Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Intrinsic multiferroic semiconductors with magnetoelastic coupling: two-dimensional MoTeX (X = F, Cl, Br, I) monolayers

Gao Jin-Wei Chen Lu Li Xu-Hong Shi Jun-Qin Cao Teng-Fei Fan Xiao-Li

Citation:

Intrinsic multiferroic semiconductors with magnetoelastic coupling: two-dimensional MoTeX (X = F, Cl, Br, I) monolayers

Gao Jin-Wei, Chen Lu, Li Xu-Hong, Shi Jun-Qin, Cao Teng-Fei, Fan Xiao-Li
cstr: 32037.14.aps.73.20240829
PDF
HTML
Get Citation
  • Two-dimensional materials with both ferromagnetism and ferroelasticity present new possibilities for developing spintronics and multifunctional devices. These materials provide a novel method for controlling the direction of the magnetization axis by switching the ferroelastic state, achieving efficient and low-power operation of magnetic devices. Such properties make them a promising candidate for the next generation of non-volatile memory, sensors, and logic devices. By performing the first-principles calculations, the ferromagnetism, ferroelasticity, and magnetoelastic coupling in MoTeX (X = F, Cl, Br, I) monolayers are systematically investigated. The results indicate that the MoTeX monolayers are intrinsic semiconductors holding both ferromagnetism and ferroelasticity. The pronounced in-plane magnetic anisotropy suggests that the MoTeX monolayers can resist thermal disturbances and maintain long-range magnetic order. The Curie temperatures of MoTeX monolayers are 144.75 K, 194.55 K, 111.45 K, and 92.02 K, respectively. Our calculations show that the four MoTeX monolayers possess two stable ferroelastic states, with their easy magnetization axes perpendicular to each other. The ferroelastic transition barriers between the two ferroelastic states of MoTeF, MoTeCl, MoTeBr, MoTeI monolayers are 0.180 eV/atom, 0.200 eV/atom, 0.209 eV/atom, and 0.226 eV/atom, respectively, with their corresponding reversible strains of 54.58%, 46.32%, 43.06%, and 38.12%. These values indicate the potential for reversible magnetic control through reversible ferroelastic transition at room temperature. Owing to their unique magnetoelastic coupling properties, MoTeX monolayers exhibit the ability to control reversible magnetization axis at room temperature, laying the foundation for the development of highly controllable and stable spintronic devices.
      Corresponding author: Fan Xiao-Li, xlfan@nwpu.edu.cn
    • Funds: Project supported by the Key Program of the Natural Science Fund of Shaanxi Province, China (Grant No. 2021JZ-07), the Leading Talents in Scientific and Technological Innovation Program of Shaanxi Province, China, and the Innovation Capability Support Program of Shaanxi Province, China (Grant No. 2024RS-CXTD-30).
    [1]

    Fert A 2008 Rev. Mod. Phys. 80 1517Google Scholar

    [2]

    Felser C, Fecher G H, Balke B 2007 Angew. Chem. Int. Ed. 46 668Google Scholar

    [3]

    Wolf S A, Awschalom D D, Buhrman R A , Daughton J M, Molnar S V, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [4]

    Song Q, Occhialini C A, Ergecen E, Ilyas B, Amoroso D, Barone P, Kapeghian J, Watanabe K, Taniguchi T, Botana A S, Picozzi S, Gedik N, Comin R 2022 Nature 602 601Google Scholar

    [5]

    Xu S, Jia F, Yu X, Hu S, Gao H, Ren W 2022 Mater. Today Phys. 27 100775Google Scholar

    [6]

    Spaldin N A, Fiebig M 2005 Science 09 391Google Scholar

    [7]

    Hu T, Kan E 2019 Wiley Interdiscip. Rev. - Comput. Mol. Sci. 9 e1409Google Scholar

    [8]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar

    [9]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng Ran, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [10]

    Mosendz O, Pisana S, Reiner J W, Stipe B, Weller D 2012 J. Appl. Phys. 111 07B729Google Scholar

    [11]

    Gong C, Li L, Li Z, Ji H, Stem A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [12]

