形标记)和直接穿透穿透率(正方形标记). 插图为0°倾角下实验测得的外束微束能谱(黑色), 解谱得到直接穿透部分(红色)和散射部分(蓝色). 左右两侧虚线间距代表玻璃毛细管的张角(0.9°)Fig. 5. Transmission rate of the total penetration (circle) and direct penetration (square) of the external microbeam, according to various tilt angles of the glass capillary. Insert: experimentally measured energy spectrum of the external microbeam at tilt angle 0°(black), the direct penetration part (red) and scattering part (blue) are obtained by deconstructing the spectrum. The distance between the dashed lines on both sides represents the geometric flare angle of the glass capillary (0.9°).为了更好地理解离子在玻璃管中的穿透过程, 用SRIM程序[58]进行了一系列模拟计算. 当倾角为0°时, 以近平行束状态入射的质子在玻璃管内壁上的入射角等于玻璃管的锥角β. 对β角为0.2°—2.4°之间的2.5 MeV质子散射强度进行了模拟. 如图6(a)所示, 以β = 0.4°为例展示了散射离子强度随散射角度的分布情况, 散射离子强度最大的散射角为0.7°, 绝大部分散射离子分布在0°—10°散射角以内. 图6(b)为模拟得到的不同β角对应的最大概率出射角, 随着β角的增大, 最大概率出射角的大小越来越接近β角, 在β角大于1°时, 最大概率出射角基本与镜面反射角相同. 以最大概率出射角计算, 在距出口0—2.4 mm的范围内一次散射的离子能够从玻璃毛细管中射出; 而在距出口2.4—8.0 mm的范围内二次散射的离子均能射出(距出口距离0—8 mm为玻璃毛细管的非直管锥形部分). 图6(c)为不同β角度对应的散射概率, β角为0.2°时, 散射概率为66.5%, 随着β角增大, 散射概率减小, β角为4°时散射概率减为2.5%, 降低了一个数量级多(玻璃管几何张角限制了质子碰撞玻璃管内壁的β角小于4°). 以最简单平行束入射情况考虑, 计算了玻璃毛细管内距出口不同距离处的一次散射出射概率, 如图6(d)所示: 倾角为0°时, 在接近出口处β角为0.2°, 散射出射概率等于66.5%, 距出口2.4 mm时散射出射概率减小为11.5%. 我们也估计了在距出口2.5—8 mm的范围内二次散射情况, 二次散射离子最大的出射概率为1.4% (2.5 mm处), 总体来说二次散射离子占比较少.
图 6 2.5 MeV质子在玻璃毛细管内的模拟结果 (a) β = 0.4°时的散射角分布, 此时散射离子最大概率出射角为0.7°; (b) 不同β角下的最大概率出射角; (c)不同β角下的散射概率; (d) 玻璃毛细管内侧距出口不同距离处的出射最小概率Fig. 6. Simulation of 2.5 MeV protons in the glass capillary: (a) Scattering angle distribution at an incidence angle of 0.4°, the most probability exit angle is 0.7°; (b) the most probable exit angle at different β angles; (c) scattering probability of protons at different β angles; (d) the least exit probability at different distances in the glass capillary towards the outlet.2.5 MeV质子在玻璃中的射程为66 μm[58], 在倾角为0°时, 碰撞点距出口小于66 μm的质子占进入毛细管内质子的0.05%, 由此得出穿透玻璃管壁的质子占总出射离子的13%. 2.5 MeV和1 MeV质子在1 mm空气中的能量损失分别为15 keV和27 keV, 空气层对微束的能量影响可以忽略. 因此, 外束微束中部分离子有能量损失主要是玻璃毛细管内壁小角散射(52%)及小部分的直接穿透(13%)造成的.
基于以上分析, 实验观测到的微束能谱可以理解为如图7所示的情况: 倾角为0°时进入玻璃管中的离子可以分为两种, 红色轨迹代表离子直接穿透玻璃管, 不发生任何碰撞; 蓝色轨迹代表离子在玻璃管壁表面散射后穿出, 并产生能量损失(图7(a), (b)). 在倾角为1.2°时(图7(c), (d)), 倾角大于玻璃毛细管几何张角0.9°, 初束不能直接穿出玻璃管, 直接穿透离子消失. 相应地, 能谱中直接穿透的部分消失.
