Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Delocalization-localization transitions in 1D non-Hermitian cross-stitch lattices

Liu Hui Lu Zhan-Peng Xu Zhi-Hao

Citation:

Delocalization-localization transitions in 1D non-Hermitian cross-stitch lattices

Liu Hui, Lu Zhan-Peng, Xu Zhi-Hao
PDF
HTML
Get Citation
  • In this work, we investigate the influence of quasi-periodic modulation on the localization properties of one-dimensional non-Hermitian cross-stitch lattices with flat bands. The crystalline Hamiltonian for this non-Hermitian cross-stitch lattice is given by: $\hat{H}=\displaystyle\sum\limits_{n}\left[t(a_n^{\dagger} b_n + b_n^{\dagger}a_n ) + J{\mathrm{e}}^{h}\left(a_n^{\dagger}b_{n + 1} + a_n^{\dagger} a_{n + 1} + Ab_n^{\dagger}a_{n + 1} + Ab_n^{\dagger}b_{n + 1}\right) + J{\mathrm{e}}^{ - h} \left(Aa_{n + 1}^{\dagger}b_n + a_{n + 1}^{\dagger}a_n + b_{n + 1}^{\dagger}a_n + Ab_{n + 1}^{\dagger}b_n\right)\right] $with $A =\pm 1$. When A = 1, the clean lattice supports two bands with dispersion relations $E_0=- t, $$ E_1=4\cos (k - {\mathrm{i}}h) + t$. The compact localized states (CLSs) within the flat band E0 are localized in one unit cell, indicating that the system is characterized by the U = 1 class. Conversely, for A = –1, there are two flat bands in the system: $E_{\pm}=\pm\sqrt{t^2 + 4}$. The CLSs within the flat bands are localized in two unit cells, indicating that the system is marked by the U = 2 class. After introducing quasi-periodic modulations $\varepsilon_n^{\beta}=\lambda_{\beta}\cos(2\pi\alpha n + \phi_{\beta})$ ($\beta=\{a,b\}$), delocalization-localization transitions can be observed by numerically calculating the fractal dimension D2 and imaginary part of the energy spectrum $\ln{|{\rm{Im}}(E)|}$. Our findings indicate that the symmetry of quasi-periodic modulations plays an important role in determining the localization properties of the system. For the case of $U=1$, the symmetric quasi-periodic modulation leads to two independent spectra $\sigma_f$ and $\sigma_p$. The $\sigma_f$ retains its compact properties, while the $\sigma_p$ owns an extended-localized transition at $\lambda_{{\mathrm{c}}1}=4M$ with $M=\max\{{\mathrm{e}}^{h},\;{\mathrm{e}}^{ - h}\}$. However, in the case of antisymmetric modulation, the system exhibits an exact mobility edge $\lambda_{{\mathrm{c}}2}=2\sqrt{2|E - t|M}$. For the U = 2 class, all the eigenstates remain localized under any symmetric quasi-periodic modulation. In the case of antisymmetric modulation, all states transition from multifractal to localized states as the modulation strength increases, with a critical point at $\lambda_{{\mathrm{c}}3}=4M$. This work expands the understanding of localization properties in non-Hermitian flat-band systems and provides a new perspective on delocalization-localization transitions.
      Corresponding author: Xu Zhi-Hao, xuzhihao@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12375016), the Fundamental Research Program of Shanxi Province, China (Grant No. 20210302123442), the Beijing National Laboratory for Condensed Matter Physics (Grant No. 2023BNLCMPKF001), and the Fund for Shanxi “1331 Project” Key Subjects, China.
    [1]

    Anderson P W 1958 Phys. Rev. 109 1492Google Scholar

    [2]

    Billy J, Josse V, Zuo Z, Bernard A, Hambrecht B, Lugan P, Clément D, Sanchez-Palencia L, Bouyer P, Aspect A 2008 Nature 453 891Google Scholar

    [3]

    Hu H, Strybulevych A, Page J H, Skipetrov S E, van Tiggelen B A 2008 Nat. Phys. 4 945Google Scholar

    [4]

