Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of charged sand/dust atmosphere on performance of microwave quantum illumination radar

Yang Rui-Ke Wang Jia-Le

Citation:

Effect of charged sand/dust atmosphere on performance of microwave quantum illumination radar

Yang Rui-Ke, Wang Jia-Le
PDF
HTML
Get Citation
  • This work is to study the effects of charged sand/dust atmosphere on the performances of microwave quantum illumination (QI) radar. Based on Mie particle scattering theory, using a Monte Carlo method for simulating the physical process in which photon is scattered multiple times by discrete random distributed particles, the specific attenuation (dB/km) of microwave propagating in sand/dust atmosphere are analyzed under the conditions of varying atmospheric visibility and sand/dust particles with different charged quantities. It is indicated that the specific attenuation obtained by multiple scattering is smaller than that obtained based on Mie theory, for microwave propagating in charged sand/dust atmosphere. The smaller the atmospheric visibility, the greater the difference is, while the difference decreases gradually as the atmospheric visibility increases. Then, it is more reasonable to consider multiple scattering attenuation at lower atmospheric visibility. When sand/dust particle is charged, the specific attenuation is increased, however, this increase is not linear.According to quantum illumination radar theory, a beam splitter-based optical link model is used to simulate the sand/dust atmospheric channel. The effects of charged sand/dust atmosphere with different visibility on the detection error probability, signal-to-noise ratio, and maximum detection range for microwave quantum illumination radar are studied by using quantum radar equation and quantum detection error probability theory. The performances between QI radar and classical two-mode noise (TMN) radar are compared and analyzed. These results show that the performances of quantum illumination radar are improved with sand/dust atmospheric visibility increasing. When sand/dust particles are charged, the performances for QI radar are degraded due to attenuation increasing. The change in the performance is nonlinear with the variation of sand/dust carrying charge quantity. When visibility is high, increasing the signal frequency can improve the performance of quantum illumination radar, but when visibility is low, the gain of frequency increase is offset by the performance decline caused by attenuation increase. Therefore, it is not recommended to increase the frequency in such a case. The comparison with classical radar reveals that QI radar performs better under the condition of lower atmospheric visibility and lower average photon emission, but this advantage diminishes as the number of photons increases.In a word, these results show that the performances of QI radar are more significant at lower atmospheric visibility. Under higher visibility conditions, the QI system SNR can be improved by increasing frequency. The maximum detection range of the QI radar is significantly better than that of the classical TMN radar.
      Corresponding author: Yang Rui-Ke, yrk18687@163.com
    [1]

    Lloyd S 2008 Science 321 1463Google Scholar

    [2]

    Lanzagorta M 2011 Quantum Radar (San Rafael: Morgan & Claypool publishers) pp1–2

    [3]

    Lopaeva E D, Berchera I R, Degiovanni I P, Olivares S, Brida G, Genovese M 2013 Phys. Rev. Lett. 110 153603Google Scholar

    [4]

    Shapiro J H, Zhang Z, Wong F N C 2014 Quantum Inf. Process. 13 2171Google Scholar

    [5]

    任益充, 王书, 饶瑞中, 苗锡奎 2018 物理学报 67 140301Google Scholar

    Ren Y C, Wang S, Rao R Z, Miao X K 2018 Acta Phys. Sin. 67 140301Google Scholar

    [6]

    Sharma P, Mishra K M, Mishra D K 2024 J. Opt. Soc. Am. B 41 6

    [7]

    Barzanjeh S, Guha S, Weedbrook C, Vitali D, Shapiro J H, Pirandola S 2015 Phys. Rev. Lett. 114 080503Google Scholar

    [8]

    Miao Q, Li X, Wu D W, Luo J W, Wei T L, Zhu H N 2019 Acta Phys. Sin. 68 070302 (in Chinse) [苗强, 李响, 吴德伟 2019 物理学报 68 070302]Google Scholar

    Miao Q, Li X, Wu D W, Luo J W, Wei T L, Zhu H N 2019 Acta Phys. Sin. 68 070302 (in Chinse)Google Scholar

    [9]

    Barzanjeh S, Pirandola S, Vitali D 2020 Sci. Adv. 6 eabb0451Google Scholar

    [10]