    Xu S, Jia F, Cheng X, Ren W 2021 J. Mater. Chem. C 9 17152Google Scholar

    [13]

    Wenisch J, Gould C, Ebel L, Storz J, Pappert K, Schmidt M J, Kumpf C, Schmidt G, Brunner K, Molenkamp L W 2007 Phys. Rev. Lett. 99 077201Google Scholar

    [14]

    Cenker J, Sivakumar S, Xie K, Miller A, Thijssen P, Liu Z, Dismukes A, Fonseca J, Anderson E, Zhu X, Roy X, Xiao D, Chu J, Cao T, Xu X 2022 Nat. Nanotechnol. 17 256Google Scholar

    [15]

    Hu J M, Nan C W 2009 Phys. Rev. B 80 224416Google Scholar

    [16]

    Shen S Y, Xu X L, Huang B BA, Kou L Z, Dai Y, Ma Y D 2021 Phys. Rev. B 103 144101Google Scholar

    [17]

    Weston A, Castanon E G, Enaldiev V, Ferreira F, Bhattacharjee S, Xu S, Corte-Leon H, Wu Z, Clark N, Summerfield A, Hashimoto T, Gao Y, Wang W, Hamer M, Read H, Fumagalli L, Kretinin A V, Haigh S J, Kazakova O, Geim A K, Falko V, Gorbachev R 2022 Nat. Nanotechnol. 17 390Google Scholar

    [18]

    Abdullahi Y Z, Vatansever Z D, Ersan F, Akinci U, Akturk O U, Akturk E 2021 Phys. Chem. Chem. Phys. 23 6107Google Scholar

    [19]

    Akgenc B, Vatansever E, Ersan F 2021 Phys. Rev. Mater. 5 83403Google Scholar

    [20]

    Abdullahi Y Z, Ersan F, Vatansever Z D, Akturk E, Akturk O U 2020 J. Appl. Phys. 128 113903Google Scholar

    [21]

    Vaclavkova D, Delhomme A, Faugeras C, Potemski M, Bogucki A, Suffczynski J, Kossacki P, Wildes A R, Gremaud B, Saul A 2020 2D Mater. 7 035030Google Scholar

    [22]

    Xiao G, Xiao W Z, Feng Y X, Rong Q Y, Chen Q 2023 Nanoscale 15 17963Google Scholar

    [23]

    Guo Z, Liu Y, Jiang H, Zhang X, Jin L, Liu C, Liu G 2023 Mater. Today Phys. 36 101153Google Scholar

    [24]

    Li Y H, Deng J, Zhang Y F, Jin X, Dong W H, Sun J T, Pan J B, Du S X 2023 npj Comput. Mater. 9 50Google Scholar

    [25]

    Yang H, Song M, Li Y, Guo Y, Han K 2022 Physica E 143 115341Google Scholar

    [26]

    Xu S, Jia F, Zhao G, Wu W, Ren W 2021 J. Mater. Chem. C 9 9130Google Scholar

    [27]

    Feng Y, Wang Z, Liu N, Yang Q 2023 Nanoscale 15 4546Google Scholar

    [28]

    Hu M, Xu S, Liu C, Zhao G, Yu J, Ren W 2020 Nanoscale 12 24237Google Scholar

    [29]

    Xu B, Li S C, Jiang K, Yin J, Liu Z G, Cheng Y C, Zhong W Y 2020 Appl. Phys. Lett. 116 052403Google Scholar

    [30]

    Sun H, Qu Z, Li A, Wan Y, Wu F, Huang C, Kan E 2023 Appl. Phys. Lett. 123 042901Google Scholar

    [31]

    Zeng Y, Gu P, Zhao Z, Zhang B, Lin Z, Peng Y, Li W, Zhao W, Leng Y, Tan P, Yang T, Zhang Z, Song Y, Yang J, Ye Y, Tian K, Hou Y 2022 Adv. Mater. 34 2108847Google Scholar

    [32]

    Gu P, Sun Y, Wang C, Peng Y, Zhu Y, Cheng X, Yuan K, Lyu C, Liu C, Tan Q, Zhang Q, Gu L, Wang Z, Han Z, Watanabe K, Taniguchi T, Yang J, Zhang J, Ji W, Tan P, Ye Y 2022 Nano Lett. 22 1233Google Scholar

