- 
				Quantum computing has been proven to be powerful, however, there are still great challenges for building real quantum computers due to the requirements of both fault-tolerance and universality. There is still no systematic method to design fast quantum algorithms and identify the key quantum resources. In this work, we develop a resource-theoretic approach to characterize universal quantum computing models and the universal resources for quantum computing. Our theory combines the framework of universal quantum computing model (UQCM) and the quantum resource theory (QRT). The former has played major roles in quantum computing, while the later was developed mainly for quantum information theory. Putting them together proves to be ‘win-win’: on one hand, using QRT can provide a resource-theoretic characterization of a UQCM, the relation among models and inspire new ones, and on the other hand, using UQCM offers a framework to apply resources, study relation among resources and classify them. In quantum theory, we mainly study states, evolution, observable, and probability from measurements, and this motivates the introduction of different families of UQCMs. A family also includes generations depending on a hierarchical structure of resource theories. We introduce a table of UQCMs by first classifying two categories of models: one referring to the format of information, and one referring to the logical evolution of information requiring quantum error-correction codes. Each category contains a few families of models, leading to more than one hundred of them in total. Such a rich spectrum of models include some well-known ones that people use, such as the circuit model, the adiabatic model, but many of them are relatively new and worthy of more study in the future. Among them are the models of quantum von Neumann architectures established recently. This type of architecture or model circumvents the no-go theorems on both the quantum program storage and quantum control unit, enabling the construction of more complete quantum computer systems and high-level programming. Correspondingly, each model is captured by a unique quantum resource. For instance, in the state family, the universal resource for the circuit model is coherence, for the local quantum Turing machine is bipartite entanglement, and for the cluster-state based, also known as measurement-based model is a specific type of entanglement relevant to symmetry-protected topological order. As program-storage is a central feature of the quantum von Neumann architecture, we find the quantum resources for it are quantum memories, which are dynamical resources closely related to entanglement. In other words, our classification of UQCMs also serves as a computational classification of quantum resources. This can be used to resolve the dispute over the computing power of resources, such as interference, entanglement, or contextuality. In all, we believe our theory lays down a solid framework to study computing models, resources, and design algorithms. [1] Preskill J 2018 Quantum 2 79  Google Scholar Google Scholar[2] Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press [3] 潘建伟 2024 物理学报 73 010301  Google Scholar Google ScholarPan J W 2024 Acta Phys. Sin. 73 010301  Google Scholar Google Scholar[4] Bell J S 1966 Rev. Mod. Phys. 38 447  Google Scholar Google Scholar[5] Kraus K 1983 States, Effects, and Operations: Fundamental Notions of Quantum Theory (Vol. 190) (Berlin: Springer-Verlag [6] Holevo A S 1982 Probabilistic and Statistical Aspect of Quantum Theory (Amsterdam: North-Holland [7] Feynman R P 1982 Int. J. Theor. Phys. 21 467  Google Scholar Google Scholar[8] Deutsch D 1985 Proc. R. Soc. London, Ser. A 400 97 [9] Yao A C C 1993 Foundations of Computer Science, 1993 Proceedings, 34th Annual Symposium on (IEEE) p352 [10] Bernstein E, Vazirani U 1997 SIAM J. Comput. 26 1411  Google Scholar Google Scholar[11] Shor P W 1994 Proceedings 35th Annual Symposium on Foundations of Computer Science (IEEE) p124 [12] Harris D M, Harris S L 2013 Digital Design and Computer Architecture (Elsevier [13] Shannon C 1948 The Bell System Technical Journal 27 379  Google Scholar Google Scholar[14] von Neumann J 1993 IEEE Ann. Hist. Comput. 