Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Photovoltaic properties of novel quaternary chalcogenides based on high-throughput screening and first-principles calculations

Kang Jia-Xing Yan Quan-He Cao Hao-Yu Meng Wei-Wei Xu Fei Hong Feng

Citation:

Photovoltaic properties of novel quaternary chalcogenides based on high-throughput screening and first-principles calculations

Kang Jia-Xing, Yan Quan-He, Cao Hao-Yu, Meng Wei-Wei, Xu Fei, Hong Feng
PDF
HTML
Get Citation
  • In recent decades, the demand for clean energy has promoted extensive research on solar cells as a key renewable energy source. Among the various emerging absorber layer materials, Kesterite-type semiconductors have aroused significant interest. Especially, Kesterite Cu2ZnSnS4 (CZTS) stands out as a promising candidate for low-cost thin-film solar cells due to its direct bandgap, high optical absorption coefficient, suitable bandgap (1.39–1.52 eV), and abundance of constituent elements. However, the power conversion efficiency (PCE) of CZTS-based solar cells currently lags behind that of Cu(In,Ga)Se2 (CIGS) cells, mainly due to insufficient open-circuit voltage caused by a large number of disordered cations and defect clusters, resulting in non-radiative recombination and band-tail states.To address these challenges, partial or complete cation substitution has become a viable strategy for altering the harmful defects in CZTS. This study proposes a heterovalent substitution of Zn in CZTS and explores the potential of novel quaternary chalcogenide compound A2M2M'Q4 (A = Na, K, Rb, Cs, In, Tl; M = Cu, Ag, Au; M' = Ti, Zr, Hf, Ge, Sn; Q = S, Se, Te) as absorbers for solar cells. By substituting elements in five prototype structures, a comprehensive material database comprising 1350 A2M2M'Q4 compounds is established.High-throughput screening and first-principles calculations are used to evaluate the thermodynamic stabilities, band gaps, spectroscopic limited maximum efficiencies (SLMEs), and phonon dispersions of these compounds. Our research results indicate that 543 compounds exhibit thermodynamic stability (Ehull < 0.01 eV/atom), 202 compounds possess suitable band gaps (1.0–1.5 eV), and 10 compounds meet all the criteria for thermodynamic and dynamic stability, suitable band gaps, and high optical absorption performance (104–106 cm–1), with theoretical SLME values exceeding 30%.Notably, Ibam-Rb2Ag2GeTe4 exhibits the highest SLME (31.8%) in these candidates, featuring a band gap of 1.27 eV and a small carrier effective mass (< m0). The electronic structures and optical properties of these compounds are comparable to those of CZTS, which makes them suitable for highly efficient single-junction thin-film solar cells.All the data presented in this work can be found at https://www.doi.org/10.57760/sciencedb.j00213.00006.
      Corresponding author: Xu Fei, feixu@shu.edu.cn ; Hong Feng, fenghong@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62350054, 12175131, 12374379).
    [1]

    Gloeckler M, Sankin I, Zhao Z 2013 IEEE J. Photovolt. 3 1389Google Scholar

    [2]

    Sobayel K, Shahinuzzaman M, Amin N, Karim M R, Dar M A, Gul R, Alghoul M A, Sopian K, Hasan A K M, Akhtaruzzaman M 2020 Sol. Energy 207 479Google Scholar

    [3]

    Zhou J Z, Xu X, Wu H J, Wang J L, Lou L C, Yin K, Gong Y C, Shi J J, Luo Y H, Li D M, Xin H, Meng Q B 2023 Nat. Energy 8 526Google Scholar

    [4]

    Zhang Z F, Yuan X, Lu Y S, He D M, Yan Q H, Cao H Y, Hong F, Jiang Z M, Xu R, Ma Z Q, Song H W, Xu F 2024 Acta Phys. Sin. 73 098803Google Scholar

    [5]

    Wang J, Chen H, Wei S H, Yin W J 2019 Adv. Mater. 31 1806593Google Scholar

    [6]

    Keller J, Kiselman K, Donzel Gargand O, Martin N M, Babucci M, Lundberg O, Wallin E, Stolt L, Edoff M 2024 Nat. Energy 9 467Google Scholar

    [7]

    Todorov T K, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y, Mitzi D B 2013 Adv. Energy Mater. 3 34Google Scholar

    [8]

    Wang K, Gunawan O, Todorov T, Shin B, Chey S J, Bojarczuk N A, Mitzi D, Guha S 2010 Appl. Phys. Lett. 97 143508Google Scholar

    [9]

