Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical investigation of electron-impact ionization of W6+ ion

Ma Li-Li Zhang Shi-Ping Zhang Fang-Jun Li Mai-Juan Jiang Jun Ding Xiao-Bin Xie Lu-You Zhang Deng-Hong Dong Chen-Zhong

Citation:

Theoretical investigation of electron-impact ionization of W6+ ion

Ma Li-Li, Zhang Shi-Ping, Zhang Fang-Jun, Li Mai-Juan, Jiang Jun, Ding Xiao-Bin, Xie Lu-You, Zhang Deng-Hong, Dong Chen-Zhong
PDF
HTML
Get Citation
  • Due to its unique characteristics, metal tungsten has been selected as the wall material for the tokamak magnetic confinement fusion device. The wall material directly interacts with the plasma for a long time, thus causing tungsten atoms and ions to be sputtered and ionized into different charge states, which then enter the tokamak device as plasma impurities. To ensure stable plasma combustion conditions, highly complex model is currently being used to evaluate the behavior of tungsten impurities and their influence on the tokamak plasma. This requires various high-precision atomic data for tungsten atoms and different ionized states of tungsten ions. Electron collision ionization, as a fundamental atomic physical process, is widely encountered in laboratory and astrophysical plasma environments. The parameters such as electron collision ionization cross-sections and rate coefficients are crucial for plasma radiation transport simulations and state diagnostics.Electron-impact single-ionization (EISI) cross sections of the ground state and metastable state for W6+ ions are calculated by using the level-to-level distorted-wave (LLDW) method. The contributions of direct ionization (DI) cross section and excited autoionization (EA) cross section to the total EISI cross section are primarily considered.Comparison of our calculation results with the experimental data from Stenke et al. (Stenke M, Aichele K, Harthiramani D, Hofmann G, Steidl M, Volpel R, Salzborn E 1995 J. Phys. B: At. Mol. Opt. Phys. 28 2711) reveals that the EISI cross section considering only the ground state is significantly smaller than the experimental result. Therefore, it is imperative to take into account the contribution from the metastable state. To determine the fraction of ions in long-lived energy levels within the parent ion beam, three models are employed.Our results, which include the contribution of metastable states, accord well with the experimental results of Stenke et al. Compared with the theoretical calculation result of Pindzola et al. our calculaiton provides a more comprehensive understanding of the electron-impact single-ionization process for W6+ ions. The comparison is illustrated in the attached figure.
      Corresponding author: Zhang Deng-Hong, zhangdh@nwnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12364034) and the Science and Technology Project of Gansu Province, China (Grant No. 23YFFA0074).
    [1]

    Demura A V, Kadomtsev M B, Lisitsa V S, Shurygin V A 2015 High Energy Density Physics 15 49Google Scholar

    [2]

    Biedermann C, Radtke R, Seidel R, Pütterich T 2009 Phys. Scr. T134 014026Google Scholar

    [3]

    Colgan J, Pindzola M S 2012 Eur. Phys. J. D 66 284Google Scholar

    [4]

    Wirth B D, Nordlund K, Whyte D G, Xu D 2011 MRS Bull. 36 216Google Scholar

    [5]

    Preval S P, Badnell N R, O’Mullane M G 2019 J. Phys. B: At. Mol. Opt. Phys. 52 025201Google Scholar

    [6]

    Kramida A E, Reader J 2006 Atomic Data and Nuclear Data Tables 92 457Google Scholar

    [7]

    Pütterich T, Neu R, Dux R, Whiteford A D, O’Mullane M G, Summers H P 2010 Nucl. Fusion 50 025012Google Scholar

    [8]

    Müller A 2015 Atoms 3 120Google Scholar

    [9]

    Pütterich T, Fable E, Dux R, O’Mullane M, Neu R, Siccinio M 2019 Nucl. Fusion 59 056013Google Scholar

    [10]

    Montague R G, Harrison M F A 1984 J. Phys. B: At. Mol. Phys. 17 2707Google Scholar

    [11]

    Rausch J, Becker A, Spruck K, Hellhund J, Borovik A, Huber K, Schippers S, Müller A 2011 J. Phys. B: At. Mol. Opt. Phys. 44 165202Google Scholar

    [12]

    Borovik A, Ebinger B, Schury D, Schippers S, Müller A 2016 Phys. Rev. A 93 012708Google Scholar