15 27  Google Scholar Google Scholar[15] Lidar D, Brun T A 2013 Quantum Error Correction (Cambridge: Cambridge University Press [16] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’ Brien J L 2010 Nature 464 45  Google Scholar Google Scholar[17] Grover L K 1996 Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing [18] Harrow A W, Hassidim A, Lloyd S 2009 Phys. Rev. Lett. 103 150502  Google Scholar Google Scholar[19] Long G L 2011 Int. J. Theor. Phys. 50 1305  Google Scholar Google Scholar[20] Martyn J M, Rossi Z M, Tan A K, Chuang I L 2021 PRX Quantum 2 040203  Google Scholar Google Scholar[21] Watrous J 2018 The Theory of Quantum Information (Cambridge: Cambridge University Press [22] Hayashi M 2017 Quantum Information Theory: Mathematical Foundation (2nd Ed.) (Springer [23] Wilde M 2017 Quantum Information Theory (Cambridge: Cambridge University Press [24] Chitambar E, Gour G 2019 Rev. Mod. Phys. 91 025001  Google Scholar Google Scholar[25] Wang D S 2023 Commun. Theor. Phys. 75 125101  Google Scholar Google Scholar[26] Albash T, Lidar D A 2018 Rev. Mod. Phys. 90 015002  Google Scholar Google Scholar[27] Nayak C, Simon S H, Stern A, Freedman M, Sarma S D 2008 Rev. Mod. Phys. 80 1083  Google Scholar Google Scholar[28] Childs A M, Gosset D, Webb Z 2013 Science 339 791  Google Scholar Google Scholar[29] Arrighi P 2019 Natural Computing 18 885  Google Scholar Google Scholar[30] Briegel H J, Browne D E, Dür W, Raussendorf R, Van den Nest M 2009 Nat. Phys. 5 19  Google Scholar Google Scholar[31] Barenco A, Bennett C H, Cleve R, DiVincenzo D P, Margolus N, Shor P, Sleator T, Smolin J A, Weinfurter H 1995 Phys. Rev. A 52 3457  Google Scholar Google Scholar[32] DiVincenzo D P 2000 Fortschr. Phys. 48 771 [33] Nielsen M A, Chuang I L 1997 Phys. Rev. Lett. 79 321  Google Scholar Google Scholar[34] Yang Y, Renner R, Chiribella G 2020 Phys. Rev. Lett. 125 210501  Google Scholar Google Scholar[35] Wang D S 2022 Commun. Theor. Phys. 74 095103  Google Scholar Google Scholar[36] Dawson C M, Nielsen M A 2006 Quantum Inf. Comput. 6 81 [37] Lloyd S 1996 Science 273 1073  Google Scholar Google Scholar[38] Brassard G, Høyer P, Mosca M, Tapp A 2002 Contem. Mathemat. 305 53 [39] Knill E, Laflamme R 1997 Phys. Rev. A 55 900  Google Scholar Google Scholar[40] Chiribella G, D’Ariano G M, Perinotti P 2008 Europhys. Lett. 83 30004  Google Scholar Google Scholar[41] Chiribella G, D’Ariano G M, Perinotti P 2008 Phys. Rev. Lett. 101 060401  Google Scholar Google Scholar[42] Chiribella G, D’Ariano G M, Perinotti P 2009 Phys. Rev. A 80 022339  Google Scholar Google Scholar[43] Choi M D 1975 Linear Algebra Appl. 10 285  Google Scholar Google Scholar[44] Bény C, Oreshkov O 2010 Phys. Rev. Lett. 104 120501  Google Scholar Google Scholar[45] Gottesman D 1998 Phys. Rev. A 57 127  Google Scholar Google Scholar[46] Wang D S, Zhu G, Okay C, Laflamme R 2020 Phys. Rev. Res. 2 033116  Google Scholar Google Scholar[47] Wang D S, Wang Y J, Cao N, Zeng B, Laflamme R 2022 New J. Phys. 24 023019  Google Scholar Google Scholar[48] Zhou S, Liu Z W, Jiang L 2021 Quantum 5 521  Google Scholar Google Scholar[49] Yang Y, Mo Y, Renes J M, Chiribella G, Woods M P 2022 Phys. Rev. Res. 4 023107  Google Scholar Google Scholar[50] Kubica A, Demkowicz-Dobrzański R 2021 Phys. Rev. Lett. 126 150503  Google Scholar Google Scholar[51] Viola L, Knill E, Lloyd S 1999 Phys. Rev. Lett. 82 2417  Google Scholar Google Scholar[52] Kitaev A Y 2003 Ann. Phys. 303 2  Google Scholar Google Scholar[53] Ryan W E, Lin S 2009 Channel Codes: Classical and Modern (Cambridge: Cambridge University Press [54] Breuckmann N P, Eberhardt J N 2021 PRX Quantum 2 040101  Google Scholar Google Scholar[55] Wang D S, Liu Y D, Wang Y J, Luo S 2024 Phys. Rev. A 110 032413  Google Scholar Google Scholar[56] Coecke B, Fritz T, Spekkens R W 2016 Information and Computation 250 59  Google Scholar Google Scholar[57] Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865  Google Scholar Google Scholar[58] Streltsov A, Adesso G, Plenio M B 2017 Rev. Mod. Phys. 89 041003  Google Scholar Google Scholar[59] Wang D S 2021 Quantum Engineering 2 e85 [60] Wang D S 2020 Quantum Inf. Comput. 20 0213 [61] Raussendorf R, Briegel H J 2001 Phys. Rev. Lett. 86 5188  Google Scholar Google Scholar[62] Nielsen M A 2006 Rep. Math. Phys. 57 147  Google Scholar Google Scholar[63] Wang D S, Stephen D T, Raussendorf R 2017 Phys. Rev. A 95 032312  Google Scholar Google Scholar[64] Stephen D T, Wang D S, Prakash A, Wei T C, Raussendorf R 2017 Phys. Rev. Lett. 119 010504  Google Scholar Google Scholar[65] Raussendorf R, Okay C, Wang D S, Stephen D T, Nautrup H P 2019 Phys. Rev. Lett. 122 090501  Google Scholar Google Scholar[66] Molina A, Watrous J 2019 Proc. Royal Soc. A 475 20180767  Google Scholar Google Scholar[67] Paetznick A, Reichardt B W 2013 Phys. Rev. Lett. 111 090505  Google Scholar Google Scholar[68] Tóth G, Apellaniz I 2014 J. Phys. A: Math. Theor. 47 424006  Google Scholar Google Scholar[69] Affleck I, Kennedy T, Lieb E H, Tasaki H 1987 Phys. Rev. Lett. 59 799  Google Scholar Google Scholar[70] Fannes M, Nachtergaele B, Werner R F 1992 Commun. Math. Phys. 144 443  Google Scholar Google Scholar[71] Perez-Garcia D, Verstraete F, Wolf M, Cirac J 2007 Quantum Inf. Comput. 