    Mitzi D B, Gunawan O, Todorov T K, Wang K, Guha S 2011 Sol. Energy Mater. Sol. Cells 95 1421Google Scholar

    [10]

    Niki S, Contreras M, Repins I, Powalla M, Kushiya K, Ishizuka S, Matsubara K 2010 Prog. Photovoltaics 18 453Google Scholar

    [11]

    Chen S Y, Walsh A, Gong X G, Wei S H 2013 Adv. Mater. 25 1522Google Scholar

    [12]

    Shin D, Saparov B, Mitzi D B 2017 Adv. Energy Mater. 7 1602366Google Scholar

    [13]

    Chen S Y, Yang J H, Gong X G, Walsh A, Wei S H 2010 Phys. Rev. B 81 245204Google Scholar

    [14]

    Rey G, Larramona G, Bourdais S, Choné C, Delatouche B, Jacob A, Dennler G, Siebentritt S 2018 Sol. Energy Mater. Sol. Cells 179 142Google Scholar

    [15]

    Gershon T, Lee Y S, Antunez P, Mankad R, Singh S, Bishop D, Gunawan O, Hopstaken M, Haight R 2016 Adv. Energy Mater. 6 1502468Google Scholar

    [16]

    Gong Y C, Qiu R C, Niu C Y, Fu J J, Jedlicka E, Giridharagopal R, Zhu Q, Zhou Y G, Yan W B, Yu S T, Jiang J J, Wu S X, Ginger D S, Huang W, Xin H 2021 Adv. Funct. Mater. 31 2101927Google Scholar

    [17]

    Chagarov E, Sardashti K, Kummel A C, Lee Y S, Haight R, Gershon T S 2016 J. Chem. Phys. 144 104704Google Scholar

    [18]

    Yuan Z K, Chen S Y, Xiang H, Gong X G, Walsh A, Park J S, Repins I, Wei S H 2015 Adv. Funct. Mater. 25 6733Google Scholar

    [19]

    Zhang J, Liao J, Shao L X, Xue S W, Wang Z G 2018 Chin. Phys. Lett. 35 083101Google Scholar

    [20]

    Su Z, Tan J M R, Li X, Zeng X, Batabyal S K, Wong L H 2015 Adv. Energy Mater. 5 1500682Google Scholar

    [21]

    Bao W, Sachuronggui, Qiu F Y 2016 Chin. Phys. B 25 127102Google Scholar

    [22]

    Yan C, Sun K, Huang J, Johnston S, Liu F, Veettil B P, Sun K, Pu A, Zhou F, Stride J A, Green M A, Hao X 2017 ACS Energy Lett. 2 930Google Scholar

    [23]

    Luan H M, Yao B, Li Y F, Liu R J, Ding Z H, Zhang Z Z, Zhao H F, Zhang L G 2021 J. Alloy. Compd. 876 160160Google Scholar

    [24]

    Su Z H, Liang G X, Fan P, Luo J T, Zheng Z H, Xie Z G, Wang W, Chen S, Hu J G, Wei Y D, Yan C, Huang J L, Hao X J, Liu F Y 2020 Adv. Mater. 32 2000121Google Scholar

    [25]

    Wang C C, Chen S Y, Yang J H, Lang L, Xiang H J, Gong X G, Walsh A, Wei S H 2014 Chem. Mater. 26 3411Google Scholar

    [26]

    Shin D, Saparov B, Zhu T, Huhn W P, Blum V, Mitzi D B 2016 Chem. Mater. 28 4771Google Scholar

    [27]

    Ge J, Yu Y, Yan Y F 2016 ACS Energy Lett. 1 583Google Scholar

    [28]

    Chen Z, Sun K W, Su Z H, Liu F Y, Tang D, Xiao H R, Shi L, Jiang L X, Hao X J, Lai Y Q 2018 ACS Appl. Energ. Mater. 1 3420Google Scholar

    [29]

    Hong F, Lin W, Meng W W, Yan Y F 2016 Phys. Chem. Chem. Phys. 18 4828Google Scholar

    [30]

    Xiao Z W, Meng W W, Li J V, Yan Y F 2017 ACS Energy Lett. 2 29Google Scholar

    [31]

    Zhu T, Huhn W P, Wessler G C, Shin D, Saparov B, Mitzi D B, Blum V 2017 Chem. Mater. 29 7868Google Scholar

    [32]

    Teymur B, Kim Y, Huang J, Sun K, Hao X, Mitzi D B 2022 Adv. Energy Mater. 12 2201602Google Scholar

    [33]