    Livreri P, Enrico E, Fasolo L 2022 Microwave quantum radar using a Josephson traveling wave parametric amplifier. In: Proceedings of the 2022 IEEE Radar Conference (Radar Conf22) New Yorky, USA, March 21–25, 2022 pp1–5

    [11]

    Wei R Y, Li J, Wang W H, Ye Z, Zhao C L, Guo Q H 2023 IET Radar Sonar Navig. 17 1664Google Scholar

    [12]

    Borderieux S, Coatanhay A, Khenchaf A 2023 Prog. Electromagn. Res. B. 103 101Google Scholar

    [13]

    Lanzagorta M 2015 Proceedings of SPIE—Radar Sensor Technology XIX and Active and Passive Signatures VI 9461 946113

    [14]

    Goldhirsh J 1982 IEEE Trans. Antennas Propag. 30 1121Google Scholar

    [15]

    Ghobrial S, Sharief S 1987 IEEE Trans. Antennas Propag. 35 418Google Scholar

    [16]

    Yang R K, Li Q Q, Yao R H 2016 Acta Phys. Sin. 65 094205 (in Chinse) [杨瑞科, 李茜茜, 姚荣辉 2016 物理学报 65 094205]Google Scholar

    Yang R K, Li Q Q, Yao R H 2016 Acta Phys. Sin. 65 094205 (in Chinse)Google Scholar

    [17]

    Dong X Y, Chen H Y, Guo D H 2011 IEEE Antennas Wireless Propag. Lett. 10 469Google Scholar

    [18]

    Dong Q F, Xu J D, Li Y L 2011 J. Infrared Milli. TE. 32 55Google Scholar

    [19]

    Wang J, Li X, Wang M 2019 Theor. Appl. Climatol. 137 3

    [20]

    Xie L, Gao X B, Qin J H, Zhou J 2020 J. Quant. Spectrosc. Ra. 251 107040Google Scholar

    [21]

    Stephen M B, John J, Alessandra G 1998 Phys. Rev. A. 57 3

    [22]

    Tao Z W, Ren Y C, Aiziguli A B K, Liu S W, Rao R Z 2021 Acta Phys. Sin. 70 170601 (in Chinse) [陶志炜, 任益充, 艾则孜姑丽·阿不都克热木, 刘世韦, 饶瑞中 2021 物理学报 70 170601]Google Scholar

    Tao Z W, Ren Y C, Aiziguli A B K, Liu S W, Rao R Z 2021 Acta Phys. Sin. 70 170601 (in Chinse)Google Scholar

    [23]

    Usha Devi A R, Rajagopal A K 2009 Phys. Rev. A 79 062320Google Scholar

    [24]

    Calsamiglia J, Munoz-Tapia R, Masanes L 2008 Phys. Rev. A 77 032311Google Scholar

    [25]

    Jeffers J R, Imoto N, Loudon R 1993 Phys. Rev. A 47 4 3346

    [26]

    Dong Q S 1997 Chin. J. Radio Sci. 1 15 (in Chinse) [董庆生 1997 电波科学学报 1 15]

    Dong Q S 1997 Chin. J. Radio Sci. 1 15 (in Chinse)

    [27]

    Li S G, Liu X D, Hou L T. 2003 Appl. d Laser 2 23 (in Chinse) [李曙光, 刘晓东, 侯蓝田 2003 应用激光 2 23]Google Scholar

    Li S G, Liu X D, Hou L T. 2003 Appl. d Laser 2 23 (in Chinse)Google Scholar

    [28]

    Qu J J, Yan M H, Dong G R 2003 Sci. China Earth Sci. 33 593 (in Chinse) [屈建军, 言穆弘, 董光荣 2003 中国科学D辑 33 593]

    Qu J J, Yan M H, Dong G R 2003 Sci. China Earth Sci. 33 593 (in Chinse)

    [29]

    Zheng X., Li X C, Xie L 2011 J. Desert Res. 3 567 (in Chinse) [郑晓静, 李兴财, 谢莉 2011 中国沙漠 3 567]

    Zheng X., Li X C, Xie L 2011 J. Desert Res. 3 567 (in Chinse)

    [30]

    Dong Q S, Zhao Z W, Cong H J 1996 Chin. J. Radio. Sci. 11 29 (in Chinse) [董庆生, 赵振维, 丛洪军 1996 电波科学学报 11 29]

    Dong Q S, Zhao Z W, Cong H J 1996 Chin. J. Radio. Sci. 11 29 (in Chinse)

  • 图 1  量子照明雷达等效模型

    Figure 1.  Equivalent model of quantum illumination radar.

