Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optical enhancement of perovskite solar cells by metallic nano-patterns

Han Fei Jiang Zhou Wang Chen Zhou Hua Shen Xiang-Qian

Citation:

Optical enhancement of perovskite solar cells by metallic nano-patterns

Han Fei, Jiang Zhou, Wang Chen, Zhou Hua, Shen Xiang-Qian
PDF
HTML
Get Citation
  • The integration of metallic nanoparticles (MNPs) with plasmonic effects is an alternative approach to managing photons and charge carriers, and is considered as a promising method of advancing solar cell technologies. Plasmonic-enhanced solar energy harvesting involves three mechanisms: hot-electron injection, light trapping, and modulation of energy flow direction through dipole-dipole coupling. It has been observed that these phenomena significantly improve the performance of silicon, gallium arsenide, dye-sensitized, and organic solar cells. However, for emerging perovskite solar cells, the light trapping effect, specifically, through the far-field scattering of MNPs, has been seldom reported. The anomalous phenomenon is primarily attributed to the size constraints imposed on MNP by the thickness of the functional layers in cell devices. According to the theory of localized surface plasmon resonance (SPR), the characteristic size of the MNP needs to be larger than 90 nm to achieve optimal photon scattering. Conversely, the charge transport layers such as NiOx and SnO2 in perovskite solar cells are usually very thin, with thickness ranging from a few nanometers to several tens of nanometers. Therefore, the community of perovskite solar cells still faces a great challenge in harvesting light through plasmonic scattering.Comparing with MNPs, none of the shape, size, periodicity, and other characteristic parameters of two-dimensional metal patterns within the horizontal plane are not limited by the thickness of the device’s functional layer, thus making it more flexible to regulate the SPR response band, vibration intensity, and becoming a method of dissipating plasmonic energy. In this work, based on the finite-difference time-domain (FDTD) method and rigorous coupled-wave analysis (RCWA), we systematically investigate the SPR spectra of different metal patterns. The results demonstrate that by optimizing characteristic parameters such as pattern shape, thickness, and periodicity, a significant SPR phenomenon can be observed in the near-infrared region, with scattering dominating extinction. For the optimal metal ring pattern, the SPR peak corresponds to a wavelength of 772 nm, with the cross-section of relative absorption, scattering, and extinction being 0.54, 1.39, and 1.93, respectively. The weighted average absorption of the perovskite response layer in a range of 700–850 nm increases from 53.61% to 65.36%. Correspondingly, the photocurrent density of the device increases from 20.39 to 22.72 mA/cm2, and the photoelectric conversion efficiency is relatively improved by 11.45%. This research provides a novel path for designing light trapping in perovskite solar cells in the near-infrared region, and serves as a “spectrum-based” reference for SPR regulation in other similar devices.
      Corresponding author: Shen Xiang-Qian, sxqlyq@xju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12164047), the Natural Science Foundation of Xinjiang Uygur Autonomous Region of China (Grant No. 2022D01C20), and the Tianshan Innovation Team Program of Xinjiang Uygur Autonomous Region of China (Grant No. 2023D14001).
    [1]

    Huang Z Q, Li L, Wu T Q, Xue T Y, Sun W, Pan Q, Wang H D, Xie H F, Chi J M, Han T, Hu X T, Su M, Chen Y W, Song Y L 2023 Nat. Commun. 14 1204Google Scholar

    [2]

    姚美灵, 廖纪星, 逯好峰, 黄强, 崔艳峰 2024 物理学报 8 088801Google Scholar

    Yao M L, Liao J X, Lu H F, Huang Q, Cui Y F 2024 Acta Phys. Sin. 8 088801Google Scholar

    [3]

    Zhu H, Teale S, Lintangpradipto M N, Mahesh S, Chen B, McGehee M D, Sargent E H, Bakr O M 2023 Nat. Rev. Mater. 8 569Google Scholar

    [4]

    Raza H, Imran T, Gao Y, Azeem M, Younis M, Wang J N, Liu S W, Yang Z C, Liu Z H, Chen W 2024 Energ. Environ. Sci. 17 1819Google Scholar

    [5]

    Green M A, Dunlop E D, Yoshita M, Kopidakis N, Bothe K, Siefer G, Hao X 2023 Prog. Photovoltaics 31 651Google Scholar