    Du Y C, Wang S S, Tian Q W, Zhao Y C, Chang X H, Xiao H Q, Deng Y Q, Chen S Y, Wu S X, Liu S Z 2021 Adv. Funct. Mater. 31 2010325Google Scholar

    [34]

    Kuo D H, Tsega M 2014 Jpn. J. Appl. Phys. 53 035801Google Scholar

    [35]

    Sun Q Z, Shi C, Xie W H, Li Y F, Zhang C X, Wu J H, Zheng Q, Deng H, Cheng S Y 2024 Adv. Sci. 11 2306740Google Scholar

    [36]

    Maeda T, Kawabata A, Wada T 2015 Phys. Status Solidi. Conf. 12 631Google Scholar

    [37]

    Chen S, Gong X G, Walsh A, Wei S H 2009 Phys. Rev. B 79 165211Google Scholar

    [38]

    Liao J H, Kanatzidis M G 1993 Chem. Mater. 5 1561Google Scholar

    [39]

    Löken S, Tremel W 1998 Z. Anorg. Allg. Chem. 624 1588Google Scholar

    [40]

    Li J, Guo H Y, Proserpio D M, Sironi A 1995 J. Solid State Chem. 117 247Google Scholar

    [41]

    Chen X A, Huang X Y, Fu A H, Li J, Zhang L D, Guo H Y 2000 Chem. Mater. 12 2385Google Scholar

    [42]

    An Y, Baiyin M, Liu X, Ji M, Jia C, Ning G 2004 Inorg. Chem. Commun. 7 114Google Scholar

    [43]

    Mansuetto M F, Ibers J A 1995 IEEE J. Solid-State Circuit 117 30Google Scholar

    [44]

    Pell M A, Ibers J A 2002 J. Am. Chem. Soc. 117 6284Google Scholar

    [45]

    Huang F Q, Ibers J A 2001 Inorg. Chem. 40 2602Google Scholar

    [46]

    Sun B H, He J Q, Zhang X, Bu K J, Zheng C, Huang F Q 2017 J. Alloy. Compd. 725 557Google Scholar

    [47]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002Google Scholar

    [48]

    Hafner J 2008 J. Comput. Chem. 29 2044Google Scholar

    [49]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [50]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [51]

    Paier J, Marsman M, Hummer K, Kresse G, Gerber I C, Ángyán J G 2006 J. Chem. Phys. 124 154709Google Scholar

    [52]

    Ong S P, Wang L, Kang B, Ceder G 2008 Chem. Mater. 20 1798Google Scholar

    [53]

    Ong S P, Jain A, Hautier G, Kang B, Ceder G 2010 Electrochem. Commun. 12 427Google Scholar

    [54]

    Wang A, Kingsbury R, McDermott M, Horton M, Jain A, Ong S P, Dwaraknath S, Persson K A 2021 Sci Rep 11 15496Google Scholar

    [55]

    Togo A 2022 J. Phys. Soc. Jpn. 92 012001Google Scholar

    [56]

    Togo A, Chaput L, Tadano T, Tanaka I 2023 J. Phys. : Condens. Matter 35 353001Google Scholar

    [57]

    Wang V, Xu N, Liu J C, Tang G, Geng W T 2021 Comput. Phys. Commun. 267 108033Google Scholar

    [58]

    Jin H, Zhang H, Li J, Wang T, Wan L, Guo H, Wei Y 2019 J. Phys. Chem. Lett. 10 5211Google Scholar

    [59]

    Singh A K, Montoya J H, Gregoire J M, Persson K A 2019 Nat. Commun. 10 443Google Scholar

    [60]

    Liu Y T, Li X B, Zheng H, Chen N K, Wang X P, Zhang X L, Sun H B, Zhang S 2021 Adv. Funct. Mater. 31 2009803Google Scholar

    [61]

    Sun W, Dacek S T, Ong S P, Hautier G, Jain A, Richards W D, Gamst A C, Persson K A, Ceder G 2016 Sci. Adv. 2 e1600225Google Scholar

    [62]

    Morales García Á, Valero R, Illas F 2017 J. Phys. Chem. C 121 18862Google Scholar

    [63]

    Tran F, Blaha P 2009 Phys. Rev. Lett. 102 226401Google Scholar

    [64]

    Zeng L, Yi Y, Hong C, Liu J, Feng N, Duan X, Kimerling L C, Alamariu B A 2006 Appl. Phys. Lett. 89 111111Google Scholar

    [65]

    Gan Y, Miao N, Lan P, Zhou J Z, Elliott S R, Sun Z 2022 J. Am. Chem. Soc. 144 5878Google Scholar

    [66]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510Google Scholar

    [67]