    图 2  分光链路模型

    Figure 2.  Beam splitter chain model.

    图 3  不同带电量的沙尘大气微波特征衰减随能见度的变化 (a) 35 GHz; (b) 78 GHz; (c) 95 GHz

    Figure 3.  Variation of microwave specific attenuation in sand-dust atmosphere with visibility for different charged quantity of sand-dust particles: (a) 35 GHz; (b) 78 GHz; (c) 95 GHz

    图 4  不同带电量下量子照明雷达的Helstrom极限(左)和QCB(右)随能见度的变化 (a) 35 GHz; (b) 78 GHz; (c) 95 GHz

    Figure 4.  Variation of Helstrom limit (left) and QCB (right) for quantum illumination radar with visibility for different charged quantity of sand-dust particles: (a) 35 GHz; (b) 78 GHz; (c) 95 GHz.

    图 6  不同带电量下量子照明雷达最大探测范围随能见度的变化 (a) 35 GHz; (b) 78 GHz; (c) 95 GHz

    Figure 6.  Variation of maximum-detection-range for quantum illumination radar with visibility for different charged quantity of sand-dust particles: (a) 35 GHz; (b) 78 GHz; (c) 95 GHz.

    图 7  不同带电量下TMN雷达最大探测范围随能见度的变化 (a) 35 GHz; (b) 78 GHz; (c) 95 GHz

    Figure 7.  Variation of maximum-detection-range of TMN radar with visibility for different charged quantity of sand-dust particles: (a) 35 GHz; (b) 78 GHz; (c) 95 GHz.

    图 5  不同带电量下量子照明雷达和TMN雷达输出信噪比随能见度的变化 (a) 35 GHz; (b) 78 GHz; (c) 95 GHz

    Figure 5.  Variation of output SNR for quantum illumination radar and TMN radar with visibility for different charged quantity of sand-dust particles: (a) 35 GHz; (b) 78 GHz; (c) 95 GHz.

    图 8  量子照明雷达和TMN雷达最大探测范围随发射平均光子数的变化 (a) 35 GHz; (b) 78 GHz; (c) 95 GHz

    Figure 8.  Variation of maximum-detection-range for quantum illumination radar and TMN radar with average photon number emitted: (a) 35 GHz; (b) 78 GHz; (c) 95 GHz.

    表 1  量子照明雷达检测错误概率仿真参数表

    Table 1.  Simulation parameters for detection-error-probability in quantum illumination radar.

    发射信号平均
    光子数${N_{\text{S}}}$
    热噪声平均
    光子数$ {N_{\text{B}}} $
    目标物体
    反射率$\eta $
    最大截断
    维度${n_{\max }}$
    用于探测的纠缠
    光源拷贝数$N$
    目标到量子照明雷达
    的距离z/km
    0.5 1 0.01 30 1 5
    DownLoad: CSV

    表 2  量子照明雷达和经典雷达输出信噪仿真参数表

    Table 2.  Simulation parameters for output signal-to-noise ratio of quantum illumination radar and classical radar.

    信号源每个模式的
    平均光子数 ${N_{\text{S}}}$
    热噪声
    温度 T/K
    量子噪声
    Nq
    接收与发射机
    增益${G_{\text{r}}}$和${G_{\text{t}}}$/dB
    接收机
    带宽$W$
    目标的量子雷达
    散射截面/m2
    目标到量子照明
    雷达距离 z/km
    信号源的中心
    频率 f/GHz
    0.1 3 0.5 40 $f/5$ 40 1 35, 78, 95
    DownLoad: CSV
  • [1]

    Lloyd S 2008 Science 321 1463Google Scholar

    [2]

    Lanzagorta M 2011 Quantum Radar (San Rafael: Morgan & Claypool publishers) pp1–2

    [3]