    Pradhan P, Sridhar S 2000 Phys. Rev. Lett. 85 2360Google Scholar

    [5]

    Mott N 1987 J. Phys. C 20 3075Google Scholar

    [6]

    Wang Y, Zhang L, Sun W, Poon T F J, Liu X J 2022 Phys. Rev. B 106 L140203Google Scholar

    [7]

    Yamamoto K, Aharony A, Entin-Wohlman O, Hatano N 2017 Phys. Rev. B 96 155201Google Scholar

    [8]

    Aubry S, André G 1980 Ann. Isr. Phys. Soc. 3 133

    [9]

    Longhi S 2019 Phys. Rev. Lett. 122 237601Google Scholar

    [10]

    Xu Z, Xia X, Chen S 2022 Sci. China: Phys. Mech. Astron. 65 227211Google Scholar

    [11]

    Biddle J, Das Sarma S 2010 Phys. Rev. Lett. 104 070601Google Scholar

    [12]

    Ganeshan S, Pixley J H, Sarma S D 2015 Phys. Rev. Lett. 114 146601Google Scholar

    [13]

    Leykam D, Flach S, Bahat-Treidel O, Desyatnikov A S 2013 Phys. Rev. B 88 224203Google Scholar

    [14]

    Zhang W, Addison Z, Trivedi N 2021 Phys. Rev. B 104 235202Google Scholar

    [15]

    Leykam D, Bodyfelt J D, Desyatnikov A S, Flach S 2017 Eur. Phy. J. B 90 1Google Scholar

    [16]

    Maimaiti W, Andreanov A 2021 Phys. Rev. B 104 035115Google Scholar

    [17]

    Bodyfelt D, Leykam D, Danieli C, Yu X, Flach S 2014 Phys. Rev. Lett. 113 236403Google Scholar

    [18]

    Danieli C, Bodyfelt J D, Flach S 2015 Phys. Rev. B 91 235134Google Scholar

    [19]

    Lee S, Andreanov A, Flach S 2023 Phys. Rev. B 107 014204Google Scholar

    [20]

    Lee S, Flach S, Andreanov A 2023 Chaos 33 073125Google Scholar

    [21]

    Ahmed A, Ramachandran A, Khaymovich I M, Sharma A 2022 Phys. Rev. B 106 205119Google Scholar

    [22]

    Liu C, Jiang H, Chen S 2019 Phys. Rev. B 99 125103Google Scholar

    [23]

    Liu C, Chen S 2019 Phys. Rev. B 100 144106Google Scholar

    [24]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [25]

    Zhao H, Miao P, Teimourpour M H, Malzard S, ElGanainy R, Schomerus H, Feng L 2018 Nat. Commun. 9 981Google Scholar

    [26]

    Jiang H, Lang L J, Yang C, Zhu S L, Chen S 2019 Phys. Rev. B 100 054301Google Scholar

    [27]

    Yao S, Song F, Wang Z 2018 Phys. Rev. Lett. 121 136802Google Scholar

    [28]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [29]

    Hatano N, Nelson D R 1996 Phys. Rev. Lett. 77 570Google Scholar

    [30]

    Hatano N, Nelson D R 1997 Phys. Rev. B 56 8651Google Scholar

    [31]

    Hatano N, Nelson D R 1998 Phys. Rev. B 58 8384Google Scholar

    [32]

    Flach S, Leykam D, Bodyfelt J D, Matthies P, Desyatnikov A S 2014 Europhys. Lett. 105 30001Google Scholar

    [33]

    Miroshnichenko A E, Flach S, Kivshar Y S 2010 Rev. Mod. Phys. 82 2257Google Scholar

    [34]

    Evers F, Mirlin A D 2008 Rev. Mod. Phys. 80 1355Google Scholar

    [35]

    Macé N, Alet F, Laflorencie N 2019 Phys. Rev. Lett. 123 180601Google Scholar

    [36]

    Liu H, Lu Z, Xia X, Xu Z 2024 arXiv: 2311.03166 [cond-mat.dis-nn]

    [37]