7 401 [72] Sarovar M, Proctor T, Rudinger K, Young K, Nielsen E, Blume-Kohout R 2020 Quantum 4 321  Google Scholar Google Scholar[73] Crépeau C, Gottesman D, Smith A 2002 STOC ’ 02: Proc. 34th Annual ACM Symp. Theory of Computing p643 [74] Broadbent A, Fitzsimons J, Kashefi E 2009 Proceedings of the 50th Annual Symposium on Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, 2009) p517 [75] Myers J M 1997 Phys. Rev. Lett. 78 1823  Google Scholar Google Scholar[76] Cirac J I, Pérez-García D, Schuch N, Verstraete F 2021 Rev. Mod. Phys. 93 045003  Google Scholar Google Scholar[77] Wehner S, Elkouss D, Hanson R 2018 Science 362 303  Google Scholar Google Scholar[78] Wang D S 2019 Int. J. Mod. Phys. B 33 1930004  Google Scholar Google Scholar[79] Wang D S 2020 Phys. Rev. A 101 052311  Google Scholar Google Scholar[80] Van den Nest M, Dür W, Vidal G, Briegel H J 2007 Phys. Rev. A 75 012337  Google Scholar Google Scholar[81] Van den Nest M, Dür W, Miyake A, Briegel H J 2007 New J. Phys. 9 204  Google Scholar Google Scholar[82] Gross D, Flammia S T, Eisert J 2009 Phys. Rev. Lett. 102 190501  Google Scholar Google Scholar[83] Bremner M J, Mora C, Winter A 2009 Phys. Rev. Lett. 102 190502  Google Scholar Google Scholar[84] Gu Z C, Wen X G 2009 Phys. Rev. B 80 155131  Google Scholar Google Scholar[85] Chen X, Gu Z C, Wen X G 2011 Phys. Rev. B 83 035107  Google Scholar Google Scholar[86] Schuch N, Pérez-García D, Cirac I 2011 Phys. Rev. B 84 165139  Google Scholar Google Scholar[87] Bartolucci S, Birchall P, Bombin H, Cable H, Dawson C, Gimeno-Segovia M, Johnston E, Kieling K, Nickerson N, Pant M, Pastawski F, Rudolph T, Sparrow C 2023 Nat. Commun. 14 912  Google Scholar Google Scholar[88] Kitaev A, Shen A H, Vyalyi M N 2002 Classical and Quantum Computation (Vol. 47) (Providence: American Mathematical Society [89] Wocjan P, Roetteler M, Janzing D, Beth T 2002 Quantum Inf. Comput. 2 133 [90] Dodd J L, Nielsen M A, Bremner M J, Thew R T 2002 Phys. Rev. A 65 040301  Google Scholar Google Scholar[91] Cubitt T S, Montanaro A, Piddock S 2018 Proc. Natl. Acad. Sci. U.S.A. 115 9497  Google Scholar Google Scholar[92] Kohler T, Piddock S, Bausch J, Cubitt T 2021 Henri Poincaré 23 223 [93] Kohler T, Piddock S, Bausch J, Cubitt T 2022 PRX Quantum 3 010308  Google Scholar Google Scholar[94] Berry D W, Ahokas G, Cleve R, Sanders B C 2007 Commun. Math. Phys. 270 359  Google Scholar Google Scholar[95] Cirac J I, Zoller P 2012 Nat. Phys. 8 264  Google Scholar Google Scholar[96] Shepherd D J, Franz T, Werner R F 2006 Phys. Rev. Lett. 97 020502  Google Scholar Google Scholar[97] Janzing D 2007 Phys. Rev. A 75 012307  Google Scholar Google Scholar[98] Nagaj D, Wocjan P 2008 Phys. Rev. A 78 032311  Google Scholar Google Scholar[99] Nagaj D 2012 Phys. Rev. A 85 032330  Google Scholar Google Scholar[100] Lloyd S, Terhal B 2016 New J. Phys. 18 023042  Google Scholar Google Scholar[101] Toffoli T, Margolus N 1987 Cellular Automata Machines: A New Environment for Modeling (MIT Press [102] Bisio A, D’ Ariano G M, Tosini A 2015 Ann. Phys. 354 244  Google Scholar Google Scholar[103] Heim B, Rønnow T F, Isakov S V, Troyer M 2015 Science 348 215  Google Scholar Google Scholar[104] Villanueva A, Najafi P, Kappen H J 2023 J. Phys. A: Math. Theor. 56 465304  Google Scholar Google Scholar[105] Bravyi S, DiVincenzo D P, Oliveira R I, Terhal B M 2008 Quantum Inf. Comput. 8 0361 [106] Zhang J, Kyaw T H, Filipp S, Kwek L C, Sjöqvist E, Tong D 2023 Phys. Rep. 1027 1  Google Scholar Google Scholar[107] Wootters W K 1987 Ann. Phys. 176 1  Google Scholar Google Scholar[108] Gross D 2006 J. Math. Phys. 47 122107  Google Scholar Google Scholar[109] Bravyi S, Kitaev A 2005 Phys. Rev. A 71 022316  Google Scholar Google Scholar[110] Popescu S, Rohrlich D 1994 Found. Phys. 24 379  Google Scholar Google Scholar[111] Spekkens R W 2008 Phys. Rev. Lett. 101 020401  Google Scholar Google Scholar[112] Spekkens R W 2005 Phys. Rev. A 71 052108  Google Scholar Google Scholar[113] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895  Google Scholar Google Scholar[114] Gottesman D, Chuang I L 1999 Nature 402 390  Google Scholar Google Scholar[115] Long G L 2006 Commun. Theor. Phys. 45 825  Google Scholar Google Scholar[116] Childs A M, Wiebe N 2012 Quant. Inf. Comput. 12 901 [117] Berry D W, Childs A M, Cleve R, Kothari R, Somma R D 2015 Phys. Rev. Lett. 114 090502  Google Scholar Google Scholar[118] Wei S, Long G L 2016 Quantum Inf. Process. 15 1189  Google Scholar Google Scholar[119] Zhou X, Leung D W, Chuang I L 2000 Phys. Rev. A 62 052316  Google Scholar Google Scholar[120] Broadbent A 2016 Phys. Rev. A 94 022318  Google Scholar Google Scholar[121] Clauser J F, Horne M A, Shimony A, Holt R A 1969 Phys. Rev. Lett. 23 880  Google Scholar Google Scholar[122] Vaidman L 2003 Phys. Rev. Lett. 90 010402  Google Scholar Google Scholar[123] Brassard G, Buhrman H, Linden N, Méthot A A, Tapp A, Unger F 2006 Phys. Rev. Lett. 96 250401  Google Scholar Google Scholar[124] Chitambar E, Leung D, Mančinska L, Ozols M, Winter A 2014 Commun. Math. Phys. 328 303  Google Scholar Google Scholar[125] Bennett C H, DiVincenzo D P, Smolin J A 1997 Phys. Rev. Lett. 78 3217  Google Scholar Google Scholar[126] Gheorghiu A, Kapourniotis