    [33]

    Blochl P 1994 Phys. Rev. B 50 17953Google Scholar

    [34]

    Kresse G, Furthumller J 1996 Phys. Rev. B 54 11169Google Scholar

    [35]

    Blochl P E, Forst C J, Schimpl J 2003 Bull. Mater. Sci. 26 33Google Scholar

    [36]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [37]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 8 134106Google Scholar

    [38]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [39]

    Cadelano E, Palla P L, Giordano S, Colombo L 2010 Phys. Rev. B 82 235414Google Scholar

    [40]

    Kanamori J 1960 J. Appl. Phys. 31 S14Google Scholar

    [41]

    Goodenough J B 1955 Phys. Rev. 100 564Google Scholar

    [42]

    Dang N T, Kozlenko D P, Lis O N, Kichanov S E, Lulin Y V, Golosova N O, Savenko B N, Duong D L, Phan T L, Tran T A, Phan M H 2023 Adv. Sci. 10 2206842Google Scholar

    [43]

    Miao N, Xu B, Zhu L, Zhou J, Sun Z 2018 J. Am. Chem. Soc. 140 2417Google Scholar

    [44]

    Gao Z, Wang Y, Gao J, Cui Z, Zhang X, Shi J, Fan X 2022 Comput. Mater. Sci. 213 111611Google Scholar

    [45]

    Henkelman G, Uberuaga B P, Jonsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [46]

    Wang H, Li X, Sun J, Liu Z, Yang J 2017 2D Mater. 4 045020Google Scholar

    [47]

    Pang Z, Ji W, Zhang C, Wang P, Li P 2021 Chem. Phys. Lett. 763 138163Google Scholar

    [48]

    Zhang S, Liu B 2018 Nanoscale. 10 5990Google Scholar

    [49]

    Li W, Li J 2016 Nat. Commun. 7 10843Google Scholar

  • 图 1  MoTeX (X = F, Cl, Br, I)单层膜的顶视图(a)和侧视图(b). J1, J2J3分别是最邻近的第一、第二和第三个Mo原子之间的层内磁交换参数; (c)铁磁(FM)俯视图; (d)— (f) MoTeX单层膜的三种反铁磁(AFM)构型. 橙色、蓝色和绿色的球分别代表Mn, O和X原子

    Figure 1.  (a) Top and (b) side views of the MoTeX (X = F, Cl, Br, I) monolayers. J1, J2 and J3 are the intralayer magnetic exchange parameters between the first, second and third nearest neighboring Mo atoms, respectively; (c) top views of ferromagnetic (FM); (d)–(f) three antiferromagnetic (AFM) configurations of MoTeX monolayers. The orange, blue and green balls represent Mn, O and X atoms, respectively.

    图 2  单层MoTeX (X = F, Cl, Br, I)的声子谱 (a) MoTeF; (b) MoTeCl; (c) MoTeBr; (d) MoTeI. (e) 分子动力学模拟开始和结束时原子结构的俯视图和侧视图. (f) MoTeF, MoTeCl, MoTeBr和MoTeI单层膜在300 K, 5 ps下的AIMD模拟过程中总能量的波动

    Figure 2.  Phonon spectra of MoTeX (X = F, Cl, Br, I) monolayers: (a) MoTeF; (b) MoTeCl; (c) MoTeBr; (d) MoTeI. (e) Top and side views of atomic structures at the start and end of molecular dynamics (MD) simulation. (f) Evolution of total energies of MoTeF, MoTeCl, MoTeBr and MoTeI monolayers during AIMD simulation at 300 K for 5 ps.

    图 3  (a) MoTeF, (b) MoTeCl, (c) MoTeBr, (d) MoTeI单层膜杨氏模量随面内角的变化; (e) MoTeF, (f) MoTeCl, (g) MoTeBr, (h) MoTeI单层膜泊松比随面内角的变化

    Figure 3.  Variations of Young’s modulus of (a) MoTeF, (b) MoTeCl, (c) MoTeBr, and (d) MoTeI monolayers with respect to the in-plane angle. Variations of Poisson’s ratio of (e) MoTeF, (f) MoTeCl, (g) MoTeBr and (h) MoTeI monolayers with respect to the in-plane angle.