图 7 (a)倾角为0°时外束微束在玻璃管末端的出射情况示意图; (b)实验测得能谱, 黑色线为总能谱, 灰色填充部分为直接穿透能谱; (c)倾角为1.2°时直接穿透离子消失; (d)相应的能谱中直接穿透部分消失Fig. 7. (a) Schematic drawing of the external microbeam emission at the end of a glass capillary; (b) the experimentally measured energy spectrum at title angle of 0°, the red and blue lines in panel (a) represent the diret penetration and scattering part, respectively; the black line and the gray filled part represent the total energy spectrum and the direct penetration spectrum, respectively; (c) when the tilt angle is 1.2°, the directly penetrating ions disappear; (d) the directly penetrating part of the energy spectrum disappears, correspondingly.为了研究大气环境空气层对玻璃毛细管产生的外束微束影响, 固定倾角为0°, 分别测量了在距离玻璃毛细管出口1, 2, 3和4 mm处的外束束斑轮廓. 如图8(a)所示, 随着距离增大, 束斑直径也随之增大, 4 mm时, 束斑轮廓直径已经超过了1 mm. 这对应用提出了要求, 必须精确地控制辐照对象与玻璃毛细管出口之间的距离.
图 8 (a) 0°倾角下, 距毛细玻璃管出口不同距离处的外束微束束斑轮廓. 1 mm处束斑轮廓图中红色和蓝色虚线区域分别为直接穿透离子和散射离子在探测器上形成的束斑轮廓. (b) 0°倾角下直接穿透离子(红色)和散射离子(蓝色)分别在距玻璃毛细管出口1 mm和4 mm处探测器上形成束斑尺寸的理论示意图, 分别以1.8°张角和20°张角计算直接穿透离子和散射离子的理论最大分布直径. 距玻璃管出口1 mm和4 mm处, 直接穿透离子为140 μm和230 μm, 散射离子为460 μm和1.5 mmFig. 8. (a) Spot profiles of the external microbeam at different distances from the outlet of the glass capillary at tilt angle of 0°. Red and blue dashed lines represent the beam spot profiles formed by directly penetrating ions and scattering ions on the detector, respectively. (b) Theoretical schematic panel (a) of the beam spot size formed by direct penetration of ions (red) and scattered ions (blue) at an tilt angle of 0° on the detector at a distance of 1 mm and 4 mm from the exit of the glass capillary, respectively. The theoretical maximum distribution diameters of direct penetrating ions and scattered ions were calculated at angles of 1.8° and 20°, respectively. At distances of 1 mm and 4 mm from the exit of the glass capilarry, the spot diameters of direct penetrating ions are 140 μm and 230 μm, while the spot diameters of the scattered ions are 460 μm and 1.5 mm.束斑轮廓直径随测量距离变大, 原因是直接穿透离子和散射离子在大的出射张角上有分布, 如图8(b)所示. 图8(b)蓝色轨迹之间分布着散射离子, 对应图8(a)中蓝色虚线所圈区域. 散射离子的最大出射张角受限于最大散射角度, 决定了散射离子的最大分布角度. 根据图6(a)的计算结果, 散射离子强度与散射角相关, 大部分散射离子分布在小的散射角度内, 沿着玻璃管中心出射, 很少的散射离子在大角度上出射. 图8(b)红色轨迹表示以最大的出射角度出射的直接穿透离子, 对应图8(a)中红色虚线部分. 直接穿透离子的最大出射张角受限于玻璃管的几何张角, 决定了直接穿透离子的分布角度. 图8(a)中红色虚线所圈的中心黑色区域为穿透离子在CR-39上形成的坑洞饱和所致. 通过几何容许张角1.8°计算直接穿透离子理论最大分布直径(图8(b)), 距玻璃管出口1 mm和4 mm 处分别为为140 μm和230 μm, 与实验测量基本相符. 通过散射最大轮廓反推散射离子最大张角约为20°, 相较于图6(a)中, 绝大部分散射离子分布5° (即张角10°)以内, 实验测得的散射张角较大, 这是由于玻璃管内壁表面粗糙度增大了离子的散射张角.
在倾角为0°时, 微束中除去直接穿透的离子部分和穿透玻璃管壁的离子部分, 散射离子占全部出射离子的50%以上, 且以小角度散射的离子占散射离子的大部分(图6(a), (c)). 因此下面讨论小角度散射情况对微束的影响. 图9给出了离子以最大概率出射角散射时, 散射离子的轨迹示意图. 红线代表直接穿透离子, 蓝线和绿线分别代表经一次、二次散射而出射的离子. 小角度散射离子在玻璃管出口位置呈聚焦效应. 在距出口4 mm以内, 理想情况下, 以最大概率出射角的散射离子的角分布小于直接穿透离子的角分布, 这使得测量到的束斑可能会产生一定的小角散射聚焦效应, 但是出射离子能量由于散射出现损失和离散. 玻璃毛细管出口部分的几何角以及内壁表面粗糙度对束斑大小有比较大的影响, 但是从实际应用角度, 直接穿过去的离子与散射离子在空间角分布的分离更利于单能情况的应用, 可以通过精细的轮廓测量和被辐照样品的位置控制来选择微束中心区域的离子.