T, Kashefi E 2019 Theory of Computing Systems 63 715  Google Scholar Google Scholar[127] Wang D S 2024 Chin. Phys. B 33 080302  Google Scholar Google Scholar[128] Horodecki M, Shor P, Ruskai M B 2003 Rev. Math. Phys. 15 629  Google Scholar Google Scholar[129] Rosset D, Buscemi F, Liang Y C 2018 Phys. Rev. X 8 021033 [130] Li L, Hall M J W, Wiseman H M 2018 Phys. Rep. 759 1  Google Scholar Google Scholar[131] Eastin B, Knill E 2009 Phys. Rev. Lett. 102 110502  Google Scholar Google Scholar[132] Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89 035002  Google Scholar Google Scholar[133] Yoder T J, Takagi R, Chuang I L 2016 Phys. Rev. X 6 031039 [134] Zeng B, Chen X, Zhou D L, Wen X G 2019 Quantum Information Meets Quantum Matter (New York: Springer-Verlag [135] Koenig R, Kuperberg G, Reichardt B W 2010 Ann. Phys. 325 2707  Google Scholar Google Scholar[136] Brown B J, Loss D, Pachos J K, Self C N, Wootton J R 2016 Rev. Mod. Phys. 88 045005  Google Scholar Google Scholar[137] Sarma S D, Freedman M, Nayak C 2015 npj Quantum Inf. 1 15001  Google Scholar Google Scholar[138] Harper F, Roy R, Rudner M S, Sondhi S L 2020 Ann. Rev. Condens. Matter Phys. 11 345  Google Scholar Google Scholar[139] Khodjasteh K, Lidar D A 2008 Phys. Rev. A 78 012355  Google Scholar Google Scholar[140] Verstraete F, Wolf M M, Cirac J I 2009 Nat. Phys. 5 633  Google Scholar Google Scholar[141] Anderson J T, Duclos-Cianci G, Poulin D 2014 Phys. Rev. Lett. 113 080501  Google Scholar Google Scholar[142] Liu Y T, Wang K, Liu Y D, Wang D S 2023 Entropy 25 1187  Google Scholar Google Scholar[143] Araujo M, Feix A, Costa F, Brukner C 2014 New J. Phys. 16 093026  Google Scholar Google Scholar[144] Bengtsson I, Życzkowski K 2006 Geometry of Quantum States (Cambridge: Cambridge University Press [145] Wang K, Wang D S 2023 New J. Phys. 25 043013  Google Scholar Google Scholar[146] Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (Bangalore: IEEE, New York) pp175–179 [147] Morris J, Saggio V, Gocanin A, Dakic B 2022 Adv. Quantum Technol. 5 2100118  Google Scholar Google Scholar[148] Huang H L, Wu D, Fan D, Zhu X 2020 Sci. China Inf. Sci. 63 180501  Google Scholar Google Scholar[149] Wang J, Sciarrino F, Laing A, Thompson M G 2020 Nat. Photonics 14 273  Google Scholar Google Scholar[150] Editorial 2022 Nat. Rev. Phys. 4 1  Google Scholar Google Scholar[151] Ma Y, Ma Y Z, Zhou Z Q, Li C F, Guo G C 2021 Nat. Commun. 12 2381  Google Scholar Google Scholar[152] Chiribella G, D’Ariano G M, Perinotti P 2008 Phys. Rev. Lett. 101 180501  Google Scholar Google Scholar[153] Gutoski G, Watrous J 2007 Proceedings of the 39th ACM Symposium on Theory of Computing pp565–574 [154] Mehta P, Bukov M, Wang C H, Day A G R, Richardson C, Fisher C K, Schwab D J 2019 Phys. Rep. 810 1  Google Scholar Google Scholar[155] Lim D, Doriguello J F, Rebentrost P 2023 arXiv: quantph/2304.02262 [quant-ph] [156] Dunjko V, Briegel H J 2018 Rep. Prog. Phys. 81 074001  Google Scholar Google Scholar[157] Verdon G, Pye J, Broughton M 2018 arXiv: quantph/ 1806.09729 [quant-ph] [158] Benedetti M, Lloyd E, Sack S, Fiorentini M 2019 Quantum Sci. Technol. 4 043001  Google Scholar Google Scholar[159] Huang H Y, Kueng R, Preskill J 2021 Phys. Rev. Lett. 126 190505  Google Scholar Google Scholar[160] Caro M C 2024 ACM Trans. Quantum Comput. 5 2 [161] Cleve R, Ekert A, Macchiavello C, Mosca M 1998 Proc. R. Soc. London, Ser. A 454 339  Google Scholar Google Scholar[162] Jozsa R, Linden N 2003 Proc. R. Soc. London, Ser. A 459 2011  Google Scholar Google Scholar[163] Steane A M 2003 Studies in History and Philosophy of Modern Physics 34 469  Google Scholar Google Scholar[164] Van den Nest M 2013 Phys. Rev. Lett. 110 060504  Google Scholar Google Scholar[165] Howard M, Wallman J, Veitch V, Emerson J 2014 Nature 510 351  Google Scholar Google Scholar[166] Giovannetti V, Maccone L, Morimae T, Rudolph T G 2013 Phys. Rev. Lett. 111 230501  Google Scholar Google Scholar[167] Holevo A S 1977 Rep. Math. Phys. 12 273  Google Scholar Google Scholar[168] Tajima H, Shiraishi N, Saito K 2018 Phys. Rev. Lett. 121 110403  Google Scholar Google Scholar[169] Chiribella G, Yang Y, Renner R 2021 Phys. Rev. X 11 021014 [170] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621  Google Scholar Google Scholar[171] Xu K, Fan H 2022 Chin. Phys. B 31 100304  Google Scholar Google Scholar[172] Emerson J, Weinstein Y S, Saraceno M, Lloyd S, Cory D G 2003 Science 302 2098  Google Scholar Google Scholar[173] Qin D, Xu X, Li Y 2022 Chin. Phys. B 31 090306  Google Scholar Google Scholar[174] Smith G, Yard J 2008 Science 321 1812  Google Scholar Google Scholar[175] Sauerwein D, Wallach N R, Gour G, Kraus B 2018 Phys. Rev. X 8 031020  Google Scholar Google Scholar[176] Google Quantum AI and Collaborators 2024 arXiv: 2408. 13687 [quant-ph] 
- 
				
    
    