    图 4  单层MoTeX (X = F, Cl, Br, I)的能带结构与态密度图 (a) MoTeF; (b) MoTeCl; (c) MoTeBr; (d) MoTeI. 费米能级用0 eV的虚线表示. 红色和蓝色曲线分别表示自旋向上和自旋向下通道. 单层MoTeX (X = F, Cl, Br, I)的总态密度(TDOS)和投影态密度 (e) MoTeF; (f) MoTeCl; (g) MoTeBr; (h) MoTeI

    Figure 4.  Electronic band structures of MoTeX (X = F, Cl, Br, I) monolayers: (a) MoTeF; (b) MoTeCl; (c) MoTeBr; (d) MoTeI. Fermi level is denoted by the dashed line at 0 eV. Red and blue curves represent the spin up and spin down channels, respectively. Total density of states (TDOS) and project density of states of MoTeX (X = F, Cl, Br, I) monolayers: (e) MoTeF; (f) MoTeCl; (g) MoTeBr; (h) MoTeI monolayers.

    图 5  MoTeX (X = F, Cl, Br, I)单层膜的投影态密度图 (a) MoTeF; (b) MoTeCl; (c) MoTeBr; (d) MoTeI

    Figure 5.  Projected electronic band structures of MoTeX (X = F, Cl, Br, I) monolayers: (a) MoTeF; (b) MoTeCl; (c) MoTeBr; (d) MoTeI.

    图 6  MoTeX (X = F, Cl, Br, I)单层的磁矩和比热随温度的变化 (a) MoTeF; (b) MoTeCl; (c) MoTeBr; (d) MoTeI

    Figure 6.  Magnetic moment and specific heat as a function of temperature for MoTeX (X = F, Cl, Br, I) monolayers: (a) MoTeF; (b) MoTeCl; (c) MoTeBr; (d) MoTeI.

    图 7  MoTeX (X = F, Cl, Br, I)单层磁各向异性能 (a) MoTeF; (b) MoTeCl; (c) MoTeBr; (d) MoTeI

    Figure 7.  Angular dependence of the magnetic anisotropy energy for the MoTeX (X = F, Cl, Br, I) monolayers along the xoy, yoz, and xoz planes: (a) MoTeF; (b) MoTeCl; (c) MoTeBr; (d) MoTeI.

    图 8  (a) MoTeX (X = F, Cl, Br, I)单层的铁弹性转换和磁弹性耦合示意图, 铁弹性开关将使易磁化轴旋转90º, 如红色箭头所示; (b) MoTeX单层膜沿铁弹性过渡路径的相对能量

    Figure 8.  (a) Schematic diagram showing the ferroelastic switching and coupling between magnetism and ferroelasticity for the MoTeX (X = F, Cl, Br, I) monolayers, the ferroelastic switching will rotate the easy magnetization axis by 90º, as illustrated by the red arrows; (b) relative energy of the MoTeX monolayers along the ferroelastic transition path.

    表 1  MoTeX (X = F, Cl, Br, I)的晶格常数、可逆应变、反铁磁构型相对铁磁构型的能量

    Table 1.  Lattice constant, reversible strain and the relative energies of FM and possible AFM configurations of MoTeX monolayers. The energy of FM configuration is a reference.

    ML a b (|b|/|a|–1)×100% EFM/(meV·Mo–1) EAFM1/(meV·Mo–1) EAFM2/(meV·Mo–1) EAFM3/(meV·Mo–1)
    MoTeF 3.704 5.726 54.58 0 283 270 552
    MoTeCl 3.906 5.715 46.31 0 306 301 509
    MoTeBr 3.992 5.710 43.04 0 361 334 453
    MoTeI 4.124 5.696 38.11 0 390 378 397
    DownLoad: CSV

    表 2  MoTeX (X = F, Cl, Br, I)单层膜的弹性模量和力学性能

    Table 2.  Elastic modulus and mechanical properties of MoTeX (X = F, Cl, Br, I) monolayers.