    Yu L, Zunger A 2012 Phys. Rev. Lett. 108 068701Google Scholar

    [68]

    Wang V, Tang G, Liu Y C, Wang R T, Mizuseki H, Kawazoe Y, Nara J, Geng W T 2022 J. Phys. Chem. Lett. 13 11581Google Scholar

    [69]

    Zheng F, Tan L Z, Liu S, Rappe A M 2015 Nano Lett. 15 7794Google Scholar

    [70]

    Deringer V L, Tchougréeff A L, Dronskowski R 2011 J. Phys. Chem. A 115 5461Google Scholar

    [71]

    Yang D W, Lv J, Zhao X G, Xu Q L, Fu Y H, Zhan Y Q, Zunger A, Zhang L J 2017 Chem. Mater. 29 524Google Scholar

    [72]

    Yamada Y, Nakamura T, Endo M, Wakamiya A, Kanemitsu Y 2015 IEEE J. Photovolt. 5 401Google Scholar

    [73]

    Pandey M, Rasmussen F A, Kuhar K, Olsen T, Jacobsen K W, Thygesen K S 2016 Nano Lett. 16 2234Google Scholar

    [74]

    Wexler R B, Gautam G S, Stechel E B, Carter E A 2021 J. Am. Chem. Soc. 143 13212Google Scholar

  • 图 1  5种四元硫族化合物A2M2M'Q4原型的晶体结构

    Figure 1.  Five prototypes of A2M2M'Q4.

    图 2  使用高通量第一性原理计算筛选新材料的工作流程示意图

    Figure 2.  Schematic workflow of novel materials’ discovery with high-throughput first principle calculations.

    图 3  (a) 1350种A2M2M'Q4化合物的Ehull和$ {{E}}_{\text{g}}^{\text{PBE}} $的散点图和直方图; (b) 202种化合物的ΔEg直方图

    Figure 3.  (a) The scatter plot and histograms of Ehull and $ {{E}}_{\text{g}}^{\text{PBE}} $ for 1350 A2M2M'Q4 compounds; (b) histogram of ΔEg for 202 compounds.

    图 4  (a) 72种化合物在薄膜厚度为2 μm时的SLME与$ {{E}}_{\text{g}}^{\text{HSE}} $的关系图, 蓝线为Shockley-Queisser极限; (b) Ibam-Rb2Ag2SnTe4的声子色散谱; 4种SLME超过31%的候选材料, CZTS和CZTSe的(c) SLME与薄膜厚度的关系和(d) 光吸收系数

    Figure 4.  (a) SLME at 2 μm vs. the HSE bandgap $ {{E}}_{\text{g}}^{\text{HSE}} $ for the 72 compounds, the blue curve represents the Shockley-Queisser limit; (b) phonon dispersion of Ibam-Rb2Ag2SnTe4; (c) thickness dependent SLME values and (d) optical absorption spectra of the top 4 compounds (SLME > 31%), CZTS and CZTSe.

    图 5  (a) Ibam-Rb2Ag2GeTe4; (b) P2/c-Rb2Cu2GeTe4的能带结构、分态密度、晶体结构和载流子有效质量

    Figure 5.  Band structure, partial density of states (PDOS), structure and effective mass of (a) Ibam-Rb2Ag2GeTe4; (b) P2/c-Rb2Cu2GeTe4.

    表 1  四元硫族化合物A2M2M'Q4实验报道的带隙和结构与本工作的对比

    Table 1.  Reported structures and bandgap for A2M2M'Q4 systems.

    Compounds Ehull/(eV·atom–1) Stable phase Eg/eV
    Experiment This work Experiment HSE06
    Na2Cu2ZrS4[43] 0.129 C2/m Ibam 0.07
    Cs2Ag2ZrTe4[44] 0 C222 C222 2.08
    Rb2Cu2SnS4[38] 0.012 Ibam Ibam 2.08 2.02
    K2Ag2SnSe4[41] 0 P2/c P2/c 1.8 1.69
    Cs2Ag2TiS4[45] 0.001 P42/mcm P42/mcm 2.44 2.44
    Cs2Cu2TiS4[45] 0 P42/mcm P42/mcm 2.56
    K2Cu2TiS4[45] 0.002 P42/mcm P42/mcm 2.04 2.62
    Rb2Ag2TiS4[45] 0.002 P42/mcm P42/mcm 2.33 2.45
    Rb2Cu2TiS4[45] 0.001 P42/mcm P42/mcm 2.19 2.63
    DownLoad: CSV
  • [1]