图 1 经典与量子信息领域的一些发展阶段. 经典(上部): 在世纪之交, 希尔伯特提出了著名的23个问题, 其中一个启发了图灵对于计算的研究, 直接奠定了计算机科学的理论基础. 香农证明了通信的三大定理, 为纠错码理论奠定基础. 同时, 冯·诺依曼提出了通用计算机的架构理论. 之后, PN结和三极管的发明奠定了电子计算机的硬件基础, 然后发展到大规模可编程集成电路(IC). 量子(下部): 早期有EPR和Bell关于量子纠缠和非定域性的探讨. 之后, 经Holevo, Kraus等人将量子信道演化、退相干、测量等数学形式发展出来. BB84是首个利用量子不确定性的保密通信方案, 整个领域从此开始起步. 在理论方面, 量子资源理论(QRT)作为描述量子信息的完备理论逐渐发展成熟 Figure 1. Development of classical and quantum information science. Classical (up): From the 23 problems of Hilbert, Turing laid the foundation of computation science. Shannon established the theory of communication, and von Neumann established the architecture of computers. The next breakthrough include PN junction and transistor, forming the building blocks of modern integrated circuits. Quantum (down): With the early study of EPR and Bell, the mathematical formalism of quantum channel, decoherence, and measurement were developed by Holevo, Kraus, etc. The BB84 secure protocol boosted the field. The theoretical achievement is the recent development of quantum resource theory as the theory of quantum information. 图 3 量子线路模型示意及算法设计结构. 基本结构(左上)包括某经典算法A和它设计的量子线路U以及测量方式(三角符号). 也可以扩展为经典-量子混合的迭代结构(右上), 或等价地表示为线性方式(下) Figure 3. Structures of quantum circuit model and quantum algorithms. Basic structure (top-left) has a classical algorithm A that designs the quantum circuit U and measurement. It extends to the iterative classical-quantum algorithms (top-right), which can be “stretched” into a linear flow (bottom). 图 6 通用量子计算模型分类表. 第I类模型即形式类有12个模型, 第II类模型即演化类有9个模型, 因而一共108个完备的模型(灰色方格). 其中研究最多的是基于线路模型的各种方案. 信道家族的模型统称为量子冯·诺依曼模型或架构. 模型之间也可以进行混合搭配 Figure 6. The classification table of universal quantum computing models. There are 12 (9) Category-I (-II) models, hence in total 108 complete models (grey boxes). The most well-studied are those based on circuit model. The channel-family models are all von Neumann architecture or models. Hybridization among models are also allowed. 图 7 矩阵乘积态的等价表示方式. 张量形式(上): 横线是纠缠空间, 竖线是不同的物理空间, 方框代表张量(或矩阵). VBS或AKLT形式[69](中): 张量由圈代表的算子构造, 横向线段代表Bell态, 对应(11)式. 量子线路形式(下): 每个张量可以由幺正过程(大框)实现 Figure 7. Representations of matrix-product states. Tensor form (Top): the top register is the entanglement space, the vertical wires are physical sites, the boxes are the tensors or matrices. VBS or AKLT form[69] (Middle): tensors are defined by local operators (circles) acting on Bell states Eq.(11). Circuit form (Bottom): each tensor is realized by a unitary circuit (big boxes). 图 9 量子超算法结构示意. 其母算法(阴影部分)将输入的数据(方框)转化为所需的算法即子算法, 完成上端数据系统的输入输出过程(自左向右). 经典-量子混合架构是其特例(图3), 且MPS结构(图7)也可以看作其特例. 输入(方框)之间也可以存在量子关联(未表示) Figure 9. Schemetics of quantum super-algorithm. The “mother” algorithm (shaded) maps the input data (boxes) into the desired “child” algorithm, which acts on the data system (top register). The classical-quantum hybrid algorithm (Fig. 3) is a special case, and the MPS formula (Fig. 7) is also a special case of it. There can also be quantum correlation or memory (unshown) between the input (boxes). 
- 
				
[1] Preskill J 2018 Quantum 2 79  Google Scholar Google Scholar[2] Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press [3] 潘建伟 2024 物理学报 73 010301  Google Scholar Google ScholarPan J W 2024 Acta Phys. Sin. 73 010301  Google Scholar Google Scholar[4] Bell J S 1966 Rev. Mod. Phys. 38 447  Google Scholar Google Scholar[5] Kraus K 1983 States, Effects, and Operations: Fundamental Notions of Quantum Theory (Vol. 190) (Berlin: Springer-Verlag [6] Holevo A S 1982 Probabilistic and Statistical Aspect of Quantum Theory (Amsterdam: North-Holland [7] Feynman R P 1982 Int. J. Theor. Phys. 21 467  Google Scholar Google Scholar[8] Deutsch D 1985 Proc. R. Soc. London, Ser. A 400 97 [9] Yao A C C 1993 Foundations of Computer Science, 1993 Proceedings, 34th Annual Symposium on (IEEE) p352 [10] Bernstein E, Vazirani U 1997 SIAM J. Comput. 26 1411  Google Scholar Google Scholar[11] Shor P W 1994 Proceedings 35th Annual Symposium on Foundations of Computer Science (IEEE) p124 [12] Harris D M, Harris S L 2013 Digital Design and Computer Architecture (Elsevier [13] Shannon C 1948 The Bell System Technical Journal 27 379  Google Scholar Google Scholar[14] von Neumann J 1993 IEEE Ann. Hist. Comput. 15 27  Google Scholar Google Scholar[15] Lidar D, Brun T A 2013 Quantum Error Correction (Cambridge: Cambridge University Press [16] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’ Brien J L 2010 Nature 464 45  Google Scholar Google Scholar[17] Grover L K 1996 Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing [18] Harrow A W, Hassidim A, Lloyd S 2009 Phys. Rev. Lett. 103 150502  Google Scholar Google Scholar[19] Long G L 2011 Int. J. Theor. Phys. 50 1305  Google Scholar Google Scholar[20] Martyn J M, Rossi Z M, Tan A K, Chuang I L 2021 PRX Quantum 2 040203  Google Scholar Google Scholar[21] Watrous J 2018 The Theory of Quantum Information (Cambridge: Cambridge University Press [22] Hayashi M 2017 Quantum Information Theory: Mathematical Foundation (2nd Ed.) (Springer [23] Wilde M 2017 