    ML C11/(N·m–1) C12/(N·m–1) C22/(N·m–1) C66/(N·m–1) Ymax/(N·m–1) Ymin/(N·m–1) μmax μmin
    MoTeF 63.412 8.814 89.320 13.750 88.095 41.059 0.504 0.099
    MoTeCl 54.424 5.000 86.926 13.809 86.467 39.404 0.448 0.058
    MoTeBr 50.724 5.294 84.128 13.564 83.576 38.237 0.436 0.063
    MoTeI 49.090 5.157 81.298 13.273 80.756 37.283 0.432 0.063
    DownLoad: CSV

    表 3  MoTeX (X = F, Cl, Br, I)单层膜交换作用路径参数. d1, d2d3是第一, 第二和第三近邻Mo原子之间的距离, θ1, θ2θ3是第一, 第二和第三近邻Mo原子与Te原子之间的夹角

    Table 3.  Parameters along the exchange interaction path of MoTeX (X = F, Cl, Br, I) monolayers. d1, d2 and d3 are the distances between the first, second and third nearest neighboring Mo atoms, and θ1, θ2 and θ3 are the angles formed between the first, second and third nearest neighboring Mo atoms and Te atoms.

    ML d1(Mo-Mo) d2(Mo-Mo) d3(Mo-Mo) θ1(Mo-Te-Mo) θ2(Mo-Te-Mo) θ3(Mo-Te-Mo)
    MoTeF 3.70 4.24 5.72 81.94 95.85 164.47
    MoTeCl 3.90 4.29 5.71 87.06 96.79 161.32
    MoTeBr 3.99 4.29 5.71 89.18 96.83 160.74
    MoTeI 4.12 4.28 5.69 92.40 97.05 159.54
    DownLoad: CSV

    表 4  MoTeX (X = F, Cl, Br, I)单层的磁交换常数与磁晶各向异性能

    Table 4.  Magnetic exchange constant and magnetocrystalline anisotropy energy of MoTeX (X = F, Cl, Br, I) monolayer

    ML $ {J}_{1} $/eV $ {J}_{2} $/eV $ {J}_{3} $/eV E[100]/(μeV·atom–1) E[010]/(μeV·atom–1) E[001]/(μeV·atom–1) Tc/K
    MoTeF 0.14 7.72 –0.22 0 487 782 114
    MoTeCl 1.85 6.65 –1.70 0 613 518 195
    MoTeBr 3.79 6.25 –5.31 0 91 430 111
    MoTeI 4.76 6.08 –3.93 0 –282 165 92
    DownLoad: CSV
  • [1]

    Fert A 2008 Rev. Mod. Phys. 80 1517Google Scholar

    [2]

    Felser C, Fecher G H, Balke B 2007 Angew. Chem. Int. Ed. 46 668Google Scholar

    [3]

    Wolf S A, Awschalom D D, Buhrman R A , Daughton J M, Molnar S V, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [4]

    Song Q, Occhialini C A, Ergecen E, Ilyas B, Amoroso D, Barone P, Kapeghian J, Watanabe K, Taniguchi T, Botana A S, Picozzi S, Gedik N, Comin R 2022 Nature 602 601Google Scholar

    [5]

    Xu S, Jia F, Yu X, Hu S, Gao H, Ren W 2022 Mater. Today Phys. 27 100775Google Scholar

    [6]

    Spaldin N A, Fiebig M 2005 Science 09 391Google Scholar

    [7]

    Hu T, Kan E 2019 Wiley Interdiscip. Rev. - Comput. Mol. Sci. 9 e1409Google Scholar

    [8]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar

    [9]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng Ran, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [10]

    Mosendz O, Pisana S, Reiner J W, Stipe B, Weller D 2012 J. Appl. Phys. 111 07B729Google Scholar

    [11]

    Gong C, Li L, Li Z, Ji H, Stem A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [12]

    Xu S, Jia F, Cheng X, Ren W 2021 J. Mater. Chem. C 9 17152Google Scholar

    [13]

    Wenisch J, Gould C, Ebel L, Storz J, Pappert K, Schmidt M J, Kumpf C, Schmidt G, Brunner K, Molenkamp L W 2007 Phys. Rev. Lett. 99 077201Google Scholar