图 9 离子在玻璃毛细管内壁上以最大出射角发生一次散射(蓝色)和二次散射(绿色)示意图, 红线代表直接穿透离子. 初级和次级散射离子的焦点分别位于距离玻璃毛细管出口约3 mm和1 mm处Fig. 9. Schematic drawing of primary (blue) and secondary (green) scattering of ions at the most probability exit angle on the inner wall of the glass capillary, the red line representing direct penetration of ions. The focal points of primary and secondary scattering ions are located approximately 3 mm and 1 mm away from the glass capillary outlet, respectively.4. 结论及展望
本文利用玻璃毛细管产生了2.5 MeV质子外束微束, 并对外束微束的特性进行了相关测量实验. 我们获得了对应于玻璃毛细管出口直径的微束, 直径大小与玻璃毛细管和入射束流准直程度密切相关. 玻璃毛细管和入射束流之间的倾角为0°时, 束斑最大. 入射角度偏离较大时, 束斑直径相应减小. 我们发现倾角为0°时直接穿透的离子占全部穿透的离子比例最大(35%), 当倾角大于玻璃毛细管的张角时, 微束中直接穿透部分消失. 通过SRIM程序模拟质子在玻璃表面的散射过程, 分析了质子在玻璃毛细管中的轨迹及对微束的影响, 发现玻璃毛细管出口部分的几何角以及内壁表面粗糙度对微束直径和强度分布有比较大的影响. 采用玻璃毛细管产生的外束微束具有产生简单廉价, 运行相对安全稳定, 微束定位简单(在毛细管出口处) 的特点, 后续将在其他加速器设施上进行采用玻璃毛细管的重离子微束和外束的产生和测量工作.
[1] Grime G W, Abraham M H, Marsh M A 2001 Nucl. Instrum. Methods Phys. Res. Sect. B 181 66
Google Scholar
[2] 窦彦昕 2018 博士学位论文(哈尔滨: 哈尔滨工业大学)
Dou Y X 2018 Ph. D. Dissertation (Harbin: Harbin Institute of Technology
[3] Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201
Google Scholar
[4] Nebiki T, Yamamoto T, Narusawa T 2003 J. Vac. Sci. Technol. A 21 1671
Google Scholar
[5] Skog P, Zhang H, Schuch R 2008 Phys. Rev. Lett. 101 223202
Google Scholar
[6] Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901
Google Scholar
[7] Cassimi A, Muranaka T, Maunoury L, Lebius H, Manil B, Huber B A, Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Nebiki T, Narusawa T 2008 Int. J. Nanotechnol. 5 809
Google Scholar
[8] Cassimi A, Ikeda T, Maunoury L, Zhou C L, Guillous S, Mery A, Lebius H, Benyagoub A, Grygiel C, Khemliche H, Roncin P, Merabet H, Tanis J A 2012 Phys. Rev. A 86 062902
Google Scholar
[9] Chen J, Xue Y L, Liu J L, Wu Y H, Ruan F F, Wang W, Yu D Y, Cai X H 2012 Nucl. Instrum. Methods Phys. Res. , Sect. B 281 26
Google Scholar
[10] Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L, Juhász Z, Biri S, Fekete É, Iván I, Gáll F, Sulik B, Víkor Gy, Pálinkás J, Stolterfoht N 2006 Nanotechnology 17 3915
Google Scholar
[11] Skog P, Soroka I L, Johansson A, Schuch R 2007 Nucl. Instrum. Metods Phys. Res. Sect. B 258 145
Google Scholar
[12] Wang Y Y, Li D H, Zhao Y T, Xiao G Q, Xu Z F, Li F L, Chen X M 2009 J. Phys. Conf. Ser. 194 132032
Google Scholar
[13] Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev. A 83 062901
Google Scholar
[14] Wang X, Zhao Y T, Wang Y Y, Cheng R, Li D H, Zhang S F, Xiao G Q 2011 Phys. Scr. 2011 014046
Google Scholar
[15] Juhász Z, Kovács S T S, Herczku P, Rácz R, Biri S, Rajta I, Gál G A B, Szilasi S Z, Pálinkás J, Sulik B 2012 Nucl. Instrum. Methods Phys. Res., Sect. B 279 177
Google Scholar
[16] Sahana M B, Skog P, Vikor G, Kumar R T R, Schuch R 2006 Phys. Rev. A 73 040901
Google Scholar
[17] Sun G Z, Chen X M, Wang J, Chen Y F, Xu J K, Zhou C L, Shao J X, Cui Y, Ding B W, Yin Y Z, Wang X A, Lou F J, Lü X Y, Qiu X Y, Jia J J, Chen L, Xi F Y, Chen Z C, Li L T, Liu Z Y 2009 Phys. Rev. A 79 052902
Google Scholar
[18] Chen L, Guo Y L, Jia J J, Zhang H Q, Cui Y, Shao J X, Yin Y Z, Qiu X Y, Lü X Y, Sun G Z, Wang J, Chen Y F, Xi F Y, Chen X M 2011 Phys. Rev. A 84 032901
Google Scholar
[19] Feng D, Shao J X, Zhao L, Ji M C, Zou X R, Wang G Y, Ma Y L, Zhou W, Zhou H, Li Y, Zhou M, Chen X M 2012 Phys. Rev. A 85 064901