Quantum Information Theory (Cambridge: Cambridge University Press [24] Chitambar E, Gour G 2019 Rev. Mod. Phys. 91 025001  Google Scholar Google Scholar[25] Wang D S 2023 Commun. Theor. Phys. 75 125101  Google Scholar Google Scholar[26] Albash T, Lidar D A 2018 Rev. Mod. Phys. 90 015002  Google Scholar Google Scholar[27] Nayak C, Simon S H, Stern A, Freedman M, Sarma S D 2008 Rev. Mod. Phys. 80 1083  Google Scholar Google Scholar[28] Childs A M, Gosset D, Webb Z 2013 Science 339 791  Google Scholar Google Scholar[29] Arrighi P 2019 Natural Computing 18 885  Google Scholar Google Scholar[30] Briegel H J, Browne D E, Dür W, Raussendorf R, Van den Nest M 2009 Nat. Phys. 5 19  Google Scholar Google Scholar[31] Barenco A, Bennett C H, Cleve R, DiVincenzo D P, Margolus N, Shor P, Sleator T, Smolin J A, Weinfurter H 1995 Phys. Rev. A 52 3457  Google Scholar Google Scholar[32] DiVincenzo D P 2000 Fortschr. Phys. 48 771 [33] Nielsen M A, Chuang I L 1997 Phys. Rev. Lett. 79 321  Google Scholar Google Scholar[34] Yang Y, Renner R, Chiribella G 2020 Phys. Rev. Lett. 125 210501  Google Scholar Google Scholar[35] Wang D S 2022 Commun. Theor. Phys. 74 095103  Google Scholar Google Scholar[36] Dawson C M, Nielsen M A 2006 Quantum Inf. Comput. 6 81 [37] Lloyd S 1996 Science 273 1073  Google Scholar Google Scholar[38] Brassard G, Høyer P, Mosca M, Tapp A 2002 Contem. Mathemat. 305 53 [39] Knill E, Laflamme R 1997 Phys. Rev. A 55 900  Google Scholar Google Scholar[40] Chiribella G, D’Ariano G M, Perinotti P 2008 Europhys. Lett. 83 30004  Google Scholar Google Scholar[41] Chiribella G, D’Ariano G M, Perinotti P 2008 Phys. Rev. Lett. 101 060401  Google Scholar Google Scholar[42] Chiribella G, D’Ariano G M, Perinotti P 2009 Phys. Rev. A 80 022339  Google Scholar Google Scholar[43] Choi M D 1975 Linear Algebra Appl. 10 285  Google Scholar Google Scholar[44] Bény C, Oreshkov O 2010 Phys. Rev. Lett. 104 120501  Google Scholar Google Scholar[45] Gottesman D 1998 Phys. Rev. A 57 127  Google Scholar Google Scholar[46] Wang D S, Zhu G, Okay C, Laflamme R 2020 Phys. Rev. Res. 2 033116  Google Scholar Google Scholar[47] Wang D S, Wang Y J, Cao N, Zeng B, Laflamme R 2022 New J. Phys. 24 023019  Google Scholar Google Scholar[48] Zhou S, Liu Z W, Jiang L 2021 Quantum 5 521  Google Scholar Google Scholar[49] Yang Y, Mo Y, Renes J M, Chiribella G, Woods M P 2022 Phys. Rev. Res. 4 023107  Google Scholar Google Scholar[50] Kubica A, Demkowicz-Dobrzański R 2021 Phys. Rev. Lett. 126 150503  Google Scholar Google Scholar[51] Viola L, Knill E, Lloyd S 1999 Phys. Rev. Lett. 82 2417  Google Scholar Google Scholar[52] Kitaev A Y 2003 Ann. Phys. 303 2  Google Scholar Google Scholar[53] Ryan W E, Lin S 2009 Channel Codes: Classical and Modern (Cambridge: Cambridge University Press [54] Breuckmann N P, Eberhardt J N 2021 PRX Quantum 2 040101  Google Scholar Google Scholar[55] Wang D S, Liu Y D, Wang Y J, Luo S 2024 Phys. Rev. A 110 032413  Google Scholar Google Scholar[56] Coecke B, Fritz T, Spekkens R W 2016 Information and Computation 250 59  Google Scholar Google Scholar[57] Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865  Google Scholar Google Scholar[58] Streltsov A, Adesso G, Plenio M B 2017 Rev. Mod. Phys. 89 041003  Google Scholar Google Scholar[59] Wang D S 2021 Quantum Engineering 2 e85 [60] Wang D S 2020 Quantum Inf. Comput. 20 0213 [61] Raussendorf R, Briegel H J 2001 Phys. Rev. Lett. 86 5188  Google Scholar Google Scholar[62] Nielsen M A 2006 Rep. Math. Phys. 57 147  Google Scholar Google Scholar[63] Wang D S, Stephen D T, Raussendorf R 2017 Phys. Rev. A 95 032312  Google Scholar Google Scholar[64] Stephen D T, Wang D S, Prakash A, Wei T C, Raussendorf R 2017 Phys. Rev. Lett. 119 010504  Google Scholar Google Scholar[65] Raussendorf R, Okay C, Wang D S, Stephen D T, Nautrup H P 2019 Phys. Rev. Lett. 122 090501  Google Scholar Google Scholar[66] Molina A, Watrous J 2019 Proc. Royal Soc. A 475 20180767  Google Scholar Google Scholar[67] Paetznick A, Reichardt B W 2013 Phys. Rev. Lett. 111 090505  Google Scholar Google Scholar[68] Tóth G, Apellaniz I 2014 J. Phys. A: Math. Theor. 47 424006  Google Scholar Google Scholar[69] Affleck I, Kennedy T, Lieb E H, Tasaki H 1987 Phys. Rev. Lett. 59 799  Google Scholar Google Scholar[70] Fannes M, Nachtergaele B, Werner R F 1992 Commun. Math. Phys. 144 443  Google Scholar Google Scholar[71] Perez-Garcia D, Verstraete F, Wolf M, Cirac J 2007 Quantum Inf. Comput. 