    [14]

    Cenker J, Sivakumar S, Xie K, Miller A, Thijssen P, Liu Z, Dismukes A, Fonseca J, Anderson E, Zhu X, Roy X, Xiao D, Chu J, Cao T, Xu X 2022 Nat. Nanotechnol. 17 256Google Scholar

    [15]

    Hu J M, Nan C W 2009 Phys. Rev. B 80 224416Google Scholar

    [16]

    Shen S Y, Xu X L, Huang B BA, Kou L Z, Dai Y, Ma Y D 2021 Phys. Rev. B 103 144101Google Scholar

    [17]

    Weston A, Castanon E G, Enaldiev V, Ferreira F, Bhattacharjee S, Xu S, Corte-Leon H, Wu Z, Clark N, Summerfield A, Hashimoto T, Gao Y, Wang W, Hamer M, Read H, Fumagalli L, Kretinin A V, Haigh S J, Kazakova O, Geim A K, Falko V, Gorbachev R 2022 Nat. Nanotechnol. 17 390Google Scholar

    [18]

    Abdullahi Y Z, Vatansever Z D, Ersan F, Akinci U, Akturk O U, Akturk E 2021 Phys. Chem. Chem. Phys. 23 6107Google Scholar

    [19]

    Akgenc B, Vatansever E, Ersan F 2021 Phys. Rev. Mater. 5 83403Google Scholar

    [20]

    Abdullahi Y Z, Ersan F, Vatansever Z D, Akturk E, Akturk O U 2020 J. Appl. Phys. 128 113903Google Scholar

    [21]

    Vaclavkova D, Delhomme A, Faugeras C, Potemski M, Bogucki A, Suffczynski J, Kossacki P, Wildes A R, Gremaud B, Saul A 2020 2D Mater. 7 035030Google Scholar

    [22]

    Xiao G, Xiao W Z, Feng Y X, Rong Q Y, Chen Q 2023 Nanoscale 15 17963Google Scholar

    [23]

    Guo Z, Liu Y, Jiang H, Zhang X, Jin L, Liu C, Liu G 2023 Mater. Today Phys. 36 101153Google Scholar

    [24]

    Li Y H, Deng J, Zhang Y F, Jin X, Dong W H, Sun J T, Pan J B, Du S X 2023 npj Comput. Mater. 9 50Google Scholar

    [25]

    Yang H, Song M, Li Y, Guo Y, Han K 2022 Physica E 143 115341Google Scholar

    [26]

    Xu S, Jia F, Zhao G, Wu W, Ren W 2021 J. Mater. Chem. C 9 9130Google Scholar

    [27]

    Feng Y, Wang Z, Liu N, Yang Q 2023 Nanoscale 15 4546Google Scholar

    [28]

    Hu M, Xu S, Liu C, Zhao G, Yu J, Ren W 2020 Nanoscale 12 24237Google Scholar

    [29]

    Xu B, Li S C, Jiang K, Yin J, Liu Z G, Cheng Y C, Zhong W Y 2020 Appl. Phys. Lett. 116 052403Google Scholar

    [30]

    Sun H, Qu Z, Li A, Wan Y, Wu F, Huang C, Kan E 2023 Appl. Phys. Lett. 123 042901Google Scholar

    [31]

    Zeng Y, Gu P, Zhao Z, Zhang B, Lin Z, Peng Y, Li W, Zhao W, Leng Y, Tan P, Yang T, Zhang Z, Song Y, Yang J, Ye Y, Tian K, Hou Y 2022 Adv. Mater. 34 2108847Google Scholar

    [32]

    Gu P, Sun Y, Wang C, Peng Y, Zhu Y, Cheng X, Yuan K, Lyu C, Liu C, Tan Q, Zhang Q, Gu L, Wang Z, Han Z, Watanabe K, Taniguchi T, Yang J, Zhang J, Ji W, Tan P, Ye Y 2022 Nano Lett. 22 1233Google Scholar

    [33]

    Blochl P 1994 Phys. Rev. B 50 17953Google Scholar

    [34]

    Kresse G, Furthumller J 1996 Phys. Rev. B 54 11169Google Scholar

    [35]