    Zeng Q B, Chen S, Lü R 2017 Phys. Rev. A 95 062118Google Scholar

    [38]

    Tang L Z, Zhang G Q, Zhang L F, Zhang D W 2021 Phys. Rev. A 103 033325Google Scholar

    [39]

    Kawabata K, Shiozaki K, Ueda M, Sato M 2019 Phys. Rev. X 9 041015Google Scholar

  • 图 1  干净晶格情况 (a) 一维非厄米十字晶格示意图; (b) $ U=1 $类非厄米十字晶格的CLS占据; (c) $ U=2 $类非厄米十字晶格的CLS占据; (d)开边界条件下, $ U=1 $类十字晶格色散带中所有本征态的密度分布$ \rho_n^{(l)} $. 这里的参数选取$ h=0.6 $, $ t=2 $, $ L=100 $

    Figure 1.  Crystalline case: (a) Schematic diagram of the one-dimensional non-Hermitian cross-stitch lattice; (b) CLS occupations of the $ U=1 $ class non-Hermitian cross-stitch lattice with $ A=1 $; (c) CLS occupations of the $ U=2 $ class non-Hermitian cross-stitch lattice with $ A=-1 $; (d) density distributions $ \rho_n^{(l)} $ for all the eigenstates in dispersive bands of the cross-stitch lattice under open bonudary conditions. Here, $ h=0.6 $, $ t=2 $, $ L=100 $

    图 2  对称情况时, $ U=1 $ 类非厄米十字晶格的局域化性质 (a) $ \sigma_p $谱的分型维度$ D_2^{(l)} $随着能量实部$ {\rm{Re}}(E) $和无序强度$ \lambda $的变化, 颜色表示分形维度$ D_2^{(l)} $的大小. (b) $ \sigma_p $谱的能量虚部$ \ln{|{\rm{Im}}(E)|} $随着能量实部$ {\rm{Re}}(E) $和无序强度$ \lambda $的变化, 颜色表示$ \ln{|{\rm{Im}}(E)|} $的大小, 实线表示扩展-局域转变, $ \sigma_f $被省略, 边界用虚线表示. (c)$ \lambda=5 $时, $ \sigma_p $所对应的能谱. (d)$ \lambda=10 $时, $ \sigma_p $所对应的能谱. 这里$ L=1000 $

    Figure 2.  Symmetric case of the $ U=1 $ class non-Hermitian cross-stitch lattice: (a) Real part of the spectrum $ \sigma_p $ as a function of $ \lambda $, where the color denotes the value of the fractal dimension $ D_2^{(l)} $. (b) $ \ln{|{\rm{Im}}(E)|} $ of $ \sigma_p $ as a function of $ \lambda $ and $ {\rm{Re}}(E) $, where the color denotes the value of $ \ln{|{\rm{Im}}(E)|} $. Black solid lines represent the delocalization-localization transition. The spectrum $ \sigma_{f} $ is omitted, but its boundaries are indicated by black dashed lines. (c) Energy spectrum of $ \sigma_p $ with $ \lambda=5 $. (d) Energy spectrum of $ \sigma_p $ with $ \lambda=10 $. Here, $ L=1000 $.

    图 3  反对称情况时, $ U=1 $ 类非厄米十字型晶格的局域化 (a)分型维度$ D_2^{(l)} $随着能量实部$ {\rm{Re}}(E) $和无序强度$ \lambda $的变化; (b)能量虚部$ \ln{|{\rm{Im}}(E)|} $随着能量实部$ {\rm{Re}}(E) $和无序强度$ \lambda $的变化. 实线表示迁移率边. 这里$ L=1000 $

    Figure 3.  Antisymmetric case of the $ U=1 $ class non-Hermitian cross-stitch lattice: (a) $D_2^{(l)} $ of the spectrum as a function of $ \lambda $, where the color denotes the value of the fractal dimension $ D_2^{(l)} $; (b) $ \ln{|{\rm{Im}}(E)|} $ of the spectrum as a function of $ \lambda $ and $ {\rm{Re}}(E) $, where the color denotes the value of $ \ln{|{\rm{Im}}(E)|} $. The black solid lines represent the mobility edges. Here, $ L=1000 $.