    [13]

    Schury D, Borovik A, Ebinger B, Jin F, Spruck K, Müller A, Schippers S 2020 J. Phys. B: At. Mol. Opt. Phys. 53 015201Google Scholar

    [14]

    Stenke M, Aichele K, Harthiramani D, Hofmann G, Steidl M, Volpel R, Salzborn E 1995 J. Phys. B: At. Mol. Opt. Phys. 28 2711Google Scholar

    [15]

    Ballance C P, Loch S D, Pindzola M S, Griffin D C 2013 J. Phys. B: At. Mol. Opt. Phys. 46 055202Google Scholar

    [16]

    Pindzola M S, Griffin D C 1997 Phys. Rev. A 56 1654Google Scholar

    [17]

    Zhang D, Xie L, Jiang J, Wu Z, Dong C, Shi Y, Qu Y 2018 Chin. Phys. B 27 053402Google Scholar

    [18]

    Zhang D H, Kwon D H 2014 J. Phys. B: At. Mol. Opt. Phys. 47 075202Google Scholar

    [19]

    Jin F, Borovik A, Ebinger B, Schippers S 2020 J. Phys. B: At. Mol. Opt. Phys. 53 075201Google Scholar

    [20]

    Jin F, Borovik A, Ebinger B, Schippers S 2020 J. Phys. B: At. Mol. Opt. Phys. 53 175201Google Scholar

    [21]

    Jonauskas V, Kynienė A, Kučas S, Pakalka S, Masys Š, Prancikevičius A, Borovik A, Gharaibeh M F, Schippers S, Müller A 2019 Phys. Rev. A 100 062701Google Scholar

    [22]

    Chen L, Li B, Chen X 2022 J. Quant. Spectrosc. Rad. Trans. 285 108179Google Scholar

    [23]

    Bao R, Wei J, Chen L, Li B, Chen X 2023 Chin. Phys. B 32 063401Google Scholar

    [24]

    Yan C L, Lu Q, Xie Y M, Li B L, Fu N, Zou Y, Chen C, Xiao J 2022 Phys. Rev. A 105 032820Google Scholar

    [25]

    Gu M F 2008 Can. J. Phys. 86 675Google Scholar

    [26]

    Stenke M, Aichele K, Hathiramani D, Hofmann G, Steidl M, Volpel R, Shevelko V P, Tawara H, Salzborn E 1995 J. Phys. B: At. Mol. Opt. Phys. 28 4853Google Scholar

    [27]

    Jonauskas V, Kučas S, Karazija R 2009 Lithuanian J. Phys. 49 415Google Scholar

    [28]

    Grant I P, McKenzie B J 1980 J. Phys. B: At. Mol. Phys. 13 2671Google Scholar

    [29]

    Kramida A, Ralchenko Yu, Reader J, NIAT ASD Team 2021 NISI Atomic Spectra Database

    [30]

    Zhang S, Zhang F, Zhang D, Ding X, Jiang J, Xie L, Ma Y, Li M, Sikorski M, Dong C 2024 Chin. Phys. B 33 033401Google Scholar

    [31]

    Dipti, Das T, Bartschat K, Bray I, Fursa D V, Zatsarinny O, Ballance C, Chung H K, Ralchenko Yu 2019 Atomic Data and Nuclear Data Tables 127–128 1Google Scholar

  • 图 1  W6+, W7+和W8+离子主要组态能级, 虚线分别表示W6+的单电离和双电离阈值

    Figure 1.  Energy levels of the main configurations of W6+ , W7+and W8+ ions. Dotted horizontal lines mark the thresholds for single and double ionization of W6+.

    图 2  W6+离子基态的DI截面, 其中蓝色、红色和绿色虚线分别表示5s, 5p和4f壳层对总DI截面的贡献, 黑色实线是总的DI截面

    Figure 2.  DI cross sections for ground state W6+ ions. The blue, red and green dashed lines represent the contribution of the 5s, 5p and 4f subshell to the total DI cross section respectively, the black solid line is the total DI cross section.