Google Scholar
[20] Zhang Q, Liu Z L, Li P F, Jin B, Song G Y, Jin D K, Niu B, Wei L, Ha S, Xie Y M, Ma Y, Wan C L, Cui Y, Zhou P, Zhang H Q, Chen X M 2018 Phys. Rev. A 97 042704
Google Scholar
[21] Milosavljević A R, Víkor G, Pešić Z D, Kolarž P, Šević D, Marinković B P, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901
Google Scholar
[22] Das S, Dassanayake B S, Winkworth M, Baran J L, Stolterfoht N, Tanis J A 2007 Phys. Rev. A 76 042716
Google Scholar
[23] Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, Stolterfoht N, Tanis J A 2015 Phys. Rev. A 92 012703
Google Scholar
[24] Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201
Google Scholar
[25] Stolterfoht N, Tanis J 2018 Nucl. Instrum. Metods Phys. Res. Sect. B 421 32
Google Scholar
[26] Dassanayake B S, Das S, Bereczky R J, Tőkési K, Tanis J A 2010 Phys. Rev. A 81 020701
Google Scholar
[27] Dassanayake B S, Bereczky R J, Das S, Ayyad A, Tökési K, Tanis J A 2011 Phys. Rev. A 83 012707
Google Scholar
[28] 万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 物理学报 65 204103
Google Scholar
Wan C L, Li P F, Qian L B, Jin B, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Reinhold S, Zhang H Q, Chen X M 2016 Acta Phys. Sin. 65 204103
Google Scholar
[29] 钱立冰, 李鹏飞, 靳博, 靳定坤, 宋光银, 张琦, 魏龙, 牛犇, 万成亮, 周春林, Arnold Milenko Mscrir, Max Dobeli, 宋张勇, 杨治虎, Reinhold Schuch, 张红强, 陈熙萌 2017 物理学报 66 124101
Google Scholar
Qian L B, Li P F, Jin B, Jin D K, Song G Y, Zhang Q, Wei L, Niu B, Wan C L, Zhou C L, Arnold Milenko M, Max D, Song Z Y, Yang Z H, Reinhold S, Zhang H Q, Chen X M 2017 Acta Phys. Sin. 66 124101
Google Scholar
[30] Nguyen H D, Wulfkühler J P, Heisig J, Tajmar M 2021 Sci. Rep. 11 8345
Google Scholar
[31] 李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 物理学报 71 074101
Google Scholar
Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Reinhold S, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 074101
Google Scholar
[32] 李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 张浩文, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 物理学报 71 084104
Google Scholar
Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Zhang H W, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Reinhold S, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 084104
Google Scholar
[33] Oshima N, Iwai Y, Kojima T M, Ikeda T, Kanazawa Y, Hoshino M, Suzuki R, Yamazaki Y 2009 Mater. Sci. Forum 607 263
Google Scholar
[34] DuBois R D, Tőkési K 2012 Nucl. Instrum. Methods Phys. Res. Sect. B 279 186
Google Scholar
[35] Kojima T M, Tomono D, Ikeda T, Ishida K, Iwai Y, Iwasaki M, Matsuda Y, Matsuzaki T, Yamazaki Y 2007 J. Phys. Soc. Jpn. 76 093501
Google Scholar
[36] Tomono D, Kojima T M, Ishida K, Ikeda T, Iwai Y, Tokuda M, Kanazawa Y, Matsuda Y, Matsuzaki T, Iwasaki M, Yamazaki Y 2011 J. Phys. Soc. Jpn. 80 044501
Google Scholar
[37] Ikeda T, Kanai Y, Iwai Y, Kojima T M, Maeshima K, Meissl W, Kobayashi T, Nebiki T, Miyamoto S, Pokhil G P, Narusawa T, Imamoto N, Yamazaki Y 2011 Surf. Coat. Tech. 206 859
Google Scholar
[38] Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502
Google Scholar
[39] Kowarik G, Bereczky R J, Aumayr F, Tőkési K 2009 Nucl. Instrum. Methods Phys. Res. , Sect. B 267 2277
Google Scholar
[40] Bereczky R J, Kowarik G, Aumayr F, Tőkési K 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 317