    图 4  反对称情况时, $ U=2 $类非厄米十字晶格的局域化 (a)分型维度$ D_2^{(l)} $随着能量实部$ {\rm{Re}}(E) $和无序强度$ \lambda $的变化, 颜色表示分形维度$ D_2^{(l)} $的大小. (b)能量虚部$ \ln{|{\rm{Im}}(E)|} $随着能量实部$ {\rm{Re}}(E) $和无序强度$ \lambda $的变化, 颜色表示$ \ln{|{\rm{Im}}(E)|} $的大小, 实线表示多重分形-局域的转变, 这里$ L=1000 $. (c)多重分形区域的MIPR标度分析, 插图为局域区域的MIPR标度分析

    Figure 4.  Antisymmetric case of $ U=2 $ non-Hermitian cross-stitch lattice: (a) $D_2^{(l)} $ of the spectrum as a function of $ \lambda $ and Re(E), where the color denotes the value of the fractal dimension $ D_2^{(l)} $. (b) $ \ln{|{\rm{Im}}(E)|} $ of the spectrum as a function of $ \lambda $ and $ {\rm{Re}}(E) $, where the color denotes the value of $ \ln{|{\rm{Im}}(E)|} $. The black solid lines represent the multifractal-to-localized transition. Here, $ L=1000 $. (c) The MIPR scaling of multifractal regions for different $ \lambda $. The inset shows the MIPR scaling of localized regions for $ \lambda=10 $.

  • [1]

    Anderson P W 1958 Phys. Rev. 109 1492Google Scholar

    [2]

    Billy J, Josse V, Zuo Z, Bernard A, Hambrecht B, Lugan P, Clément D, Sanchez-Palencia L, Bouyer P, Aspect A 2008 Nature 453 891Google Scholar

    [3]

    Hu H, Strybulevych A, Page J H, Skipetrov S E, van Tiggelen B A 2008 Nat. Phys. 4 945Google Scholar

    [4]

    Pradhan P, Sridhar S 2000 Phys. Rev. Lett. 85 2360Google Scholar

    [5]

    Mott N 1987 J. Phys. C 20 3075Google Scholar

    [6]

    Wang Y, Zhang L, Sun W, Poon T F J, Liu X J 2022 Phys. Rev. B 106 L140203Google Scholar

    [7]

    Yamamoto K, Aharony A, Entin-Wohlman O, Hatano N 2017 Phys. Rev. B 96 155201Google Scholar

    [8]

    Aubry S, André G 1980 Ann. Isr. Phys. Soc. 3 133

    [9]

    Longhi S 2019 Phys. Rev. Lett. 122 237601Google Scholar

    [10]

    Xu Z, Xia X, Chen S 2022 Sci. China: Phys. Mech. Astron. 65 227211Google Scholar

    [11]

    Biddle J, Das Sarma S 2010 Phys. Rev. Lett. 104 070601Google Scholar

    [12]

    Ganeshan S, Pixley J H, Sarma S D 2015 Phys. Rev. Lett. 114 146601Google Scholar

    [13]

    Leykam D, Flach S, Bahat-Treidel O, Desyatnikov A S 2013 Phys. Rev. B 88 224203Google Scholar

    [14]

    Zhang W, Addison Z, Trivedi N 2021 Phys. Rev. B 104 235202Google Scholar

    [15]

    Leykam D, Bodyfelt J D, Desyatnikov A S, Flach S 2017 Eur. Phy. J. B 90 1Google Scholar

    [16]

    Maimaiti W, Andreanov A 2021 Phys. Rev. B 104 035115Google Scholar

    [17]

    Bodyfelt D, Leykam D, Danieli C, Yu X, Flach S 2014 Phys. Rev. Lett. 113 236403Google Scholar

    [18]

    Danieli C, Bodyfelt J D, Flach S 2015 Phys. Rev. B 91 235134Google Scholar

    [19]