    Gloeckler M, Sankin I, Zhao Z 2013 IEEE J. Photovolt. 3 1389Google Scholar

    [2]

    Sobayel K, Shahinuzzaman M, Amin N, Karim M R, Dar M A, Gul R, Alghoul M A, Sopian K, Hasan A K M, Akhtaruzzaman M 2020 Sol. Energy 207 479Google Scholar

    [3]

    Zhou J Z, Xu X, Wu H J, Wang J L, Lou L C, Yin K, Gong Y C, Shi J J, Luo Y H, Li D M, Xin H, Meng Q B 2023 Nat. Energy 8 526Google Scholar

    [4]

    Zhang Z F, Yuan X, Lu Y S, He D M, Yan Q H, Cao H Y, Hong F, Jiang Z M, Xu R, Ma Z Q, Song H W, Xu F 2024 Acta Phys. Sin. 73 098803Google Scholar

    [5]

    Wang J, Chen H, Wei S H, Yin W J 2019 Adv. Mater. 31 1806593Google Scholar

    [6]

    Keller J, Kiselman K, Donzel Gargand O, Martin N M, Babucci M, Lundberg O, Wallin E, Stolt L, Edoff M 2024 Nat. Energy 9 467Google Scholar

    [7]

    Todorov T K, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y, Mitzi D B 2013 Adv. Energy Mater. 3 34Google Scholar

    [8]

    Wang K, Gunawan O, Todorov T, Shin B, Chey S J, Bojarczuk N A, Mitzi D, Guha S 2010 Appl. Phys. Lett. 97 143508Google Scholar

    [9]

    Mitzi D B, Gunawan O, Todorov T K, Wang K, Guha S 2011 Sol. Energy Mater. Sol. Cells 95 1421Google Scholar

    [10]

    Niki S, Contreras M, Repins I, Powalla M, Kushiya K, Ishizuka S, Matsubara K 2010 Prog. Photovoltaics 18 453Google Scholar

    [11]

    Chen S Y, Walsh A, Gong X G, Wei S H 2013 Adv. Mater. 25 1522Google Scholar

    [12]

    Shin D, Saparov B, Mitzi D B 2017 Adv. Energy Mater. 7 1602366Google Scholar

    [13]

    Chen S Y, Yang J H, Gong X G, Walsh A, Wei S H 2010 Phys. Rev. B 81 245204Google Scholar

    [14]

    Rey G, Larramona G, Bourdais S, Choné C, Delatouche B, Jacob A, Dennler G, Siebentritt S 2018 Sol. Energy Mater. Sol. Cells 179 142Google Scholar

    [15]

    Gershon T, Lee Y S, Antunez P, Mankad R, Singh S, Bishop D, Gunawan O, Hopstaken M, Haight R 2016 Adv. Energy Mater. 6 1502468Google Scholar

    [16]

    Gong Y C, Qiu R C, Niu C Y, Fu J J, Jedlicka E, Giridharagopal R, Zhu Q, Zhou Y G, Yan W B, Yu S T, Jiang J J, Wu S X, Ginger D S, Huang W, Xin H 2021 Adv. Funct. Mater. 31 2101927Google Scholar

    [17]

    Chagarov E, Sardashti K, Kummel A C, Lee Y S, Haight R, Gershon T S 2016 J. Chem. Phys. 144 104704Google Scholar

    [18]

    Yuan Z K, Chen S Y, Xiang H, Gong X G, Walsh A, Park J S, Repins I, Wei S H 2015 Adv. Funct. Mater. 25 6733Google Scholar

    [19]

    Zhang J, Liao J, Shao L X, Xue S W, Wang Z G 2018 Chin. Phys. Lett. 35 083101Google Scholar

    [20]

    Su Z, Tan J M R, Li X, Zeng X, Batabyal S K, Wong L H 2015 Adv. Energy Mater. 5 1500682Google Scholar

    [21]

    Bao W, Sachuronggui, Qiu F Y 2016 Chin. Phys. B 25 127102Google Scholar

    [22]

    Yan C, Sun K, Huang J, Johnston S, Liu F, Veettil B P, Sun K, Pu A, Zhou F, Stride J A, Green M A, Hao X 2017 ACS Energy Lett. 2 930Google Scholar

    [23]

    Luan H M, Yao B, Li Y F, Liu R J, Ding Z H, Zhang Z Z, Zhao H F, Zhang L G 2021 J. Alloy. Compd. 876 160160Google Scholar

    [24]

    Su Z H, Liang G X, Fan P, Luo J T, Zheng Z H, Xie Z G, Wang W, Chen S, Hu J G, Wei Y D, Yan C, Huang J L, Hao X J, Liu F Y 2020 Adv. Mater. 32 2000121Google Scholar