    Blochl P E, Forst C J, Schimpl J 2003 Bull. Mater. Sci. 26 33Google Scholar

    [36]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [37]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 8 134106Google Scholar

    [38]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [39]

    Cadelano E, Palla P L, Giordano S, Colombo L 2010 Phys. Rev. B 82 235414Google Scholar

    [40]

    Kanamori J 1960 J. Appl. Phys. 31 S14Google Scholar

    [41]

    Goodenough J B 1955 Phys. Rev. 100 564Google Scholar

    [42]

    Dang N T, Kozlenko D P, Lis O N, Kichanov S E, Lulin Y V, Golosova N O, Savenko B N, Duong D L, Phan T L, Tran T A, Phan M H 2023 Adv. Sci. 10 2206842Google Scholar

    [43]

    Miao N, Xu B, Zhu L, Zhou J, Sun Z 2018 J. Am. Chem. Soc. 140 2417Google Scholar

    [44]

    Gao Z, Wang Y, Gao J, Cui Z, Zhang X, Shi J, Fan X 2022 Comput. Mater. Sci. 213 111611Google Scholar

    [45]

    Henkelman G, Uberuaga B P, Jonsson H 2000 J. Chem. Phys. 113 9901Google Scholar

    [46]

    Wang H, Li X, Sun J, Liu Z, Yang J 2017 2D Mater. 4 045020Google Scholar

    [47]

    Pang Z, Ji W, Zhang C, Wang P, Li P 2021 Chem. Phys. Lett. 763 138163Google Scholar

    [48]

    Zhang S, Liu B 2018 Nanoscale. 10 5990Google Scholar

    [49]