    图 3  W6+离子基态$ {\text{[Kr]4}}{{\text{d}}^{{10}}}{5}{{\text{s}}^{2}}{4}{{\text{f}}^{{14}}}{5}{{\text{p}}^{6}} $激发到nl能级的EA截面占总EA截面的比例

    Figure 3.  Ratios of the EA cross section from the ground state $ {\text{[Kr]4}}{{\text{d}}^{{10}}}{5}{{\text{s}}^{2}}{4}{{\text{f}}^{{14}}}{5}{{\text{p}}^{6}} $ of the W6+ to the nl state to the total EA cross section.

    图 4  W6+离子基态的EA截面, 其中绿色、黄色和红色阴影区域分别表示5s, 5p和4d壳层对总EA截面的贡献

    Figure 4.  EA cross sections for ground state W6+ ions. The green, yellow and red shadow areas represent the contribution of the 5s, 5p and 4d subshell to the total EA cross section, respectively.

    图 5  W6+离子基态$ {\text{[Kr]4}}{{\text{d}}^{{10}}}{5}{{\text{s}}^{2}}{4}{{\text{f}}^{{14}}}{5}{{\text{p}}^{6}} $的总EISI截面, 其中黑色圆点为Stenke等[26]的实验结果, 黑色实线为目前LLDW计算结果, 红色实线为CADW结果[16]

    Figure 5.  Total EISI cross section for ground state $ {\text{[Kr]4}}{{\text{d}}^{{10}}}{5}{{\text{s}}^{2}}{4}{{\text{f}}^{{14}}}{5}{{\text{p}}^{6}} $ of W6+ ions. Black solid circles are the experimental results of Stenke et al.[26], black solid line is the present LLDW total cross section, red solid line is CADW calculated result[16].

    图 6  亚稳态$ {4}{{\text{d}}^{{10}}}{5}{{\text{s}}^{2}}{4}{{\text{f}}^{{13}}}{5}{{\text{p}}^{6}}{5}{{\text{d}}^{1}} $(a), $ {\text{[Kr]4}}{{\text{d}}^{{10}}}{5}{{\text{s}}^{2}}{4}{{\text{f}}^{{14}}}{5}{{\text{p}}^{5}}{5}{{\text{d}}^1} $(b), $ {4}{{\text{d}}^{{10}}}{5}{{\text{s}}^{2}}{4}{{\text{f}}^{{14}}}{5}{{\text{p}}^{5}}{5}{{\text{f}}^{1}} $(c)和$ {4}{{\text{d}}^{{10}}}{5}{{\text{s}}^{2}}{4}{{\text{f}}^{{13}}}{5}{{\text{p}}^{6}}{5}{{\text{f}}^{1}} $(d)长寿命能级的EISI截面

    Figure 6.  EISI cross sections for the metastable levels in the configuration $ {4}{{\text{d}}^{{10}}}{5}{{\text{s}}^{2}}{4}{{\text{f}}^{{13}}}{5}{{\text{p}}^{6}}{5}{{\text{d}}^{1}} $(a), $ {\text{[Kr]4}}{{\text{d}}^{{10}}}{5}{{\text{s}}^{2}}{4}{{\text{f}}^{{14}}}{5}{{\text{p}}^{5}}{5}{{\text{d}}^1} $(b), $ {4}{{\text{d}}^{{10}}}{5}{{\text{s}}^{2}}{4}{{\text{f}}^{{14}}}{5}{{\text{p}}^{5}}{5}{{\text{f}}^{1}} $(c)和$ {4}{{\text{d}}^{{10}}}{5}{{\text{s}}^{2}}{4}{{\text{f}}^{{13}}}{5}{{\text{p}}^{6}}{5}{{\text{f}}^{1}} $ (d).

    图 7  W6+离子的拟合截面与实验[14]的比较, 其中红色、绿色和蓝色虚线分别表示模型1、模型2和模型3的结果; 黑色实线为基态$ 4{{\text{f}}^{14}}5{{\text{p}}^6} $的EISI截面

    Figure 7.  Comparison of our W6+ ions fitting EISI with experiment[14]. Red, green and blue solid line respresent the results of the Model 1, Model 2 and Model 3, respectively. The black solid line is the EISI cross section of ground state $ 4{{\text{f}}^{14}}5{{\text{p}}^6} $.