    [25]

    Wang C C, Chen S Y, Yang J H, Lang L, Xiang H J, Gong X G, Walsh A, Wei S H 2014 Chem. Mater. 26 3411Google Scholar

    [26]

    Shin D, Saparov B, Zhu T, Huhn W P, Blum V, Mitzi D B 2016 Chem. Mater. 28 4771Google Scholar

    [27]

    Ge J, Yu Y, Yan Y F 2016 ACS Energy Lett. 1 583Google Scholar

    [28]

    Chen Z, Sun K W, Su Z H, Liu F Y, Tang D, Xiao H R, Shi L, Jiang L X, Hao X J, Lai Y Q 2018 ACS Appl. Energ. Mater. 1 3420Google Scholar

    [29]

    Hong F, Lin W, Meng W W, Yan Y F 2016 Phys. Chem. Chem. Phys. 18 4828Google Scholar

    [30]

    Xiao Z W, Meng W W, Li J V, Yan Y F 2017 ACS Energy Lett. 2 29Google Scholar

    [31]

    Zhu T, Huhn W P, Wessler G C, Shin D, Saparov B, Mitzi D B, Blum V 2017 Chem. Mater. 29 7868Google Scholar

    [32]

    Teymur B, Kim Y, Huang J, Sun K, Hao X, Mitzi D B 2022 Adv. Energy Mater. 12 2201602Google Scholar

    [33]

    Du Y C, Wang S S, Tian Q W, Zhao Y C, Chang X H, Xiao H Q, Deng Y Q, Chen S Y, Wu S X, Liu S Z 2021 Adv. Funct. Mater. 31 2010325Google Scholar

    [34]

    Kuo D H, Tsega M 2014 Jpn. J. Appl. Phys. 53 035801Google Scholar

    [35]

    Sun Q Z, Shi C, Xie W H, Li Y F, Zhang C X, Wu J H, Zheng Q, Deng H, Cheng S Y 2024 Adv. Sci. 11 2306740Google Scholar

    [36]

    Maeda T, Kawabata A, Wada T 2015 Phys. Status Solidi. Conf. 12 631Google Scholar

    [37]

    Chen S, Gong X G, Walsh A, Wei S H 2009 Phys. Rev. B 79 165211Google Scholar

    [38]

    Liao J H, Kanatzidis M G 1993 Chem. Mater. 5 1561Google Scholar

    [39]

    Löken S, Tremel W 1998 Z. Anorg. Allg. Chem. 624 1588Google Scholar

    [40]

    Li J, Guo H Y, Proserpio D M, Sironi A 1995 J. Solid State Chem. 117 247Google Scholar

    [41]

    Chen X A, Huang X Y, Fu A H, Li J, Zhang L D, Guo H Y 2000 Chem. Mater. 12 2385Google Scholar

    [42]

    An Y, Baiyin M, Liu X, Ji M, Jia C, Ning G 2004 Inorg. Chem. Commun. 7 114Google Scholar

    [43]

    Mansuetto M F, Ibers J A 1995 IEEE J. Solid-State Circuit 117 30Google Scholar

    [44]

    Pell M A, Ibers J A 2002 J. Am. Chem. Soc. 117 6284Google Scholar

    [45]

    Huang F Q, Ibers J A 2001 Inorg. Chem. 40 2602Google Scholar

    [46]

    Sun B H, He J Q, Zhang X, Bu K J, Zheng C, Huang F Q 2017 J. Alloy. Compd. 725 557Google Scholar

    [47]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002Google Scholar

    [48]

    Hafner J 2008 J. Comput. Chem. 29 2044Google Scholar

    [49]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [50]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [51]

    Paier J, Marsman M, Hummer K, Kresse G, Gerber I C, Ángyán J G 2006 J. Chem. Phys. 124 154709Google Scholar

    [52]

    Ong S P, Wang L, Kang B, Ceder G 2008 Chem. Mater. 20 1798Google Scholar

    [53]

    Ong S P, Jain A, Hautier G, Kang B, Ceder G 2010 Electrochem. Commun. 12 427Google Scholar

    [54]

    Wang A, Kingsbury R, McDermott M, Horton M, Jain A, Ong S P, Dwaraknath S, Persson K A 2021 Sci Rep 11 15496Google Scholar

    [55]

    Togo A 2022 J. Phys. Soc. Jpn. 92 012001Google Scholar

    [56]

    Togo A, Chaput L, Tadano T, Tanaka I 2023 J. Phys. : Condens. Matter 35 353001Google Scholar