Google Scholar
[41] Gruber E, Stolterfoht N, Allinger P, Wampl S, Wang Y, Simon M J, Aumayr F 2014 Nucl. Instrum. Methods Phys. Res. Sect. B 340 1
Google Scholar
[42] Ikeda T, Kojima T M, Natsume Y, Kimura J, Abe T 2016 Appl. Phys. Lett. 109 133501
Google Scholar
[43] Nebiki T, Sekiba D, Yonemura H, Wilde M, Ogura S, Yamashita H, Matsumoto M, Fukutani K, Okano T, Kasagi J, Iwamura Y, Itoh T, Kuribayashi S, Matsuzaki H, Narusawa T 2008 Nucl. Instrum. Methods Phys. Res. Sect. B 266 1324
Google Scholar
[44] Hespeels F, Tonneau R, Ikeda T, Lucas S 2015 Nucl. Instrum. Methods Phys. Res. Sect. B 362 72
Google Scholar
[45] Simon M J, Döbeli M, Müller A M, Synal H A 2012 Nucl. Instrum. Methods Phys. Res. Sect. B 273 237
Google Scholar
[46] Ikeda T, Ikekame M, Hikima Y, Mori M, Kawamura S, Minowa T, Jin W G 2020 Nucl. Instrum. Methods Phys. Res. Sect. B 470 42
Google Scholar
[47] Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl. Phys. Lett. 92 023509
Google Scholar
[48] Mäckel V, Meissl W, Ikeda T, Clever M, Meissl E, Kobayashi T, Kojima T M, Imamoto N, Ogiwara K, Yamazaki Y 2014 Rev. Sci. Instrum. 85 014302
Google Scholar
[49] Mäckel V, Puttaraksa N, Kobayashi T, Yamazaki Y 2015 Rev. Sci. Instrum. 86 085103
Google Scholar
[50] Puttaraksa N, Mäckel V, Kobayashi T, Kojima T M, Hamagaki M, Imamoto N, Yamazaki Y 2015 Nucl. Instrum. Methods Phys. Res. Sect. B 348 127
Google Scholar
[51] Ikeda T, Izumi M, Mäckel V, Kobayashi T, Bereczky R J, Hirano T, Yamazaki Y, Abe T 2015 RIKEN Accel. Prog. Rep. 48 315
[52] Ikeda T, Izumi M, Mäckel V, Kobayashi T, Ogiwara K, Hirano T, Yamazaki Y, Abe T 2014 RIKEN Accel. Prog. Rep. 47 282
[53] Kato M, Meissl W, Umezawa K, Ikeda T, Yamazaki Y 2012 Appl. Phys. Lett. 100 193702
Google Scholar
[54] Ikeda T 2020 Quantum Beam Sci. 4 22
Google Scholar
[55] 谢一鸣 2020 硕士学位论文(兰州: 兰州大学)
Xie Y M 2020 M. S. Thesis (Lanzhou: Lanzhou University
[56] He T, Wan C, Liu Z, Zhang H, Lu L 2023 JINST 18 P05034
Google Scholar
[57] Rana M A 2018 Nucl. Instrum. Methods Phys. Res. Sect. A 910 121
Google Scholar
[58] Computer code SRIM, version-2013[EB/OL] Ziegler J F http://www.srim.org/ [2024-1-1]
-
图 5 玻璃毛细管在不同倾角下外束微束的全部穿透率(圆形标记)和直接穿透穿透率(正方形标记). 插图为0°倾角下实验测得的外束微束能谱(黑色), 解谱得到直接穿透部分(红色)和散射部分(蓝色). 左右两侧虚线间距代表玻璃毛细管的张角(0.9°)
Figure 5. Transmission rate of the total penetration (circle) and direct penetration (square) of the external microbeam, according to various tilt angles of the glass capillary. Insert: experimentally measured energy spectrum of the external microbeam at tilt angle 0°(black), the direct penetration part (red) and scattering part (blue) are obtained by deconstructing the spectrum. The distance between the dashed lines on both sides represents the geometric flare angle of the glass capillary (0.9°).
图 6 2.5 MeV质子在玻璃毛细管内的模拟结果 (a) β = 0.4°时的散射角分布, 此时散射离子最大概率出射角为0.7°; (b) 不同β角下的最大概率出射角; (c)不同β角下的散射概率; (d) 玻璃毛细管内侧距出口不同距离处的出射最小概率
Figure 6. Simulation of 2.5 MeV protons in the glass capillary: (a) Scattering angle distribution at an incidence angle of 0.4°, the most probability exit angle is 0.7°; (b) the most probable exit angle at different β angles; (c) scattering probability of protons at different β angles; (d) the least exit probability at different distances in the glass capillary towards the outlet.