    图 8  W6+离子基态$ {\text{[Kr]4}}{{\text{d}}^{{10}}}{5}{{\text{s}}^{2}}{4}{{\text{f}}^{{14}}}{5}{{\text{p}}^{6}} $的EISI截面, 其中黑色圆点为LLDW方法计算的结果, 红色实线为(24)式拟合的结果

    Figure 8.  Electron-impact ionization cross sections for W6+ ions ground state $ {\text{[Kr]4}}{{\text{d}}^{{10}}}{5}{{\text{s}}^{2}}{4}{{\text{f}}^{{14}}}{5}{{\text{p}}^{6}} $. Black dots are the results for calculated using the LLDW method, red dashed line is the results for the fitting results by Eq. (24).

    表 1  W6+离子基态$ {5}{{\text{p}}^{6}} $和激发态$ {5}{{\text{p}}^{5}}{5}{{\text{d}}^{1}} $外壳层电离阈值

    Table 1.  Threshold energies for the ionization of electrons in the outer subshells of W6+ ion ground state $ {5}{{\text{p}}^{6}} $ and excited state $ {5}{{\text{p}}^{5}}{5}{{\text{d}}^{1}} $.

    Configuration Method 5d 4f 5p 5s 4d
    5p6 FAC 118.28 120.19 166.43 334.88
    MCDF[28] 119.0 120.6 166.8 335.9
    NIST[29] 122.01$ \pm $0.06 122.11$ \pm $0.06
    5p55d1 FAC 81.85 120.45 122.14 164.24
    MCDF[28] 81.95 120.9 122.4 164.2
    DownLoad: CSV

    表 2  W6+离子的长寿命能级(大于10–5 s)和寿命($ a \pm b \equiv a \times {10^{ \pm b}} $)

    Table 2.  Long-lived levels (exceeding 10–5 s) and its lifetimes ($ a \pm b \equiv a \times {10^{ \pm b}} $) of the W6+ ion.