7 401 [72] Sarovar M, Proctor T, Rudinger K, Young K, Nielsen E, Blume-Kohout R 2020 Quantum 4 321  Google Scholar Google Scholar[73] Crépeau C, Gottesman D, Smith A 2002 STOC ’ 02: Proc. 34th Annual ACM Symp. Theory of Computing p643 [74] Broadbent A, Fitzsimons J, Kashefi E 2009 Proceedings of the 50th Annual Symposium on Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, 2009) p517 [75] Myers J M 1997 Phys. Rev. Lett. 78 1823  Google Scholar Google Scholar[76] Cirac J I, Pérez-García D, Schuch N, Verstraete F 2021 Rev. Mod. Phys. 93 045003  Google Scholar Google Scholar[77] Wehner S, Elkouss D, Hanson R 2018 Science 362 303  Google Scholar Google Scholar[78] Wang D S 2019 Int. J. Mod. Phys. B 33 1930004  Google Scholar Google Scholar[79] Wang D S 2020 Phys. Rev. A 101 052311  Google Scholar Google Scholar[80] Van den Nest M, Dür W, Vidal G, Briegel H J 2007 Phys. Rev. A 75 012337  Google Scholar Google Scholar[81] Van den Nest M, Dür W, Miyake A, Briegel H J 2007 New J. Phys. 9 204  Google Scholar Google Scholar[82] Gross D, Flammia S T, Eisert J 2009 Phys. Rev. Lett. 102 190501  Google Scholar Google Scholar[83] Bremner M J, Mora C, Winter A 2009 Phys. Rev. Lett. 102 190502  Google Scholar Google Scholar[84] Gu Z C, Wen X G 2009 Phys. Rev. B 80 155131  Google Scholar Google Scholar[85] Chen X, Gu Z C, Wen X G 2011 Phys. Rev. B 83 035107  Google Scholar Google Scholar[86] Schuch N, Pérez-García D, Cirac I 2011 Phys. Rev. B 84 165139  Google Scholar Google Scholar[87] Bartolucci S, Birchall P, Bombin H, Cable H, Dawson C, Gimeno-Segovia M, Johnston E, Kieling K, Nickerson N, Pant M, Pastawski F, Rudolph T, Sparrow C 2023 Nat. Commun. 14 912  Google Scholar Google Scholar[88] Kitaev A, Shen A H, Vyalyi M N 2002 Classical and Quantum Computation (Vol. 47) (Providence: American Mathematical Society [89] Wocjan P, Roetteler M, Janzing D, Beth T 2002 Quantum Inf. Comput. 2 133 [90] Dodd J L, Nielsen M A, Bremner M J, Thew R T 2002 Phys. Rev. A 65 040301  Google Scholar Google Scholar[91] Cubitt T S, Montanaro A, Piddock S 2018 Proc. Natl. Acad. Sci. U.S.A. 115 9497  Google Scholar Google Scholar[92] Kohler T, Piddock S, Bausch J, Cubitt T 2021 Henri Poincaré 23 223 [93] Kohler T, Piddock S, Bausch J, Cubitt T 2022 PRX Quantum 3 010308  Google Scholar Google Scholar[94] Berry D W, Ahokas G, Cleve R, Sanders B C 2007 Commun. Math. Phys. 270 359  Google Scholar Google Scholar[95] Cirac J I, Zoller P 2012 Nat. Phys. 8 264  Google Scholar Google Scholar[96] Shepherd D J, Franz T, Werner R F 2006 Phys. Rev. Lett. 97 020502  Google Scholar Google Scholar[97] Janzing D 2007 Phys. Rev. A 75 012307  Google Scholar Google Scholar[98] Nagaj D, Wocjan P 2008 Phys. Rev. A 78 032311  Google Scholar Google Scholar[99] Nagaj D 2012 Phys. Rev. A 85 032330  Google Scholar Google Scholar[100] Lloyd S, Terhal B 2016 New J. Phys. 18 023042  Google Scholar Google Scholar[101] Toffoli T, Margolus N 1987 Cellular Automata Machines: A New Environment for Modeling (MIT Press [102] Bisio A, D’ Ariano G M, Tosini A 2015 Ann. Phys. 354 244  Google Scholar Google Scholar[103] Heim B, Rønnow T F, Isakov S V, Troyer M 2015 Science 348 215  Google Scholar Google Scholar[104] Villanueva A, Najafi P, Kappen H J 2023 J. Phys. A: Math. Theor. 56 465304  Google Scholar Google Scholar[105] Bravyi S, DiVincenzo D P, Oliveira R I, Terhal B M 2008 Quantum Inf. Comput. 8 0361 [106] Zhang J, Kyaw T H, Filipp S, Kwek L C, Sjöqvist E, Tong D 2023 Phys. Rep. 1027 1  Google Scholar Google Scholar[107] Wootters W K 1987 Ann. Phys. 176 1  Google Scholar Google Scholar[108] Gross D 2006 J. Math. Phys. 47 122107  Google Scholar Google Scholar[109] Bravyi S, Kitaev A 2005 Phys. Rev. A 71 022316  Google Scholar Google Scholar[110] Popescu S, Rohrlich D 1994 Found. Phys. 24 379  Google Scholar Google Scholar[111] Spekkens R W 2008 Phys. Rev. Lett. 101 020401  Google Scholar Google Scholar[112] Spekkens R W 2005 Phys. Rev. A 71 052108  Google Scholar Google Scholar[113] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895  Google Scholar Google Scholar[114] Gottesman D, Chuang I L 1999 Nature 402 390  Google Scholar Google Scholar[115] Long G L 2006 Commun. Theor. Phys. 45 825  Google Scholar Google Scholar[116] Childs A M, Wiebe N 2012 Quant. Inf. Comput. 12 901 [117] Berry D W, Childs A M, Cleve R, Kothari R, Somma R D 2015 Phys. Rev. Lett. 114 090502  Google Scholar Google Scholar[118] Wei S, Long G L 2016 Quantum Inf. Process. 15 1189  Google Scholar Google Scholar[119] Zhou X, Leung D W, Chuang I L 2000 Phys. Rev. A 62 052316  Google Scholar Google Scholar[120] Broadbent A 2016 Phys. Rev. A 94 022318  Google Scholar Google Scholar[121] Clauser J F, Horne M A, Shimony A, Holt R A 1969 Phys. Rev. Lett. 23 880  Google Scholar Google Scholar[122] Vaidman L 2003 Phys. Rev. Lett. 90 010402  Google Scholar Google Scholar[123] Brassard G, Buhrman H, Linden N, Méthot A A, Tapp A, Unger F 2006 Phys. Rev. Lett. 96 250401  Google Scholar Google Scholar[124] Chitambar E, Leung D, Mančinska L, Ozols M, Winter A 2014 Commun. Math. Phys. 328 303  Google Scholar Google Scholar[125] Bennett C H, DiVincenzo D P, Smolin J A 1997 Phys. Rev. Lett. 78 3217  Google Scholar Google Scholar[126] Gheorghiu A, Kapourniotis T, Kashefi E 2019 Theory of Computing Systems 63 715  Google Scholar Google Scholar[127] Wang D S 2024 Chin. Phys. B 33 080302  Google Scholar