图 7 (a)倾角为0°时外束微束在玻璃管末端的出射情况示意图; (b)实验测得能谱, 黑色线为总能谱, 灰色填充部分为直接穿透能谱; (c)倾角为1.2°时直接穿透离子消失; (d)相应的能谱中直接穿透部分消失
Figure 7. (a) Schematic drawing of the external microbeam emission at the end of a glass capillary; (b) the experimentally measured energy spectrum at title angle of 0°, the red and blue lines in panel (a) represent the diret penetration and scattering part, respectively; the black line and the gray filled part represent the total energy spectrum and the direct penetration spectrum, respectively; (c) when the tilt angle is 1.2°, the directly penetrating ions disappear; (d) the directly penetrating part of the energy spectrum disappears, correspondingly.
图 8 (a) 0°倾角下, 距毛细玻璃管出口不同距离处的外束微束束斑轮廓. 1 mm处束斑轮廓图中红色和蓝色虚线区域分别为直接穿透离子和散射离子在探测器上形成的束斑轮廓. (b) 0°倾角下直接穿透离子(红色)和散射离子(蓝色)分别在距玻璃毛细管出口1 mm和4 mm处探测器上形成束斑尺寸的理论示意图, 分别以1.8°张角和20°张角计算直接穿透离子和散射离子的理论最大分布直径. 距玻璃管出口1 mm和4 mm处, 直接穿透离子为140 μm和230 μm, 散射离子为460 μm和1.5 mm
Figure 8. (a) Spot profiles of the external microbeam at different distances from the outlet of the glass capillary at tilt angle of 0°. Red and blue dashed lines represent the beam spot profiles formed by directly penetrating ions and scattering ions on the detector, respectively. (b) Theoretical schematic panel (a) of the beam spot size formed by direct penetration of ions (red) and scattered ions (blue) at an tilt angle of 0° on the detector at a distance of 1 mm and 4 mm from the exit of the glass capillary, respectively. The theoretical maximum distribution diameters of direct penetrating ions and scattered ions were calculated at angles of 1.8° and 20°, respectively. At distances of 1 mm and 4 mm from the exit of the glass capilarry, the spot diameters of direct penetrating ions are 140 μm and 230 μm, while the spot diameters of the scattered ions are 460 μm and 1.5 mm.
图 9 离子在玻璃毛细管内壁上以最大出射角发生一次散射(蓝色)和二次散射(绿色)示意图, 红线代表直接穿透离子. 初级和次级散射离子的焦点分别位于距离玻璃毛细管出口约3 mm和1 mm处
Figure 9. Schematic drawing of primary (blue) and secondary (green) scattering of ions at the most probability exit angle on the inner wall of the glass capillary, the red line representing direct penetration of ions. The focal points of primary and secondary scattering ions are located approximately 3 mm and 1 mm away from the glass capillary outlet, respectively.
-
[1] Grime G W, Abraham M H, Marsh M A 2001 Nucl. Instrum. Methods Phys. Res. Sect. B 181 66
Google Scholar
[2] 窦彦昕 2018 博士学位论文(哈尔滨: 哈尔滨工业大学)
Dou Y X 2018 Ph. D. Dissertation (Harbin: Harbin Institute of Technology
[3] Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201
Google Scholar
[4] Nebiki T, Yamamoto T, Narusawa T 2003 J. Vac. Sci. Technol. A 21 1671
Google Scholar
[5] Skog P, Zhang H, Schuch R 2008 Phys. Rev. Lett. 101 223202
Google Scholar
[6] Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901
Google Scholar
[7] Cassimi A, Muranaka T, Maunoury L, Lebius H, Manil B, Huber B A, Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Nebiki T, Narusawa T 2008 Int. J. Nanotechnol. 5 809
Google Scholar
[8] Cassimi A, Ikeda T, Maunoury L, Zhou C L, Guillous S, Mery A, Lebius H, Benyagoub A, Grygiel C, Khemliche H, Roncin P, Merabet H, Tanis J A 2012 Phys. Rev. A 86 062902
Google Scholar
[9] Chen J, Xue Y L, Liu J L, Wu Y H, Ruan F F, Wang W, Yu D Y, Cai X H 2012 Nucl. Instrum. Methods Phys. Res. , Sect. B 281 26
Google Scholar
[10] Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L, Juhász Z, Biri S, Fekete É, Iván I, Gáll F, Sulik B, Víkor Gy, Pálinkás J, Stolterfoht N 2006 Nanotechnology 17 3915