    Configuration Index Level J Energy/eV Lifetimes/s Configuration Index Level J Energy/eV Lifetimes/s
    5p6 0 $ 5{{\mathrm{p}}}_{+}^{4} $ 0 0 30 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{f}}}_{+}^{1} $ 4 78.81 8.70×10–1
    4f135d1 1 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{d}}}_{-}^{1} $ 2 36.18 2.63×10–1 31 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{f}}}_{+}^{1} $ 2 79.10 4.12×10–1
    2 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{d}}}_{-}^{1} $ 3 37.44 2.11×10–1 32 $ 5{{\mathrm{p}}}_{-}^{1}5{{\mathrm{f}}}_{-}^{1} $ 3 89.54 7.15×10–5
    3 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{d}}}_{-}^{1} $ 4 37.72 3.38×10–1 33 $ 5{{\mathrm{p}}}_{-}^{1}5{{\mathrm{f}}}_{+}^{1} $ 3 89.61 7.18×10–5
    4 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{d}}}_{+}^{1} $ 6 37.98 6.19×10–2 34 $ 5{{\mathrm{p}}}_{-}^{1}5{{\mathrm{f}}}_{+}^{1} $ 4 89.70 7.00×10–5
    5 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{d}}}_{+}^{1} $ 2 38.29 2.59×10–2 35 $ 5{{\mathrm{p}}}_{-}^{1}5{{\mathrm{f}}}_{+}^{1} $ 2 90.00 6.78×10–5
    6 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{d}}}_{+}^{1} $ 4 38.78 1.26×10–2 4f135f1 36 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{+}^{1} $ 1 75.70 1.23×10+2
    7 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{d}}}_{+}^{1} $ 3 38.94 2.03×10–2 37 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{-}^{1} $ 2 75.72 1.48×10+1
    8 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{d}}}_{+}^{1} $ 5 39.10 2.75×10–2 38 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{-}^{1} $ 6 75.77 1.92×10+4
    9 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{d}}}_{+}^{1} $ 4 39.22 1.10×10–2 39 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{+}^{1} $ 3 75.91 4.47×10+1
    10 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{d}}}_{+}^{1} $ 0 39.41 8.02×10–2 40 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{-}^{1} $ 3 76.12 4.60×10+2
    11 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{d}}}_{-}^{1} $ 2 39.53 5.97×10–3 41 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{-}^{1} $ 4 76.13 6.76×10+1
    12 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{d}}}_{-}^{1} $ 3 40.23 5.14×10–2 42 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{-}^{1} $ 5 76.17 2.11×10+1
    13 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{d}}}_{+}^{1} $ 5 40.52 4.06×10–3 43 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{+}^{1} $ 2 76.18 2.97
    14 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{d}}}_{+}^{1} $ 2 40.79 4.96×10–3 44 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{+}^{1} $ 5 76.20 2.95×10+1
    15 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{d}}}_{+}^{1} $ 3 41.23 4.39×10–3 45 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{+}^{1} $ 6 76.22 1.67×10+1
    16 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{d}}}_{+}^{1} $ 4 41.37 4.69×10–3 46 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{+}^{1} $ 4 76.26 6.77×10+1
    5p55d1 17 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{d}}}_{-}^{1} $ 1 39.18 3.16×10+1 47 $ 4{{\mathrm{f}}}_{+}^{7}5{{\mathrm{f}}}_{+}^{1} $ 0 76.81 3.36×10–2
    18 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{d}}}_{-}^{1} $ 3 40.64 5.40×10–1 48 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{+}^{1} $ 1 77.73 1.31×10–2
    19 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{d}}}_{-}^{1} $ 2 40.69 1.17×10–2 49 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{-}^{1} $ 1 78.01 1.19×10–2
    20 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{d}}}_{-}^{1} $ 4 40.88 3.15 50 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{-}^{1} $ 5 78.03 1.10×10–2
    21 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{d}}}_{-}^{1} $ 2 41.76 1.11×10–2 51 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{+}^{1} $ 6 78.11 1.06×10–2
    22 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{d}}}_{-}^{1} $ 3 43.18 7.07×10–3 52 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{+}^{1} $ 2 78.16 1.11×10–2
    23 $ 5{{\mathrm{p}}}_{-}^{1}5{{\mathrm{d}}}_{-}^{1} $ 2 51.40 4.05×10–5 53 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{+}^{1} $ 3 78.31 1.07×10–2
    24 $ 5{{\mathrm{p}}}_{-}^{1}5{{\mathrm{d}}}_{+}^{1} $ 2 52.83 4.30×10–5 54 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{-}^{1} $ 3 78.40 1.10×10–2
    25 $ 5{{\mathrm{p}}}_{-}^{1}5{{\mathrm{d}}}_{+}^{1} $ 3 53.44 3.42×10–5 55 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{-}^{1} $ 2 78.44 9.91×10–3
    5p55f1 26 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{f}}}_{-}^{1} $ 2 77.81 2.43 56 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{+}^{1} $ 4 78.47 1.07×10–2
    27 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{f}}}_{-}^{1} $ 4 78.11 1.75×10+1 57 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{-}^{1} $ 4 78.50 1.04×10–2
    28 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{f}}}_{+}^{1} $ 3 78.31 1.13 58 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{+}^{1} $ 5 78.50 1.06×10–2
    29 $ 5{{\mathrm{p}}}_{+}^{3}5{{\mathrm{f}}}_{-}^{1} $ 3 78.70 9.02×10–1 59 $ 4{{\mathrm{f}}}_{-}^{5}5{{\mathrm{f}}}_{-}^{1} $ 0 86.47 3.52×10–4
    DownLoad: CSV

    表 3  模型1和模型2中不同亚稳态W6+离子的比值

    Table 3.  Fractions of the various metastable W6+ ions in Model 1 and Model 2.

    Configurations Energy range
    (Model 1)/eV
    Energy range
    (Model 2)/eV
    [0, 118] [118, 1000] [0, 118] [118, 1000]
    5p6 0 0.35 0 0.31
    4f135d1 0.40 0.10 0.35 0.10
    5p55d1 0.40 0.11 0.35 0.12
    5p55f1 0.10 0.22 0.15 0.23
    4f135f1 0.10 0.22 0.15 0.24
    DownLoad: CSV

    表 4  模型3中W6+离子60个长寿命能级的比值λi     

    Table 4.  Fractions $ {\lambda _i} $ of 60 long-lived levels for for W6+ ions the Model 3.