    Lee S, Andreanov A, Flach S 2023 Phys. Rev. B 107 014204Google Scholar

    [20]

    Lee S, Flach S, Andreanov A 2023 Chaos 33 073125Google Scholar

    [21]

    Ahmed A, Ramachandran A, Khaymovich I M, Sharma A 2022 Phys. Rev. B 106 205119Google Scholar

    [22]

    Liu C, Jiang H, Chen S 2019 Phys. Rev. B 99 125103Google Scholar

    [23]

    Liu C, Chen S 2019 Phys. Rev. B 100 144106Google Scholar

    [24]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [25]

    Zhao H, Miao P, Teimourpour M H, Malzard S, ElGanainy R, Schomerus H, Feng L 2018 Nat. Commun. 9 981Google Scholar

    [26]

    Jiang H, Lang L J, Yang C, Zhu S L, Chen S 2019 Phys. Rev. B 100 054301Google Scholar

    [27]

    Yao S, Song F, Wang Z 2018 Phys. Rev. Lett. 121 136802Google Scholar

    [28]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [29]

    Hatano N, Nelson D R 1996 Phys. Rev. Lett. 77 570Google Scholar

    [30]

    Hatano N, Nelson D R 1997 Phys. Rev. B 56 8651Google Scholar

    [31]

    Hatano N, Nelson D R 1998 Phys. Rev. B 58 8384Google Scholar

    [32]

    Flach S, Leykam D, Bodyfelt J D, Matthies P, Desyatnikov A S 2014 Europhys. Lett. 105 30001Google Scholar

    [33]

    Miroshnichenko A E, Flach S, Kivshar Y S 2010 Rev. Mod. Phys. 82 2257Google Scholar

    [34]

    Evers F, Mirlin A D 2008 Rev. Mod. Phys. 80 1355Google Scholar

    [35]

    Macé N, Alet F, Laflorencie N 2019 Phys. Rev. Lett. 123 180601Google Scholar

    [36]

    Liu H, Lu Z, Xia X, Xu Z 2024 arXiv: 2311.03166 [cond-mat.dis-nn]

    [37]

    Zeng Q B, Chen S, Lü R 2017 Phys. Rev. A 95 062118Google Scholar

    [38]

    Tang L Z, Zhang G Q, Zhang L F, Zhang D W 2021 Phys. Rev. A 103 033325Google Scholar

    [39]