Google Scholar[128] Horodecki M, Shor P, Ruskai M B 2003 Rev. Math. Phys. 15 629  Google Scholar Google Scholar[129] Rosset D, Buscemi F, Liang Y C 2018 Phys. Rev. X 8 021033 [130] Li L, Hall M J W, Wiseman H M 2018 Phys. Rep. 759 1  Google Scholar Google Scholar[131] Eastin B, Knill E 2009 Phys. Rev. Lett. 102 110502  Google Scholar Google Scholar[132] Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89 035002  Google Scholar Google Scholar[133] Yoder T J, Takagi R, Chuang I L 2016 Phys. Rev. X 6 031039 [134] Zeng B, Chen X, Zhou D L, Wen X G 2019 Quantum Information Meets Quantum Matter (New York: Springer-Verlag [135] Koenig R, Kuperberg G, Reichardt B W 2010 Ann. Phys. 325 2707  Google Scholar Google Scholar[136] Brown B J, Loss D, Pachos J K, Self C N, Wootton J R 2016 Rev. Mod. Phys. 88 045005  Google Scholar Google Scholar[137] Sarma S D, Freedman M, Nayak C 2015 npj Quantum Inf. 1 15001  Google Scholar Google Scholar[138] Harper F, Roy R, Rudner M S, Sondhi S L 2020 Ann. Rev. Condens. Matter Phys. 11 345  Google Scholar Google Scholar[139] Khodjasteh K, Lidar D A 2008 Phys. Rev. A 78 012355  Google Scholar Google Scholar[140] Verstraete F, Wolf M M, Cirac J I 2009 Nat. Phys. 5 633  Google Scholar Google Scholar[141] Anderson J T, Duclos-Cianci G, Poulin D 2014 Phys. Rev. Lett. 113 080501  Google Scholar Google Scholar[142] Liu Y T, Wang K, Liu Y D, Wang D S 2023 Entropy 25 1187  Google Scholar Google Scholar[143] Araujo M, Feix A, Costa F, Brukner C 2014 New J. Phys. 16 093026  Google Scholar Google Scholar[144] Bengtsson I, Życzkowski K 2006 Geometry of Quantum States (Cambridge: Cambridge University Press [145] Wang K, Wang D S 2023 New J. Phys. 25 043013  Google Scholar Google Scholar[146] Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (Bangalore: IEEE, New York) pp175–179 [147] Morris J, Saggio V, Gocanin A, Dakic B 2022 Adv. Quantum Technol. 5 2100118  Google Scholar Google Scholar[148] Huang H L, Wu D, Fan D, Zhu X 2020 Sci. China Inf. Sci. 63 180501  Google Scholar Google Scholar[149] Wang J, Sciarrino F, Laing A, Thompson M G 2020 Nat. Photonics 14 273  Google Scholar Google Scholar[150] Editorial 2022 Nat. Rev. Phys. 4 1  Google Scholar Google Scholar[151] Ma Y, Ma Y Z, Zhou Z Q, Li C F, Guo G C 2021 Nat. Commun. 12 2381  Google Scholar Google Scholar[152] Chiribella G, D’Ariano G M, Perinotti P 2008 Phys. Rev. Lett. 101 180501  Google Scholar Google Scholar[153] Gutoski G, Watrous J 2007 Proceedings of the 39th ACM Symposium on Theory of Computing pp565–574 [154] Mehta P, Bukov M, Wang C H, Day A G R, Richardson C, Fisher C K, Schwab D J 2019 Phys. Rep. 810 1  Google Scholar Google Scholar[155] Lim D, Doriguello J F, Rebentrost P 2023 arXiv: quantph/2304.02262 [quant-ph] [156] Dunjko V, Briegel H J 2018 Rep. Prog. Phys. 81 074001  Google Scholar Google Scholar[157] Verdon G, Pye J, Broughton M 2018 arXiv: quantph/ 1806.09729 [quant-ph] [158] Benedetti M, Lloyd E, Sack S, Fiorentini M 2019 Quantum Sci. Technol. 4 043001  Google Scholar Google Scholar[159] Huang H Y, Kueng R, Preskill J 2021 Phys. Rev. Lett. 126 190505  Google Scholar Google Scholar[160] Caro M C 2024 ACM Trans. Quantum Comput. 5 2 [161] Cleve R, Ekert A, Macchiavello C, Mosca M 1998 Proc. R. Soc. London, Ser. A 454 339  Google Scholar Google Scholar[162] Jozsa R, Linden N 2003 Proc. R. Soc. London, Ser. A 459 2011  Google Scholar Google Scholar[163] Steane A M 2003 Studies in History and Philosophy of Modern Physics 34 469  Google Scholar Google Scholar[164] Van den Nest M 2013 Phys. Rev. Lett. 110 060504  Google Scholar Google Scholar[165] Howard M, Wallman J, Veitch V, Emerson J 2014 Nature 510 351  Google Scholar Google Scholar[166] Giovannetti V, Maccone L, Morimae T, Rudolph T G 2013 Phys. Rev. Lett. 111 230501  Google Scholar Google Scholar[167] Holevo A S 1977 Rep. Math. Phys. 12 273  Google Scholar Google Scholar[168] Tajima H, Shiraishi N, Saito K 2018 Phys. Rev. Lett. 121 110403  Google Scholar Google Scholar[169] Chiribella G, Yang Y, Renner R 2021 Phys. Rev. X 11 021014 [170] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621  Google Scholar Google Scholar[171] Xu K, Fan H 2022 Chin. Phys. B 31 100304  Google Scholar Google Scholar[172] Emerson J, Weinstein Y S, Saraceno M, Lloyd S, Cory D G 2003 Science 302 2098  Google Scholar Google Scholar[173] Qin D, Xu X, Li Y 2022 Chin. Phys. B 31 090306  Google Scholar Google Scholar[174] Smith G, Yard J 2008 Science 321 1812  Google Scholar Google Scholar[175] Sauerwein D, Wallach N R, Gour G, Kraus B 2018 Phys. Rev. X 8 031020  Google Scholar Google Scholar[176] Google Quantum AI and Collaborators 2024 arXiv: 2408. 13687 [quant-ph] 
Catalog
Metrics
- Abstract views: 7325
- PDF Downloads: 796
- Cited By: 0


 
					 
		         
	         
  
					 
												






 
							 DownLoad:
DownLoad: 
				 
							 
							 
							 
							 
							 
							 
							 
							 
							