    Level indexEnergy range/eVLevel indexEnergy range/eV
    [0, 118][118, 1000][0, 118][118, 1000]
    000.31000300.008000.02300
    10.044680.00625310.008000.02300
    20.044680.00625320.008000.02300
    30.044680.00625330.008000.02300
    40.044680.00625340.008000.02300
    50.044690.00625350.008000.02300
    60.044690.00625360.003330.01000
    70.044690.00625370.003330.01000
    80.044690.00625380.003330.01000
    90.044690.00625390.003330.01000
    100.044690.00625400.003330.01000
    110.044690.00625410.003330.01000
    120.044690.00625420.003330.01000
    130.044690.00625430.003330.01000
    140.044690.00625440.003330.01000
    150.044690.00625450.003330.01000
    160.044690.00625460.003330.01000
    170.138800.01333470.003330.01000
    180.138900.01333480.003330.01000
    190.138900.01333490.003330.01000
    200.138900.01333500.003330.01000
    210.138900.01333510.003330.01000
    220.138900.01333520.003340.01000
    230.138900.01334530.003340.01000
    240.138900.01334540.003340.01000
    250.138900.01334550.003340.01000
    260.008000.02300560.003340.01000
    270.008000.02300570.003340.01000
    280.008000.02300580.003340.01000
    290.008000.02300590.003340.01000
    DownLoad: CSV
  • [1]

    Demura A V, Kadomtsev M B, Lisitsa V S, Shurygin V A 2015 High Energy Density Physics 15 49Google Scholar

    [2]

    Biedermann C, Radtke R, Seidel R, Pütterich T 2009 Phys. Scr. T134 014026Google Scholar

    [3]

    Colgan J, Pindzola M S 2012 Eur. Phys. J. D 66 284Google Scholar

    [4]

    Wirth B D, Nordlund K, Whyte D G, Xu D 2011 MRS Bull. 36 216Google Scholar

    [5]

    Preval S P, Badnell N R, O’Mullane M G 2019 J. Phys. B: At. Mol. Opt. Phys. 52 025201Google Scholar

    [6]

    Kramida A E, Reader J 2006 Atomic Data and Nuclear Data Tables 92 457Google Scholar

    [7]

    Pütterich T, Neu R, Dux R, Whiteford A D, O’Mullane M G, Summers H P 2010 Nucl. Fusion 50 025012Google Scholar

    [8]

    Müller A 2015 Atoms 3 120Google Scholar

    [9]

    Pütterich T, Fable E, Dux R, O’Mullane M, Neu R, Siccinio M 2019 Nucl. Fusion 59 056013Google Scholar

    [10]

    Montague R G, Harrison M F A 1984 J. Phys. B: At. Mol. Phys. 17 2707Google Scholar

    [11]

    Rausch J, Becker A, Spruck K, Hellhund J, Borovik A, Huber K, Schippers S, Müller A 2011 J. Phys. B: At. Mol. Opt. Phys. 44 165202Google Scholar

    [12]

    Borovik A, Ebinger B, Schury D, Schippers S, Müller A 2016 Phys. Rev. A 93 012708Google Scholar

    [13]

    Schury D, Borovik A, Ebinger B, Jin F, Spruck K, Müller A, Schippers S 2020 J. Phys. B: At. Mol. Opt. Phys. 53 015201Google Scholar

    [14]

    Stenke M, Aichele K, Harthiramani D, Hofmann G, Steidl M, Volpel R, Salzborn E 1995 J. Phys. B: At. Mol. Opt. Phys. 28 2711Google Scholar

    [15]

    Ballance C P, Loch S D, Pindzola M S, Griffin D C 2013 J. Phys. B: At. Mol. Opt. Phys. 46 055202Google Scholar

    [16]

    Pindzola M S, Griffin D C 1997 Phys. Rev. A 56 1654Google Scholar

    [17]

    Zhang D, Xie L, Jiang J, Wu Z, Dong C, Shi Y, Qu Y 2018 Chin. Phys. B 27 053402Google Scholar

    [18]

    Zhang D H, Kwon D H 2014 J. Phys. B: At. Mol. Opt. Phys. 47 075202Google Scholar

    [19]

    Jin F, Borovik A, Ebinger B, Schippers S 2020 J. Phys. B: At. Mol. Opt. Phys. 53 075201Google Scholar

    [20]

    Jin F, Borovik A, Ebinger B, Schippers S 2020 J. Phys. B: At. Mol. Opt. Phys. 53 175201Google Scholar

    [21]