Google Scholar
[11] Skog P, Soroka I L, Johansson A, Schuch R 2007 Nucl. Instrum. Metods Phys. Res. Sect. B 258 145
Google Scholar
[12] Wang Y Y, Li D H, Zhao Y T, Xiao G Q, Xu Z F, Li F L, Chen X M 2009 J. Phys. Conf. Ser. 194 132032
Google Scholar
[13] Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev. A 83 062901
Google Scholar
[14] Wang X, Zhao Y T, Wang Y Y, Cheng R, Li D H, Zhang S F, Xiao G Q 2011 Phys. Scr. 2011 014046
Google Scholar
[15] Juhász Z, Kovács S T S, Herczku P, Rácz R, Biri S, Rajta I, Gál G A B, Szilasi S Z, Pálinkás J, Sulik B 2012 Nucl. Instrum. Methods Phys. Res., Sect. B 279 177
Google Scholar
[16] Sahana M B, Skog P, Vikor G, Kumar R T R, Schuch R 2006 Phys. Rev. A 73 040901
Google Scholar
[17] Sun G Z, Chen X M, Wang J, Chen Y F, Xu J K, Zhou C L, Shao J X, Cui Y, Ding B W, Yin Y Z, Wang X A, Lou F J, Lü X Y, Qiu X Y, Jia J J, Chen L, Xi F Y, Chen Z C, Li L T, Liu Z Y 2009 Phys. Rev. A 79 052902
Google Scholar
[18] Chen L, Guo Y L, Jia J J, Zhang H Q, Cui Y, Shao J X, Yin Y Z, Qiu X Y, Lü X Y, Sun G Z, Wang J, Chen Y F, Xi F Y, Chen X M 2011 Phys. Rev. A 84 032901
Google Scholar
[19] Feng D, Shao J X, Zhao L, Ji M C, Zou X R, Wang G Y, Ma Y L, Zhou W, Zhou H, Li Y, Zhou M, Chen X M 2012 Phys. Rev. A 85 064901
Google Scholar
[20] Zhang Q, Liu Z L, Li P F, Jin B, Song G Y, Jin D K, Niu B, Wei L, Ha S, Xie Y M, Ma Y, Wan C L, Cui Y, Zhou P, Zhang H Q, Chen X M 2018 Phys. Rev. A 97 042704
Google Scholar
[21] Milosavljević A R, Víkor G, Pešić Z D, Kolarž P, Šević D, Marinković B P, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901
Google Scholar
[22] Das S, Dassanayake B S, Winkworth M, Baran J L, Stolterfoht N, Tanis J A 2007 Phys. Rev. A 76 042716
Google Scholar
[23] Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, Stolterfoht N, Tanis J A 2015 Phys. Rev. A 92 012703
Google Scholar
[24] Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201
Google Scholar
[25] Stolterfoht N, Tanis J 2018 Nucl. Instrum. Metods Phys. Res. Sect. B 421 32
Google Scholar
[26] Dassanayake B S, Das S, Bereczky R J, Tőkési K, Tanis J A 2010 Phys. Rev. A 81 020701
Google Scholar
[27] Dassanayake B S, Bereczky R J, Das S, Ayyad A, Tökési K, Tanis J A 2011 Phys. Rev. A 83 012707
Google Scholar
[28] 万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 物理学报 65 204103
Google Scholar
Wan C L, Li P F, Qian L B, Jin B, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Reinhold S, Zhang H Q, Chen X M 2016 Acta Phys. Sin. 65 204103
Google Scholar
[29] 钱立冰, 李鹏飞, 靳博, 靳定坤, 宋光银, 张琦, 魏龙, 牛犇, 万成亮, 周春林, Arnold Milenko Mscrir, Max Dobeli, 宋张勇, 杨治虎, Reinhold Schuch, 张红强, 陈熙萌 2017 物理学报 66 124101
Google Scholar
Qian L B, Li P F, Jin B, Jin D K, Song G Y, Zhang Q, Wei L, Niu B, Wan C L, Zhou C L, Arnold Milenko M, Max D, Song Z Y, Yang Z H, Reinhold S, Zhang H Q, Chen X M 2017 Acta Phys. Sin. 66 124101
Google Scholar
[30] Nguyen H D, Wulfkühler J P, Heisig J, Tajmar M 2021 Sci. Rep. 11 8345
Google Scholar
[31] 李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 物理学报 71 074101
Google Scholar
Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Reinhold S, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 074101
Google Scholar
[32] 李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 张浩文, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 物理学报 71 084104
Google Scholar
Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Zhang H W, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Reinhold S, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 084104