    Kawabata K, Shiozaki K, Ueda M, Sato M 2019 Phys. Rev. X 9 041015Google Scholar

  • [1] Feng Xi-Xi, Chen Wen, Gao Xian-Long. Application of metric space method in quantum information in quasi-periodic systems. Acta Physica Sinica, 2024, 73(4): 040501. doi: 10.7498/aps.73.20231605
    [2] Gu Yan, Lu Zhan-Peng. Localization transition in non-Hermitian coupled chain. Acta Physica Sinica, 2024, 73(19): 197101. doi: 10.7498/aps.73.20240976
    [3] Liu Jing-Hu, Xu Zhi-Hao. Random two-body dissipation induced non-Hermitian many-body localization. Acta Physica Sinica, 2024, 73(7): 077202. doi: 10.7498/aps.73.20231987
    [4] Lu Zhan-Peng, Xu Zhi-Hao. Reentrant localization phenomenon in one-dimensional cross-stitch lattice with flat band. Acta Physica Sinica, 2024, 73(3): 037202. doi: 10.7498/aps.73.20231393
    [5] Li Jing, Ding Hai-Tao, Zhang Dan-Wei. Quantum Fisher information and parameter estimation in non-Hermitian Hamiltonians. Acta Physica Sinica, 2023, 72(20): 200601. doi: 10.7498/aps.72.20230862
    [6] Sun Si-Tong, Ding Ying-Xing, Liu Wu-Ming. Research progress in quantum precision measurements based on linear and nonlinear interferometers. Acta Physica Sinica, 2022, 71(13): 130701. doi: 10.7498/aps.71.20220425
    [7] Liu Jia-Lin, Pang Ting-Fang, Yang Xiao-Sen, Wang Zheng-Ling. Skin effect in disordered non-Hermitian Su-Schrieffer-Heeger. Acta Physica Sinica, 2022, 71(22): 227402. doi: 10.7498/aps.71.20221151
    [8] Zhang Xi-Zheng, Wang Peng, Zhang Kun-Liang, Yang Xue-Min, Song Zhi. Non-Hermitian critical dynamics and its application to quantum many-body systems. Acta Physica Sinica, 2022, 71(17): 174501. doi: 10.7498/aps.71.20220914
    [9] Hou Bo, Zeng Qi-Bo. Non-Hermitian mosaic dimerized lattices. Acta Physica Sinica, 2022, 71(13): 130302. doi: 10.7498/aps.71.20220890
    [10] Gao Xue-Er, Li Dai-Li, Liu Zhi-Hang, Zheng Chao. Recent progress of quantum simulation of non-Hermitian systems. Acta Physica Sinica, 2022, 71(24): 240303. doi: 10.7498/aps.71.20221825
    [11] Zhu Ke-Jia, Guo Zhi-Wei, Chen Hong. Experimental observation of chiral inversion at exceptional points of non-Hermitian systems. Acta Physica Sinica, 2022, 71(13): 131101. doi: 10.7498/aps.71.20220842
    [12] Wu Jin, Lu Zhan-Peng, Xu Zhi-Hao, Guo Li-Ping. Mobility edges and reentrant localization induced by superradiance. Acta Physica Sinica, 2022, 71(11): 113702. doi: 10.7498/aps.71.20212246
    [13] Fu Cong, Ye Meng-Hao, Zhao Hui, Chen Yu-Guang, Yan Yong-Hong. Effects of intrachain disorder on photoexcitation in conjugated polymer chains. Acta Physica Sinica, 2021, 70(11): 117201. doi: 10.7498/aps.70.20201801
    [14] Hou Bi-Hui, Liu Feng-Yan, Yue Ming, Wang Ke-Jun. Localization of conduction electrons in nanometer metal Dy. Acta Physica Sinica, 2011, 60(1): 017201. doi: 10.7498/aps.60.017201
    [15] Ding Rui, Jin Ya-Qiu, Ogura Hisanao. Stochastic functional analysis of propagation and localization of cylindrical wave in a two-dimensional random medium. Acta Physica Sinica, 2010, 59(6): 3674-3685. doi: 10.7498/aps.59.3674
    [16] Li Xiao-Chun, Gao Jun-Li, Liu Shao-E, Zhou Ke-Chao, Huang Bo-Yun. Disorder effect on the focus image of phononic crystal panel with negative refraction. Acta Physica Sinica, 2010, 59(1): 376-380. doi: 10.7498/aps.59.376
    [17] Cao Yong-Jun, Yang Xu, Jiang Zi-Lei. Transmission property of elastic wave through one-dimensional compound materials. Acta Physica Sinica, 2009, 58(11): 7735-7740. doi: 10.7498/aps.58.7735
    [18] Wang Hui-Qin, Liu Zheng-Dong, Wang Bing. The spatial distribution of optical field in random media with different filling densities of the same material particles. Acta Physica Sinica, 2008, 57(4): 2186-2191. doi: 10.7498/aps.57.2186
    [19] Xu Xing-Sheng, Chen Hong-Da, Zhang Dao-Zhong. Photon localization in amorphous photonic crystal. Acta Physica Sinica, 2006, 55(12): 6430-6434. doi: 10.7498/aps.55.6430
    [20] Liu Xiao-Liang, Xu Hui, Ma Song-Shan, Song Zhao-Quan. The localized properties of electronic states in one-dimensional disordered binary solid. Acta Physica Sinica, 2006, 55(6): 2949-2954. doi: 10.7498/aps.55.2949
Metrics
  • Abstract views:  1521
  • PDF Downloads:  49
  • Cited By: 0
Publishing process
  • Received Date:  12 April 2024
  • Accepted Date:  08 May 2024
  • Available Online:  22 May 2024
  • Published Online:  05 July 2024

/

返回文章
返回