    Jonauskas V, Kynienė A, Kučas S, Pakalka S, Masys Š, Prancikevičius A, Borovik A, Gharaibeh M F, Schippers S, Müller A 2019 Phys. Rev. A 100 062701Google Scholar

    [22]

    Chen L, Li B, Chen X 2022 J. Quant. Spectrosc. Rad. Trans. 285 108179Google Scholar

    [23]

    Bao R, Wei J, Chen L, Li B, Chen X 2023 Chin. Phys. B 32 063401Google Scholar

    [24]

    Yan C L, Lu Q, Xie Y M, Li B L, Fu N, Zou Y, Chen C, Xiao J 2022 Phys. Rev. A 105 032820Google Scholar

    [25]

    Gu M F 2008 Can. J. Phys. 86 675Google Scholar

    [26]

    Stenke M, Aichele K, Hathiramani D, Hofmann G, Steidl M, Volpel R, Shevelko V P, Tawara H, Salzborn E 1995 J. Phys. B: At. Mol. Opt. Phys. 28 4853Google Scholar

    [27]

    Jonauskas V, Kučas S, Karazija R 2009 Lithuanian J. Phys. 49 415Google Scholar

    [28]

    Grant I P, McKenzie B J 1980 J. Phys. B: At. Mol. Phys. 13 2671Google Scholar

    [29]

    Kramida A, Ralchenko Yu, Reader J, NIAT ASD Team 2021 NISI Atomic Spectra Database

    [30]

    Zhang S, Zhang F, Zhang D, Ding X, Jiang J, Xie L, Ma Y, Li M, Sikorski M, Dong C 2024 Chin. Phys. B 33 033401Google Scholar

    [31]

    Dipti, Das T, Bartschat K, Bray I, Fursa D V, Zatsarinny O, Ballance C, Chung H K, Ralchenko Yu 2019 Atomic Data and Nuclear Data Tables 127–128 1Google Scholar