    [6]

    The National Renewable Energy Laboratory (NREL) 2024 https://www.nrel.gov/pv/cell-efficiency.html/

    [7]

    崔兴华, 许巧静, 石标, 侯福华, 赵颖, 张晓丹 2020 物理学报 69 207401Google Scholar

    Cui X H, Xu Q J, Shi B, Hou F H, Zhao Y, Zhang X D 2020 Acta Phys. Sin. 69 207401Google Scholar

    [8]

    Park J, Kim J, Yun H, Paik M J, Noh E, Mun H J, Kim M G, Shin T J, Seok S I 2023 Nature 616 724Google Scholar

    [9]

    Chen R, Liu S W, Xu X J, Ren F M, Zhou J, Tian X Y, Yang Z C, Guanz X Y, Liu Z H, Zhang S S, Zhang Y Q, Wu Y Z, Han L Y, Qi Y B, Chen W 2022 Energ. Environ. Sci. 15 2567Google Scholar

    [10]

    Shen X Q, Lin X S, Peng Y, Zhang Y Q, Long F, Han Q F, Wang Y B, Han L Y 2024 Nano-Micro Lett. 16 201Google Scholar

    [11]

    Zhang S F, Ye F, Wang X Y, Chen R, Zhang H D, Zhan L Q, Jiang X Y, Li Y W, Ji X Y, Liu S J, Yu M J, Yu F R, Zhang Y L, Wu R H, Liu Z H, Ning Z J, Neher D, Han L Y, Lin Y Z, Tian H, Chen W, Stolterfoht M, Zhang L J, Zhu W H, Wu Y Z 2023 Science 380 404Google Scholar

    [12]

    Huang Y M, Wu Y Z, Xu X L, Qin F F, Zhang S H, An J K, Wang H J, Liu L 2022 Chin. Phys. B 31 128802Google Scholar

    [13]

    赵颂, 周华, 王淑英, 韩非, 蒋斯涵, 沈向前 2022 物理学报 71 038801Google Scholar

    Zhao S, Zhou H, Wang S Y, Han F, Jiang S H, Shen X Q 2022 Acta Phys. Sin. 71 038801Google Scholar

    [14]

    Berry F, Mermet Lyaudoz R, Cuevas Davila J M, Djemmah D A, Nguyen H S, Seassal C, Fourmond E, Chevalier C, Amara M, Drouard E 2022 Adv. Energy Mater. 12 2200505Google Scholar

    [15]

    Moakhar S R, Gholipour S, Masudy-Panah S, Seza A, Mehdikhani A, Riahi-Noori N, Tafazoli S, Timasi N, Lim Y F, Saliba M 2020 Adv. Sci. 7 1902448Google Scholar

    [16]

    Li Y F, Kou Z L, Feng J, Sun H B 2020 Nanophotonics-Berlin 9 3111Google Scholar

    [17]

    Yan G D, Zhang Z H, Guo H, Chen J P, Jiang Q S, Cui Q N, Shi Z L, Xu C X 2023 Chin. Phys. B 32 067302Google Scholar

    [18]

    Atwater H A, Polman A 2010 Nat. Mater. 9 205Google Scholar

    [19]

    Ueno K, Oshikiri T, Sun Q, Shi X, Misawa H 2018 Chem. Rev. 118 2955Google Scholar

    [20]

    Zhang W, Saliba M, Stranks S D, Sun Y, Shi X, Wiesner U, Snaith H J 2013 Nano Lett. 13 4505Google Scholar

    [21]

    Saliba M, Zhang W, Burlakov V M, Stranks S D, Sun Y, Ball J M, Johnston M B, Goriely A, Wiesner U, Snaith H J 2015 Adv. Funct. Mater. 25 5038Google Scholar

    [22]

    Yuan Z C, Wu Z W, Bai S, Xia Z H, Xu W D, Song T, Wu H H, Xu L H, Si J J, Jin Y Z, Sun B Q 2015 Adv. Energy Mater. 5 1500038Google Scholar

    [23]

    Cui X, Chen Y H, Zhang M, Harn Y W, Qi J B, Gao L K, Wang Z L, Huang J S, Yang Y K, Lin Z Q 2020 Energ. Environ. Sci. 13 1743Google Scholar