    Li W, Li J 2016 Nat. Commun. 7 10843Google Scholar

  • [1] Xu Si-Yuan, Zhang Zhao-Fu, Wang Jun, Liu Xue-Fei, Guo Yu-Zheng. First-principles calculation of intrinsic point defects and doping performance of MoSi2N4. Acta Physica Sinica, 2024, 73(8): 086801. doi: 10.7498/aps.73.20231931
    [2] Li Xin-Yue, Gao Guo-Xiang, Gao Qiang, Liu Chun-Sheng, Ye Xiao-Juan. Theoretical study of two-dimensional BeB2 monolayer as anode material for magnesium ion batteries. Acta Physica Sinica, 2024, 73(11): 118201. doi: 10.7498/aps.73.20240134
    [3] Yang Rui-Long, Zhang Yu-Ying, Yang Ke, Jiang Qi-Tao, Yang Xiao-Ting, Guo Jin-Zhong, Xu Xiao-Hong. Growth and magnetic properties of two-dimensional vanadium-doped Cr2S3 nanosheets. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231229
    [4] Chen Chong, Ma Ming-Yuan, Pan Feng, Song Cheng. Magneto-acoustic coupling: Physics, materials, and devices. Acta Physica Sinica, 2024, 73(5): 058502. doi: 10.7498/aps.73.20231908
    [5] Duan Xiu-Ming, Yi Zhi-Jun. Theoretical study on regulatory mechanism of dielectric environmental screening effects on binding energy of two-dimensional InX (X = Se, Te) exciton. Acta Physica Sinica, 2023, 72(14): 147102. doi: 10.7498/aps.72.20230528
    [6] Yang Rui-Long, Zhang Yu-Ying, Yang Ke, Jiang Qi-Tao, Yang Xiao-Ting, Guo Jin-Zhong, Xu Xiao-Hong. Growth and magnetic properties of two-dimensional vanadium-doped Cr2S3 nanosheets. Acta Physica Sinica, 2023, 72(24): 247501. doi: 10.7498/aps.72.20231229
    [7] Song Rui, Wang Bi-Li, Feng Kai, Wang Li, Liang Dan-Dan. Structural, magnetic and ferroelectric properties of VOBr2 monolayer: A first-principles study. Acta Physica Sinica, 2022, 71(3): 037101. doi: 10.7498/aps.71.20211516
    [8] Zhu Yu-Jie, Jiang Tao, Ye Xiao-Juan, Liu Chun-Sheng. Theoretical prediction of novel two-dimensional auxetic material SiGeS and its electronic and optical properties. Acta Physica Sinica, 2022, 71(15): 153101. doi: 10.7498/aps.71.20220407
    [9] Huang Yu-Hao, Zhang Gui-Tao, Wang Ru-Qian, Chen Qian, Wang Jin-Lan. Electronic structure and stability of two-dimensional bimetallic ferromagnetic semiconductor CrMoI6. Acta Physica Sinica, 2021, 70(20): 207301. doi: 10.7498/aps.70.20210949
    [10] Structural, magnetic and ferroelectric properties of VOBr2 monolayer: A first-principles study. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211516
    [11] Jiang Xiao-Hong, Qin Si-Chen, Xing Zi-Yue, Zou Xing-Yu, Deng Yi-Fan, Wang Wei, Wang Lin. Study on physical properties and magnetism controlling of two-dimensional magnetic materials. Acta Physica Sinica, 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [12] Liu Yu-Ting, He Wen-Yu, Liu Jun-Wei, Shao Qi-Ming. Berry curvature-induced emerging magnetic response in two-dimensional materials. Acta Physica Sinica, 2021, 70(12): 127303. doi: 10.7498/aps.70.20202132
    [13] Luan Xiao-Wei, Sun Jian-Ping, Wang Fan-Song, Wei Hui-Lan, Hu Yi-Fan. Density functional study of metal lithium atom adsorption on antimonene. Acta Physica Sinica, 2019, 68(2): 026802. doi: 10.7498/aps.68.20181648
    [14] Hu Yang-Fan, Wan Xue-Jin, Wang Biao. Magnetoelastic phenomena and mechanisms of magnetic skyrmion crystal. Acta Physica Sinica, 2018, 67(13): 136201. doi: 10.7498/aps.67.20180251
    [15] Wang Feng, Lin Wen, Wang Li-Zi, Ge Yong-Ming, Zhang Xiao-Ting, Lin Hai-Rong, Huang Wei-Wei, Huang Jun-Qin, W. Cao. Magnetic properties of the Cu-doped ZnO:experiments and theory. Acta Physica Sinica, 2014, 63(15): 157502. doi: 10.7498/aps.63.157502
    [16] Wen Jun-Qing, Zhang Jian-Min, Yao Pan, Zhou Hong, Wang Jun-Fei. A density functional theory study of small bimetallic PdnAl (n =18) clusters. Acta Physica Sinica, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [17] Wu Kong-Ping, Gu Shu-Lin, Zhu Shun-Ming, Huang You-Rui, Zhou Meng-Ran. Experimental and theoretical studies on the influence of unintentionally doped carbon on magnetic properties in ZnMnO:N. Acta Physica Sinica, 2012, 61(5): 057503. doi: 10.7498/aps.61.057503
    [18] Cheng Xing-Wang, Li Xiang, Gao Yuan-Ling, Yu Zhou, Long Xue, Liu Ying. Synthesis and magnetic, optical properties of Co doped ZnO room-temperature ferromagnetic semiconductor. Acta Physica Sinica, 2009, 58(3): 2018-2022. doi: 10.7498/aps.58.2018
    [19] Li Xi-Bo, Luo Jiang-Shan, Guo Yun-Dong, Wu Wei-Dong, Wang Hong-Yan, Tang Yong-Jian. Density functional theory study of the stability, electronic and magnetic properties of Scn, Yn and Lan (n=2—10) clusters. Acta Physica Sinica, 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [20] Yu Zhou, Li Xiang, Long Xue, Cheng Xing-Wang, Wang Jing-Yun, Liu Ying, Cao Mao-Sheng, Wang Fu-Chi. Study of synthesis and magnetic properties of Mn-doped ZnO diluted magnetic semiconductors. Acta Physica Sinica, 2008, 57(7): 4539-4544. doi: 10.7498/aps.57.4539
Metrics
  • Abstract views:  1046
  • PDF Downloads:  44
  • Cited By: 0
Publishing process
  • Received Date:  13 June 2024
  • Accepted Date:  04 August 2024
  • Available Online:  29 August 2024
  • Published Online:  05 October 2024

/

返回文章
返回