  • [1] Zhou Xu, Wang Chuan, Hu Rong-Hao, Tao Zhi-Hao, Deng Xiao-Liang, Liang Yi-Han, Li Xiao-Ya, Lü Meng, Zhu Wen-Jun. Fast computation approach of electron-impact ionization and excitation cross-sections for atoms and ions with medium- and high-Z elements. Acta Physica Sinica, 2024, 73(10): 103104. doi: 10.7498/aps.73.20240213
    [2] Mo Jia-Wei, Qiu Yin-Wei, Yi Ruo-Bing, Wu Jun, Wang Zhi-Kun, Zhao Li-Hua. Temperature-dependent properties of metastable graphene oxide. Acta Physica Sinica, 2019, 68(15): 156501. doi: 10.7498/aps.68.20190670
    [3] Luo Yin-Hong, Zhang Feng-Qi, Wang Yan-Ping, Wang Yuan-Ming, Guo Xiao-Qiang, Guo Hong-Xia. Single event upsets sensitivity of low energy proton in nanometer static random access memory. Acta Physica Sinica, 2016, 65(6): 068501. doi: 10.7498/aps.65.068501
    [4] Tan Wen-Jing, An Zhu, Zhu Jing-Jun, Zhao Jian-Ling, Liu Man-Tian. Bremsstrahlung spectra produced by 10-25 keV electron impact on thick W, Au targets. Acta Physica Sinica, 2016, 65(11): 113401. doi: 10.7498/aps.65.113401
    [5] Jing Ming, Deng Wei, Wang Hao, Ji Yan-Jie. Two-lane cellular automaton traffic model based on car following behavior. Acta Physica Sinica, 2012, 61(24): 244502. doi: 10.7498/aps.61.244502
    [6] Zheng Liang, Ma Shou-Feng, Jia Ning. The cellular automaton model of traffic flow based on the driving behavior. Acta Physica Sinica, 2010, 59(7): 4490-4498. doi: 10.7498/aps.59.4490
    [7] Yang Ning-Xuan, Jiang Jun, Xie Lu-You, Dong Chen-Zhong. The effects of the Breit interaction on electron impact excitation cross sections of the 1s2s3S1 metastable level of He-like ions. Acta Physica Sinica, 2008, 57(5): 2888-2894. doi: 10.7498/aps.57.2888
    [8] Chen Shi_Dong, Zhu Liu_Hua, Kong Ling_Jiang, Liu Mu_Ren. The effect of Noise-First and anticipation headway on traffic flow. Acta Physica Sinica, 2007, 56(5): 2517-2522. doi: 10.7498/aps.56.2517
    [9] Qiao Xiu-Mei, Zhang Guo-Ping, Zhang Tan-Xin. Modeling RAL experiment to test our simulation. Acta Physica Sinica, 2006, 55(3): 1181-1185. doi: 10.7498/aps.55.1181
    [10] Wang Guang-Jun, Wang Fang, Shen Bao-Gen. Coexistence of ferromagnetic and antiferromagnetic phases in compound LaFe11.4Al1.6. Acta Physica Sinica, 2005, 54(3): 1410-1414. doi: 10.7498/aps.54.1410
    [11] Kuang Hua, Kong Ling-Jiang, Liu Mu-Ren. The study of the effect of delay probability on mixed vehiclessensitive driving traffic flow model. Acta Physica Sinica, 2004, 53(12): 4138-4144. doi: 10.7498/aps.53.4138
    [12] Jin Yi, Pan Bai-Liang, Chen Gang, Chen Kun, Yao Zhi-Xin. Numerical study on the terminating mechanisms of copper vapor laser pulse. Acta Physica Sinica, 2004, 53(6): 1799-1803. doi: 10.7498/aps.53.1799
    [13] Lei Li, Xue Yu, Dai Shi-Qiang. One-dimensional sensitive driving cellular automaton model for traffic flow. Acta Physica Sinica, 2003, 52(9): 2121-2126. doi: 10.7498/aps.52.2121
    [14] QI JING-BO, CHEN CHONG-YANG, WANG YAN-SEN. ELECTRON IMPACT IONIZATION CROSS SECTIONS FOR THE Na-LIKE IONS. Acta Physica Sinica, 2001, 50(8): 1475-1480. doi: 10.7498/aps.50.1475
    [15] TENG HUA-GUO, XU ZHI-ZHAN, HU WEI, WANG YAN-SEN, FANG DU-FEI. THE EXCITATION-AUTOIONIZATION OF Na-LIKE Cu ION. Acta Physica Sinica, 1996, 45(11): 1788-1792. doi: 10.7498/aps.45.1788
    [16] Fang Quan-Yu, Cai Wei, Shen Zhi-Jun, Li Peng, Zhou Yu, Xu Yuan-Guang, Chen Guo-Xin. . Acta Physica Sinica, 1995, 44(3): 383-395. doi: 10.7498/aps.44.383
    [17] FANG DU-FEI, WANG YAN-SEN, HU WEI, GAO HAI-BIN, LU FU-QUAN. ELECTRON IMPACT IONIZATION CROSS SECTIONS OF BORON-LIKE IONS. Acta Physica Sinica, 1993, 42(1): 40-45. doi: 10.7498/aps.42.40
    [18] HU WEI, FANG DU-FEI, WANG YAN-SEN, LU FU-QUAN, TANG JIA-YONG, YANG FU-JIA. ELECTRON IMPACT IONIZATION CROSS SECTION FOR LITHIUM-LIKE IONS INCLUDING EXCITATION-AUTOIONIZATION CROSS SECTION. Acta Physica Sinica, 1993, 42(9): 1416-1421. doi: 10.7498/aps.42.1416
    [19] FANG DU-FEI, WANG YAM-SEN, HU WEI. DIFFERENTIAL CROSS SECTIONS FOR ELECTRON IMPACT IONIZATION OF HELIUMLIKE IONS. Acta Physica Sinica, 1992, 41(5): 744-749. doi: 10.7498/aps.41.744
    [20] SHEN JUN-FENG, XU YUN-FEI, WU BI-RU, ZHENG YOU-FENG, LU JIE, WANG YUN-XIAN. THE AUTOIONIZAT10N SPECTRA OF NEUTRAL YTTERBIUM BY LASER THREE-STEP EXCITATION. Acta Physica Sinica, 1992, 41(5): 732-739. doi: 10.7498/aps.41.732
Metrics
  • Abstract views:  395
  • PDF Downloads:  24
  • Cited By: 0
Publishing process
  • Received Date:  21 March 2024
  • Accepted Date:  24 April 2024
  • Available Online:  09 May 2024
  • Published Online:  20 June 2024

/

返回文章
返回