    [24]

    Yao K, Zhong H J, Liu Z L, Xiong M, Leng S F, Zhang J, Xu Y X, Wang W Y, Zhou L, Huang H T, Jen A K Y 2019 Acs Nano 13 5397Google Scholar

    [25]

    Li F Z, Lo T W, Deng X, Li S Q, Fan Y L, Lin F R, Cheng Y H, Zhu Z L, Lei D Y, Jen A K Y 2022 Adv. Energy Mater. 12 2200186Google Scholar

    [26]

    Yao K, Li S Q, Liu Z, Ying Y, Dvořák P, Fei L, Sikola T, Huang H T, Nordlander P, Jen A K Y, Lei D 2021 Light-Sci. Appl. 10 219Google Scholar

    [27]

    Cuce E, Cuce P M, Karakas I H, Bali T 2017 Energ. Convers. Manage. 146 205Google Scholar

    [28]

    Xu C Y, Hu W, Wang G, Niu L B, Elseman A M, Liao L P, Yao Y Q, Xu G B, Luo L, Liu D B, Zhou G D, Li P, Song Q L 2020 ACS Nano 14 196Google Scholar

  • 图 1  仿真模型及结构参数 (a)基于金属图案的钙钛矿电池示意图; (b)不同金属图案的形状及特征参数; (c)金属图案与光波的共振作用示意图

    Figure 1.  Simulation model and structural parameters: (a) Schematic diagram of a perovskite solar cell based on metal patterns; (b) shapes and characteristic parameters of different metal patterns; (c) schematic diagram of the resonance interaction between metal patterns and light waves.

    图 2  金属圆环的吸收、散射及消光光谱随特征参数的变化关系

    Figure 2.  Dependence of absorption, scattering and extinction spectra of metal annulus on its characteristic parameters.

    图 3  $ \lambda =800\;{\mathrm{n}}{\mathrm{m}} $时, 金属圆环的吸收、散射及消光截面随厚度的变化关系

    Figure 3.  Relationship between absorption, scattering, and extinction of a metal annulus varies with its thickness at $ \lambda =800\;{\mathrm{n}}{\mathrm{m}} $.

    图 4  金属圆环的表面等离激元共振响应特性 (a)相对吸收、散射及消光曲线; (b)光子散射角分布; (c)剖面光强分布; (d)俯视光强分布

    Figure 4.  SPR response characteristics of metal annulus: (a) Relative absorption, scattering, and extinction curves; (b) angular distribution of light scattered by the silver annulus; (c), (d) the spatial distribution of the electric field viewed from (c) a profile perspective and (d) a top-down perspective.

    图 5  金属图案调控的钙钛矿电池的光电响应特性

    Figure 5.  Photoelectric response characteristics of perovskite solar cells incorporating different shapes of metal patterns.

    表 1  不同金属图案的最优结构参数及相应的SPR响应特性

    Table 1.  Optimal structural parameters and corresponding SPR response characteristics of different metallic patterns.

    T/nmP/nmD/nmd/nm$ {\lambda }_{{\mathrm{m}}{\mathrm{a}}{\mathrm{x}}} $/nmQabsQscaQext
    Square189003507600.531.341.87
    Annulus188503601007720.541.391.93
    Triangle207004807780.310.821.13
    Circle127803507140.611.201.81
    DownLoad: CSV
  • [1]

    Huang Z Q, Li L, Wu T Q, Xue T Y, Sun W, Pan Q, Wang H D, Xie H F, Chi J M, Han T, Hu X T, Su M, Chen Y W, Song Y L 2023 Nat. Commun. 14 1204Google Scholar

    [2]

    姚美灵, 廖纪星, 逯好峰, 黄强, 崔艳峰 2024 物理学报 8 088801Google Scholar

    Yao M L, Liao J X, Lu H F, Huang Q, Cui Y F 2024 Acta Phys. Sin. 8 088801Google Scholar

    [3]

    Zhu H, Teale S, Lintangpradipto M N, Mahesh S, Chen B, McGehee M D, Sargent E H, Bakr O M 2023 Nat. Rev. Mater. 8 569Google Scholar