    [57]

    Wang V, Xu N, Liu J C, Tang G, Geng W T 2021 Comput. Phys. Commun. 267 108033Google Scholar

    [58]

    Jin H, Zhang H, Li J, Wang T, Wan L, Guo H, Wei Y 2019 J. Phys. Chem. Lett. 10 5211Google Scholar

    [59]

    Singh A K, Montoya J H, Gregoire J M, Persson K A 2019 Nat. Commun. 10 443Google Scholar

    [60]

    Liu Y T, Li X B, Zheng H, Chen N K, Wang X P, Zhang X L, Sun H B, Zhang S 2021 Adv. Funct. Mater. 31 2009803Google Scholar

    [61]

    Sun W, Dacek S T, Ong S P, Hautier G, Jain A, Richards W D, Gamst A C, Persson K A, Ceder G 2016 Sci. Adv. 2 e1600225Google Scholar

    [62]

    Morales García Á, Valero R, Illas F 2017 J. Phys. Chem. C 121 18862Google Scholar

    [63]

    Tran F, Blaha P 2009 Phys. Rev. Lett. 102 226401Google Scholar

    [64]

    Zeng L, Yi Y, Hong C, Liu J, Feng N, Duan X, Kimerling L C, Alamariu B A 2006 Appl. Phys. Lett. 89 111111Google Scholar

    [65]

    Gan Y, Miao N, Lan P, Zhou J Z, Elliott S R, Sun Z 2022 J. Am. Chem. Soc. 144 5878Google Scholar

    [66]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510Google Scholar

    [67]

    Yu L, Zunger A 2012 Phys. Rev. Lett. 108 068701Google Scholar

    [68]

    Wang V, Tang G, Liu Y C, Wang R T, Mizuseki H, Kawazoe Y, Nara J, Geng W T 2022 J. Phys. Chem. Lett. 13 11581Google Scholar

    [69]

    Zheng F, Tan L Z, Liu S, Rappe A M 2015 Nano Lett. 15 7794Google Scholar

    [70]

    Deringer V L, Tchougréeff A L, Dronskowski R 2011 J. Phys. Chem. A 115 5461Google Scholar

    [71]

    Yang D W, Lv J, Zhao X G, Xu Q L, Fu Y H, Zhan Y Q, Zunger A, Zhang L J 2017 Chem. Mater. 29 524Google Scholar

    [72]

    Yamada Y, Nakamura T, Endo M, Wakamiya A, Kanemitsu Y 2015 IEEE J. Photovolt. 5 401Google Scholar

    [73]

    Pandey M, Rasmussen F A, Kuhar K, Olsen T, Jacobsen K W, Thygesen K S 2016 Nano Lett. 16 2234Google Scholar

    [74]

    Wexler R B, Gautam G S, Stechel E B, Carter E A 2021 J. Am. Chem. Soc. 143 13212Google Scholar