    Lopaeva E D, Berchera I R, Degiovanni I P, Olivares S, Brida G, Genovese M 2013 Phys. Rev. Lett. 110 153603Google Scholar

    [4]

    Shapiro J H, Zhang Z, Wong F N C 2014 Quantum Inf. Process. 13 2171Google Scholar

    [5]

    任益充, 王书, 饶瑞中, 苗锡奎 2018 物理学报 67 140301Google Scholar

    Ren Y C, Wang S, Rao R Z, Miao X K 2018 Acta Phys. Sin. 67 140301Google Scholar

    [6]

    Sharma P, Mishra K M, Mishra D K 2024 J. Opt. Soc. Am. B 41 6

    [7]

    Barzanjeh S, Guha S, Weedbrook C, Vitali D, Shapiro J H, Pirandola S 2015 Phys. Rev. Lett. 114 080503Google Scholar

    [8]

    Miao Q, Li X, Wu D W, Luo J W, Wei T L, Zhu H N 2019 Acta Phys. Sin. 68 070302 (in Chinse) [苗强, 李响, 吴德伟 2019 物理学报 68 070302]Google Scholar

    Miao Q, Li X, Wu D W, Luo J W, Wei T L, Zhu H N 2019 Acta Phys. Sin. 68 070302 (in Chinse)Google Scholar

    [9]

    Barzanjeh S, Pirandola S, Vitali D 2020 Sci. Adv. 6 eabb0451Google Scholar

    [10]

    Livreri P, Enrico E, Fasolo L 2022 Microwave quantum radar using a Josephson traveling wave parametric amplifier. In: Proceedings of the 2022 IEEE Radar Conference (Radar Conf22) New Yorky, USA, March 21–25, 2022 pp1–5

    [11]

    Wei R Y, Li J, Wang W H, Ye Z, Zhao C L, Guo Q H 2023 IET Radar Sonar Navig. 17 1664Google Scholar

    [12]

    Borderieux S, Coatanhay A, Khenchaf A 2023 Prog. Electromagn. Res. B. 103 101Google Scholar

    [13]

    Lanzagorta M 2015 Proceedings of SPIE—Radar Sensor Technology XIX and Active and Passive Signatures VI 9461 946113

    [14]

    Goldhirsh J 1982 IEEE Trans. Antennas Propag. 30 1121Google Scholar

    [15]

    Ghobrial S, Sharief S 1987 IEEE Trans. Antennas Propag. 35 418Google Scholar

    [16]

    Yang R K, Li Q Q, Yao R H 2016 Acta Phys. Sin. 65 094205 (in Chinse) [杨瑞科, 李茜茜, 姚荣辉 2016 物理学报 65 094205]Google Scholar

    Yang R K, Li Q Q, Yao R H 2016 Acta Phys. Sin. 65 094205 (in Chinse)Google Scholar

    [17]

    Dong X Y, Chen H Y, Guo D H 2011 IEEE Antennas Wireless Propag. Lett. 10 469Google Scholar

    [18]

    Dong Q F, Xu J D, Li Y L 2011 J. Infrared Milli. TE. 32 55Google Scholar

    [19]

    Wang J, Li X, Wang M 2019 Theor. Appl. Climatol. 137 3

    [20]

    Xie L, Gao X B, Qin J H, Zhou J 2020 J. Quant. Spectrosc. Ra. 251 107040Google Scholar

    [21]

    Stephen M B, John J, Alessandra G 1998 Phys. Rev. A. 57 3

    [22]

    Tao Z W, Ren Y C, Aiziguli A B K, Liu S W, Rao R Z 2021 Acta Phys. Sin. 70 170601 (in Chinse) [陶志炜, 任益充, 艾则孜姑丽·阿不都克热木, 刘世韦, 饶瑞中 2021 物理学报 70 170601]Google Scholar

    Tao Z W, Ren Y C, Aiziguli A B K, Liu S W, Rao R Z 2021 Acta Phys. Sin. 70 170601 (in Chinse)Google Scholar

    [23]

    Usha Devi A R, Rajagopal A K 2009 Phys. Rev. A 79 062320Google Scholar

    [24]