    [4]

    Raza H, Imran T, Gao Y, Azeem M, Younis M, Wang J N, Liu S W, Yang Z C, Liu Z H, Chen W 2024 Energ. Environ. Sci. 17 1819Google Scholar

    [5]

    Green M A, Dunlop E D, Yoshita M, Kopidakis N, Bothe K, Siefer G, Hao X 2023 Prog. Photovoltaics 31 651Google Scholar

    [6]

    The National Renewable Energy Laboratory (NREL) 2024 https://www.nrel.gov/pv/cell-efficiency.html/

    [7]

    崔兴华, 许巧静, 石标, 侯福华, 赵颖, 张晓丹 2020 物理学报 69 207401Google Scholar

    Cui X H, Xu Q J, Shi B, Hou F H, Zhao Y, Zhang X D 2020 Acta Phys. Sin. 69 207401Google Scholar

    [8]

    Park J, Kim J, Yun H, Paik M J, Noh E, Mun H J, Kim M G, Shin T J, Seok S I 2023 Nature 616 724Google Scholar

    [9]

    Chen R, Liu S W, Xu X J, Ren F M, Zhou J, Tian X Y, Yang Z C, Guanz X Y, Liu Z H, Zhang S S, Zhang Y Q, Wu Y Z, Han L Y, Qi Y B, Chen W 2022 Energ. Environ. Sci. 15 2567Google Scholar

    [10]

    Shen X Q, Lin X S, Peng Y, Zhang Y Q, Long F, Han Q F, Wang Y B, Han L Y 2024 Nano-Micro Lett. 16 201Google Scholar

    [11]

    Zhang S F, Ye F, Wang X Y, Chen R, Zhang H D, Zhan L Q, Jiang X Y, Li Y W, Ji X Y, Liu S J, Yu M J, Yu F R, Zhang Y L, Wu R H, Liu Z H, Ning Z J, Neher D, Han L Y, Lin Y Z, Tian H, Chen W, Stolterfoht M, Zhang L J, Zhu W H, Wu Y Z 2023 Science 380 404Google Scholar

    [12]

    Huang Y M, Wu Y Z, Xu X L, Qin F F, Zhang S H, An J K, Wang H J, Liu L 2022 Chin. Phys. B 31 128802Google Scholar

    [13]

    赵颂, 周华, 王淑英, 韩非, 蒋斯涵, 沈向前 2022 物理学报 71 038801Google Scholar

    Zhao S, Zhou H, Wang S Y, Han F, Jiang S H, Shen X Q 2022 Acta Phys. Sin. 71 038801Google Scholar

    [14]

    Berry F, Mermet Lyaudoz R, Cuevas Davila J M, Djemmah D A, Nguyen H S, Seassal C, Fourmond E, Chevalier C, Amara M, Drouard E 2022 Adv. Energy Mater. 12 2200505Google Scholar

    [15]

    Moakhar S R, Gholipour S, Masudy-Panah S, Seza A, Mehdikhani A, Riahi-Noori N, Tafazoli S, Timasi N, Lim Y F, Saliba M 2020 Adv. Sci. 7 1902448Google Scholar

    [16]

    Li Y F, Kou Z L, Feng J, Sun H B 2020 Nanophotonics-Berlin 9 3111Google Scholar

    [17]

    Yan G D, Zhang Z H, Guo H, Chen J P, Jiang Q S, Cui Q N, Shi Z L, Xu C X 2023 Chin. Phys. B 32 067302Google Scholar

    [18]

    Atwater H A, Polman A 2010 Nat. Mater. 9 205Google Scholar

    [19]

    Ueno K, Oshikiri T, Sun Q, Shi X, Misawa H 2018 Chem. Rev. 118 2955Google Scholar

    [20]

    Zhang W, Saliba M, Stranks S D, Sun Y, Shi X, Wiesner U, Snaith H J 2013 Nano Lett. 13 4505Google Scholar

    [21]

    Saliba M, Zhang W, Burlakov V M, Stranks S D, Sun Y, Ball J M, Johnston M B, Goriely A, Wiesner U, Snaith H J 2015 Adv. Funct. Mater. 25 5038Google Scholar

    [22]