  • [1] Wang Fan-Fan, Chen Dong, Yuan Jun, Zhang Zhu-Feng, Jiang Tao, Zhou Jun. Interlayer angle dependence of photoelectric properties of Sb/SnC van der Waals heterojunction and its application. Acta Physica Sinica, 2024, 73(22): 227101. doi: 10.7498/aps.73.20241138
    [2] Mo Qiu-Yan, Zhang Song, Jing Tao, Zhang Hong-Yun, Li Xian-Xu, Wu Jia-Yin. First-principles study of surface modification of CuSe. Acta Physica Sinica, 2023, 72(12): 127301. doi: 10.7498/aps.72.20230093
    [3] Wang Lan, Cheng Si-Yuan, Zeng Hang-Hang, Xie Cong-Wei, Gong Yuan-Hao, Zheng Zhi, Fan Xiao-Li. Structure prediction of CuBiI ternary compound and first-principles study of photoelectric properties. Acta Physica Sinica, 2021, 70(20): 207305. doi: 10.7498/aps.70.20210145
    [4] Luo Xiong, Meng Wei-Wei, Chen Guo-Xu-Jia, Guan Xiao-Xi, Jia Shuang-Feng, Zheng He, Wang Jian-Bo. First-principles study of stability, electronic and optical properties of two-dimensional Nb2SiTe4-based materials. Acta Physica Sinica, 2020, 69(19): 197102. doi: 10.7498/aps.69.20200848
    [5] Gao Yun-Liang, Zhu Yuan-Jiang, Li Jin-Ping. First-principle study of initial irradiation damage in aluminum. Acta Physica Sinica, 2017, 66(5): 057104. doi: 10.7498/aps.66.057104
    [6] Ma Zhen-Ning, Jiang Min, Wang Lei. First-principles study of electronic structures and phase stabilities of ternary intermetallic compounds in the Mg-Y-Zn alloys. Acta Physica Sinica, 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [7] Tan Xing-Yi, Wang Jia-Heng, Zhu Yi-Yi, Zuo An-You, Jin Ke-Xin. First-principles calculations of phosphorene doped with carbon, oxygen and sulfur. Acta Physica Sinica, 2014, 63(20): 207301. doi: 10.7498/aps.63.207301
    [8] Linghu Jia-Jun, Liang Gong-Ying. First-principles study on the luminescence property of In-doped ZnTe. Acta Physica Sinica, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [9] Zhao Li-Kai, Zhao Er-Jun, Wu Zhi-Jian. First-principles calculations of structural thermodynamic and mechanical properties of 5d transitional metal diborides. Acta Physica Sinica, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [10] Hu Jie-Qiong, Xie Ming, Zhang Ji-Ming, Liu Man-Men, Yang You-Cai, Chen Yong-Tai. First principles study of Au-Sn intermetallic compounds. Acta Physica Sinica, 2013, 62(24): 247102. doi: 10.7498/aps.62.247102
    [11] Liu Chun-Hua, Ouyang Chu-Ying, Ji Ying-Hua. First principles investigation of electronic structuresand stabilities of Mg2Ni and its complex hydrides. Acta Physica Sinica, 2011, 60(7): 077103. doi: 10.7498/aps.60.077103
    [12] Liu Feng-Li, Jiang Gang, Bai Li-Na, Kong Fan-Jie. First-principles study on the electronic structures of diadochic compounds Bi2Te3- x Sex(x ≤3). Acta Physica Sinica, 2011, 60(3): 037104. doi: 10.7498/aps.60.037104
    [13] Nie Zhao-Xiu, Wang Feng, Cheng Zhi-Mei, Wang Xin-Qiang, Lu Li-Ya, Liu Gao-Bin, Duan Zhuang-Fen. First-principles study on electronic structure and half-metallicferromagnetism of ternary compound ZnCrS. Acta Physica Sinica, 2011, 60(9): 096301. doi: 10.7498/aps.60.096301
    [14] Ma Guo-Jia, Zhu Jia-Qi, Gong Shui-Li, Gao Wei. First principles studies of nitrogen doped tetrahedral amorphous carbon. Acta Physica Sinica, 2011, 60(2): 027104. doi: 10.7498/aps.60.027104
    [15] Nie Zhao-Xiu, Wang Feng, Cheng Zhi-Mei, Liu Gao-Bin, Wang Xin-Qiang. First principles study on half-metallic ferromagnetismof ternary compounds ZnVSe. Acta Physica Sinica, 2011, 60(4): 046301. doi: 10.7498/aps.60.046301
    [16] Luo Li-Jin, Zhong Chong-Gui, Jiang Xue-Fan, Fang Jing-Huai, Jiang Qing. A first-principles study of electronic structure, magnetism, response to pressure and tetragonal distortions of Ni2MnSi Heusler alloy. Acta Physica Sinica, 2010, 59(1): 521-526. doi: 10.7498/aps.59.521
    [17] Liu Bai-Nian, Ma Ying, Zhou Yi-Chun. First-principles study of defect properties in tetragonal BaTiO3. Acta Physica Sinica, 2010, 59(5): 3377-3383. doi: 10.7498/aps.59.3377
    [18] Xu Hong-Bin, Wang Yuan-Xu. First-principles study of low-compressibility of transition-metal Tc and its nitrides TcN,TcN2,TcN3 and TcN4. Acta Physica Sinica, 2009, 58(8): 5645-5652. doi: 10.7498/aps.58.5645
    [19] Zhu Jian-Xin, Li Yong-Hua, Meng Fan-Ling, Liu Chang-Sheng, Zheng Wei-Tao, Wang Yu-Ming. A first principles investigation on NiTi alloy. Acta Physica Sinica, 2008, 57(11): 7204-7209. doi: 10.7498/aps.57.7204
    [20] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. First-principles study of electronic structure for CoSi. Acta Physica Sinica, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
  • supplement 17-20240795Suppl.pdf supplement
Metrics
  • Abstract views:  2327
  • PDF Downloads:  76
  • Cited By: 0
Publishing process
  • Received Date:  05 June 2024
  • Accepted Date:  25 June 2024
  • Available Online:  12 August 2024
  • Published Online:  05 September 2024

/

返回文章
返回