    Calsamiglia J, Munoz-Tapia R, Masanes L 2008 Phys. Rev. A 77 032311Google Scholar

    [25]

    Jeffers J R, Imoto N, Loudon R 1993 Phys. Rev. A 47 4 3346

    [26]

    Dong Q S 1997 Chin. J. Radio Sci. 1 15 (in Chinse) [董庆生 1997 电波科学学报 1 15]

    Dong Q S 1997 Chin. J. Radio Sci. 1 15 (in Chinse)

    [27]

    Li S G, Liu X D, Hou L T. 2003 Appl. d Laser 2 23 (in Chinse) [李曙光, 刘晓东, 侯蓝田 2003 应用激光 2 23]Google Scholar

    Li S G, Liu X D, Hou L T. 2003 Appl. d Laser 2 23 (in Chinse)Google Scholar

    [28]

    Qu J J, Yan M H, Dong G R 2003 Sci. China Earth Sci. 33 593 (in Chinse) [屈建军, 言穆弘, 董光荣 2003 中国科学D辑 33 593]

    Qu J J, Yan M H, Dong G R 2003 Sci. China Earth Sci. 33 593 (in Chinse)

    [29]

    Zheng X., Li X C, Xie L 2011 J. Desert Res. 3 567 (in Chinse) [郑晓静, 李兴财, 谢莉 2011 中国沙漠 3 567]

    Zheng X., Li X C, Xie L 2011 J. Desert Res. 3 567 (in Chinse)

    [30]

    Dong Q S, Zhao Z W, Cong H J 1996 Chin. J. Radio. Sci. 11 29 (in Chinse) [董庆生, 赵振维, 丛洪军 1996 电波科学学报 11 29]

    Dong Q S, Zhao Z W, Cong H J 1996 Chin. J. Radio. Sci. 11 29 (in Chinse)