Google Scholar
[33] Oshima N, Iwai Y, Kojima T M, Ikeda T, Kanazawa Y, Hoshino M, Suzuki R, Yamazaki Y 2009 Mater. Sci. Forum 607 263
Google Scholar
[34] DuBois R D, Tőkési K 2012 Nucl. Instrum. Methods Phys. Res. Sect. B 279 186
Google Scholar
[35] Kojima T M, Tomono D, Ikeda T, Ishida K, Iwai Y, Iwasaki M, Matsuda Y, Matsuzaki T, Yamazaki Y 2007 J. Phys. Soc. Jpn. 76 093501
Google Scholar
[36] Tomono D, Kojima T M, Ishida K, Ikeda T, Iwai Y, Tokuda M, Kanazawa Y, Matsuda Y, Matsuzaki T, Iwasaki M, Yamazaki Y 2011 J. Phys. Soc. Jpn. 80 044501
Google Scholar
[37] Ikeda T, Kanai Y, Iwai Y, Kojima T M, Maeshima K, Meissl W, Kobayashi T, Nebiki T, Miyamoto S, Pokhil G P, Narusawa T, Imamoto N, Yamazaki Y 2011 Surf. Coat. Tech. 206 859
Google Scholar
[38] Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502
Google Scholar
[39] Kowarik G, Bereczky R J, Aumayr F, Tőkési K 2009 Nucl. Instrum. Methods Phys. Res. , Sect. B 267 2277
Google Scholar
[40] Bereczky R J, Kowarik G, Aumayr F, Tőkési K 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 317
Google Scholar
[41] Gruber E, Stolterfoht N, Allinger P, Wampl S, Wang Y, Simon M J, Aumayr F 2014 Nucl. Instrum. Methods Phys. Res. Sect. B 340 1
Google Scholar
[42] Ikeda T, Kojima T M, Natsume Y, Kimura J, Abe T 2016 Appl. Phys. Lett. 109 133501
Google Scholar
[43] Nebiki T, Sekiba D, Yonemura H, Wilde M, Ogura S, Yamashita H, Matsumoto M, Fukutani K, Okano T, Kasagi J, Iwamura Y, Itoh T, Kuribayashi S, Matsuzaki H, Narusawa T 2008 Nucl. Instrum. Methods Phys. Res. Sect. B 266 1324
Google Scholar
[44] Hespeels F, Tonneau R, Ikeda T, Lucas S 2015 Nucl. Instrum. Methods Phys. Res. Sect. B 362 72
Google Scholar
[45] Simon M J, Döbeli M, Müller A M, Synal H A 2012 Nucl. Instrum. Methods Phys. Res. Sect. B 273 237
Google Scholar
[46] Ikeda T, Ikekame M, Hikima Y, Mori M, Kawamura S, Minowa T, Jin W G 2020 Nucl. Instrum. Methods Phys. Res. Sect. B 470 42
Google Scholar
[47] Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl. Phys. Lett. 92 023509
Google Scholar
[48] Mäckel V, Meissl W, Ikeda T, Clever M, Meissl E, Kobayashi T, Kojima T M, Imamoto N, Ogiwara K, Yamazaki Y 2014 Rev. Sci. Instrum. 85 014302
Google Scholar
[49] Mäckel V, Puttaraksa N, Kobayashi T, Yamazaki Y 2015 Rev. Sci. Instrum. 86 085103
Google Scholar
[50] Puttaraksa N, Mäckel V, Kobayashi T, Kojima T M, Hamagaki M, Imamoto N, Yamazaki Y 2015 Nucl. Instrum. Methods Phys. Res. Sect. B 348 127
Google Scholar
[51] Ikeda T, Izumi M, Mäckel V, Kobayashi T, Bereczky R J, Hirano T, Yamazaki Y, Abe T 2015 RIKEN Accel. Prog. Rep. 48 315
[52] Ikeda T, Izumi M, Mäckel V, Kobayashi T, Ogiwara K, Hirano T, Yamazaki Y, Abe T 2014 RIKEN Accel. Prog. Rep. 47 282
[53] Kato M, Meissl W, Umezawa K, Ikeda T, Yamazaki Y 2012 Appl. Phys. Lett. 100 193702
Google Scholar
[54] Ikeda T 2020 Quantum Beam Sci. 4 22
Google Scholar
[55] 谢一鸣 2020 硕士学位论文(兰州: 兰州大学)
Xie Y M 2020 M. S. Thesis (Lanzhou: Lanzhou University
[56] He T, Wan C, Liu Z, Zhang H, Lu L 2023 JINST 18 P05034
Google Scholar
[57] Rana M A 2018 Nucl. Instrum. Methods Phys. Res. Sect. A 910 121
Google Scholar
[58] Computer code SRIM, version-2013[EB/OL] Ziegler J F http://www.srim.org/ [2024-1-1]
期刊类型引用(1)
1. 李鹏飞,刘宛琦,哈帅,潘俞舟,樊栩宏,杜战辉,万城亮,崔莹,姚科,马越,杨治虎,邵曹杰,Reinhold Schuch,路迪,宋玉收,张红强,陈熙萌. 低能电子在直径为800 nm的聚对苯二甲酸乙二醇酯纳米微通道中的输运过程. 物理学报. 2025(02): 77-86 . 百度学术
其他类型引用(0)
Catalog
Metrics
- Abstract views: 3383
- PDF Downloads: 155
- Cited By: 1