    Yuan Z C, Wu Z W, Bai S, Xia Z H, Xu W D, Song T, Wu H H, Xu L H, Si J J, Jin Y Z, Sun B Q 2015 Adv. Energy Mater. 5 1500038Google Scholar

    [23]

    Cui X, Chen Y H, Zhang M, Harn Y W, Qi J B, Gao L K, Wang Z L, Huang J S, Yang Y K, Lin Z Q 2020 Energ. Environ. Sci. 13 1743Google Scholar

    [24]

    Yao K, Zhong H J, Liu Z L, Xiong M, Leng S F, Zhang J, Xu Y X, Wang W Y, Zhou L, Huang H T, Jen A K Y 2019 Acs Nano 13 5397Google Scholar

    [25]

    Li F Z, Lo T W, Deng X, Li S Q, Fan Y L, Lin F R, Cheng Y H, Zhu Z L, Lei D Y, Jen A K Y 2022 Adv. Energy Mater. 12 2200186Google Scholar

    [26]

    Yao K, Li S Q, Liu Z, Ying Y, Dvořák P, Fei L, Sikola T, Huang H T, Nordlander P, Jen A K Y, Lei D 2021 Light-Sci. Appl. 10 219Google Scholar

    [27]

    Cuce E, Cuce P M, Karakas I H, Bali T 2017 Energ. Convers. Manage. 146 205Google Scholar

    [28]

    Xu C Y, Hu W, Wang G, Niu L B, Elseman A M, Liao L P, Yao Y Q, Xu G B, Luo L, Liu D B, Zhou G D, Li P, Song Q L 2020 ACS Nano 14 196Google Scholar