  • [1] Liu Yu-Tao, Xu Miao, Fu Xing-Hu, Fu Guang-Wei. Influence of atmospheric turbulence on coherent detection performance of space coherent optical communication. Acta Physica Sinica, 2024, 73(10): 104206. doi: 10.7498/aps.73.20231885
    [2] Hu Zi-Ting, Shu Xin, Wang Xiang, Li Yue, Xu Run, Hong Feng, Ma Zhong-Quan, Jiang Zui-Min, Xu Fei. Air-stable CsPbIBr2 photodetector via dual-ligand-assisted solution strategy. Acta Physica Sinica, 2022, 71(11): 116801. doi: 10.7498/aps.71.20212143
    [3] Yang Rui-Ke, Li Fu-Jun, Wu Fu-Ping, Lu Fang, Wei Bing, Zhou Ye. Influence of sand and dust turbulent atmosphere on performance of free space quantum communication. Acta Physica Sinica, 2022, 71(22): 220302. doi: 10.7498/aps.71.20221125
    [4] Tao Zhi-Wei, Ren Yi-Chong, Abdukirim Azezigul, Liu Shi-Wei, Rao Rui-Zhong. Quantum illumination radar with entangled coherent states. Acta Physica Sinica, 2021, 70(17): 170601. doi: 10.7498/aps.70.20210462
    [5] Ren Yi-Chong, Wang Shu, Rao Rui-Zhong, Miao Xi-Kui. Influence of atmospheric scintillation on entangled coherent states quantum interferometric radar. Acta Physica Sinica, 2018, 67(14): 140301. doi: 10.7498/aps.67.20172401
    [6] Wang Shu, Ren Yi-Chong, Rao Rui-Zhong, Miao Xi-Kui. Influence of atmosphere attenuation on quantum interferometric radar. Acta Physica Sinica, 2017, 66(15): 150301. doi: 10.7498/aps.66.150301
    [7] Li Shi-Chun, Wang Da-Long, Li Qi-Meng, Song Yue-Hui, Liu Li-Juan, Hua Deng-Xin. Pure rotational Raman lidar for absolute detection of atmospheric temperature. Acta Physica Sinica, 2016, 65(14): 143301. doi: 10.7498/aps.65.143301
    [8] Yang Rui-Ke, Li Qian-Qian, Yao Rong-Hui. Multiple scattering and attenuation for electromagnetic wave propagation in sand and dust atmosphere. Acta Physica Sinica, 2016, 65(9): 094205. doi: 10.7498/aps.65.094205
    [9] Nie Min, Shang Peng-Gang, Yang Guang, Zhang Mei-Ling, Pei Chang-Xing. Influences of mesoscale sandstorm on the quantum satellite communication channel and performance simulation. Acta Physica Sinica, 2014, 63(24): 240303. doi: 10.7498/aps.63.240303
    [10] Ge Ye, Shu Rong, Hu Yi-Hua, Liu Hao. System design and performance simulation of ground-based differential absorption lidar for water-vapor measurements. Acta Physica Sinica, 2014, 63(20): 204301. doi: 10.7498/aps.63.204301
    [11] Liang Shan-Yong, Wang Jiang-An, Zong Si-Guang, Wu Rong-Hua, Ma Zhi-Guo, Wang Xiao-Yu, Wang Le-Dong. Laser detection method of ship wake bubbles based on multiple scattering intensity and polarization characteristics. Acta Physica Sinica, 2013, 62(6): 060704. doi: 10.7498/aps.62.060704
    [12] Zhao Jian-Hua, Zhang Qiang. Study of physical constraint equation of sand-dust atmosphere. Acta Physica Sinica, 2010, 59(12): 8954-8967. doi: 10.7498/aps.59.8954
    [13] Li Xiao-Chun, Gao Jun-Li, Liu Shao-E, Zhou Ke-Chao, Huang Bo-Yun. Disorder effect on the focus image of phononic crystal panel with negative refraction. Acta Physica Sinica, 2010, 59(1): 376-380. doi: 10.7498/aps.59.376
    [14] Jiao Rong-Zhen, Feng Chen-Xu, Ma Hai-Qiang. Performance of various quantum-key-distribution systems using 1.55 μm up-conversion single-photon detector. Acta Physica Sinica, 2008, 57(3): 1352-1355. doi: 10.7498/aps.57.1352
    [15] Zhang Gai-Xia, Zhao Yue-Feng, Zhang Yin-Chao, Zhao Pei-Tao. A lidar system for monitoring planetary boundary layer aerosol in daytime. Acta Physica Sinica, 2008, 57(11): 7390-7395. doi: 10.7498/aps.57.7390
    [16] Wang Zhi-Hua, He Ying-Hong, Zuo Hao-Yi, Andrew Yuk Sun Cheng, Yang Jing-Guo. The correction of short-range Mie scattering laser lidar returns based on the Gaussian character of laser beam. Acta Physica Sinica, 2006, 55(6): 3188-3192. doi: 10.7498/aps.55.3188
    [17] Hong Guang-Lie, Zhang Yin-Chao, Zhao Yue-Feng, Shao Shi-Sheng, Tan Kun, Hu Huan-Ling. Raman lidar for profiling atmospheric CO2. Acta Physica Sinica, 2006, 55(2): 983-987. doi: 10.7498/aps.55.983
    [18] Guo Guan-Jun, Shao Yun. Rough surfaces induced speckle effects on detection performance of pulsed laser radar. Acta Physica Sinica, 2004, 53(7): 2089-2093. doi: 10.7498/aps.53.2089
    [19] Sun Tao, K.S.Wong, Zhang Wei-Li, Chai Lu, Wang Qing-Yue, K.L.Wong. Time-resolved study of the random lasing in ZnO powder. Acta Physica Sinica, 2003, 52(9): 2127-2130. doi: 10.7498/aps.52.2127
    [20] PAN XIAO-CHUAN, LIANG XIAO-LING, LI JIA-MING. QUANTUM DEFECT THEORY——THEORETICAL MULTIPLE-SCATTERING CALCULATIONS. Acta Physica Sinica, 1987, 36(4): 426-435. doi: 10.7498/aps.36.426
Metrics
  • Abstract views:  944
  • PDF Downloads:  19
  • Cited By: 0
Publishing process
  • Received Date:  06 June 2024
  • Accepted Date:  27 July 2024
  • Available Online:  14 August 2024
  • Published Online:  05 September 2024

/

返回文章
返回