  • [1] Zhu Xiao-Li, Qiu Peng, Wei Hui-Yun, He Ying-Feng, Liu Heng, Tian Feng, Qiu Hong-Yu, Du Meng-Chao, Peng Ming-Zeng, Zheng Xin-He. Theoretical analysis of GaN-based semiconductor in changing performanc of perovskite solar cell. Acta Physica Sinica, 2023, 72(10): 107702. doi: 10.7498/aps.72.20230100
    [2] Sun Ying-Hui, Mu Cong-Yan, Jiang Wen-Gui, Zhou Liang, Wang Rong-Ming. Interface modulation and physical properties of heterostructure of metal nanoparticles and two-dimensional materials. Acta Physica Sinica, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [3] Xu Qiang-Qiang, Ji Xu, Li Ming, Liu Jia-Xing, Li Hai-Li. Performances of thermoelectric module under solar Fresnel concentration. Acta Physica Sinica, 2016, 65(23): 237201. doi: 10.7498/aps.65.237201
    [4] Zhang Kong, Bai Jian-Dong, He Jun, Wang Jun-Min. Influence of laser linewidth on the conversion efficiency of single-pass frequency doubling with a PPMgO: LN crystal. Acta Physica Sinica, 2016, 65(7): 074207. doi: 10.7498/aps.65.074207
    [5] Liu Li-Shuang, Chou Xiu-Jian, Chen Tao, Sun Li-Ning. Effects of silver nanoparticles on Raman spectrum and fluorescence enhancement of nano-diamond. Acta Physica Sinica, 2016, 65(19): 197301. doi: 10.7498/aps.65.197301
    [6] Liu Yong-Bo, Jian Yong-Jun. Electrokinetic energy conversion efficiency in a polyelectrolyte-grafted nanotube. Acta Physica Sinica, 2016, 65(8): 084704. doi: 10.7498/aps.65.084704
    [7] Wang Chang-Hong, Lin Tao, Zeng Zhi-Huan. Analysis and simulation of semiconductor thermoelectric power generation process. Acta Physica Sinica, 2014, 63(19): 197201. doi: 10.7498/aps.63.197201
    [8] Jiang Man, Xiao Hu, Zhou Pu, Wang Xiao-Lin, Liu Ze-Jin. High power and low quantum-defect Yb-doped fiber amplifier based on tandem pumping. Acta Physica Sinica, 2013, 62(4): 044210. doi: 10.7498/aps.62.044210
    [9] Qu Jun-Rong, Zheng Jian-Bang, Wang Chun-Feng, Wu Guang-Rong, Wang Xue-Yan. Effect of carbon nanotubes on the properties of polymer MOPPV-PbSe quantum dot composites. Acta Physica Sinica, 2013, 62(12): 128801. doi: 10.7498/aps.62.128801
    [10] Li Pei-Li, Shi Wei-Hua, Huang De-Xiu, Zhang Xin-Liang. Theoretical investigation of orthogonal dual-pump four-wave mixing in semiconductor optical amplifier. Acta Physica Sinica, 2012, 61(8): 084209. doi: 10.7498/aps.61.084209
    [11] Xu Jia-Xiong, Yao Ruo-He. Investigation of the photovoltaic performance of n-ZnO:Al/i-ZnO/n-CdS/p-Cu2ZnSnS4 solar cell. Acta Physica Sinica, 2012, 61(18): 187304. doi: 10.7498/aps.61.187304
    [12] Cong Chao, Wu Da-Jian, Liu Xiao-Jun, Li Bo. Study on the localized surface plasmon resonance properties of bimetallic gold and silver three-layered nanotubes. Acta Physica Sinica, 2012, 61(3): 037301. doi: 10.7498/aps.61.037301
    [13] Li Yu-Tong, Liu Feng, Zhang Yi, Lin Xiao-Xuan, Wang Shou-Jun, Wang Zhao-Hua, Li Ying-Jun, Sheng Zheng-Ming, Xu Miao-Hua, Wei Zhi-Yi, Zhang Jie, Zheng Jun, Meng Li-Min. Enhancement of ion generation in low-contrast laser-foil interactions by defocusing. Acta Physica Sinica, 2011, 60(4): 045204. doi: 10.7498/aps.60.045204
    [14] Cao Wei-Jun, Cheng Chun-Zhi, Zhou Xiao-Xin. The relationship between conversion efficiency of high-order harmonic generation from atom and wavelength in two-color combined fields. Acta Physica Sinica, 2011, 60(5): 054210. doi: 10.7498/aps.60.054210
    [15] Fang Xin, Shen Wen-Zhong. Oxygen and carbon behaviors in multi-crystalline silicon and their effect on solar cell conversion efficiency. Acta Physica Sinica, 2011, 60(8): 088801. doi: 10.7498/aps.60.088801
    [16] Zhou Cheng, Gao Yan-Xia, Wang Pei-Ji, Zhang Zhong, Li Ping. Theoretical analysis of second-harmonic conversion efficiency in negative-index materials. Acta Physica Sinica, 2009, 58(2): 914-918. doi: 10.7498/aps.58.914
    [17] Cai Yi, Wang Wen-Tao, Yang Ming, Liu Jian-Sheng, Lu Pei-Xiang, Li Ru-Xin, Xu Zhi-Zhan. Experimental study on extreme ultraviolet light generation from high power laser-irradiated tin slab. Acta Physica Sinica, 2008, 57(8): 5100-5104. doi: 10.7498/aps.57.5100
    [18] Hu Da-Wei, Wang Zheng-Ping, Zhang Huai-Jin, Xu Xin-Guang, Wang Ji-Yang, Shao Zong-Shu. Stimulated Raman scattering of YbVO4 crystal. Acta Physica Sinica, 2008, 57(3): 1714-1718. doi: 10.7498/aps.57.1714
    [19] Wu Da-Jian, Liu Xiao-Jun. Study on the optical absorption of gold nanoshells by Mie theory. Acta Physica Sinica, 2008, 57(8): 5138-5142. doi: 10.7498/aps.57.5138
    [20] Song Hui-Jin, Zheng Jia-Gui, Feng Liang-Huan, Cai Wei, Cai Ya-Ping, Zhang Jing-Quan, Li Wei, Li Bing, Wu Li-Li, Lei Zhi, Yan Qiang. Performance of CdTe solar cells with different back electrodes and back contact layers. Acta Physica Sinica, 2007, 56(3): 1655-1661. doi: 10.7498/aps.56.1655
Metrics
  • Abstract views:  613
  • PDF Downloads:  26
  • Cited By: 0
Publishing process
  • Received Date:  01 May 2024
  • Accepted Date:  09 June 2024
  • Available Online:  03 July 2024
  • Published Online:  20 August 2024

/

返回文章
返回