Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X-ray cavity quantum optics of inner-shell transitions

Wang Shu-Xing Li Tian-Jun Huang Xin-Chao Zhu Lin-Fan

Citation:

X-ray cavity quantum optics of inner-shell transitions

Wang Shu-Xing, Li Tian-Jun, Huang Xin-Chao, Zhu Lin-Fan
cstr: 32037.14.aps.73.20241218
PDF
HTML
Get Citation
  • Over the past decade, X-ray quantum optics has emerged as a dynamic research field, driven by significant advancements in X-ray sources such as next-generation synchrotron radiation facilities and X-ray free-electron lasers, as well as improvements in X-ray methodologies and sample fabrication techniques. One of the most successful platforms in this field is the X-ray planar thin-film cavity, also known as the X-ray cavity QED setup. To date, most studies in X-ray cavity quantum optics have focused on Mössbauer nuclear resonances. However, this approach is constrained by the limited availability of suitable nuclear isotopes and the lack of universal applicability. Recently, experimental realizations of X-ray cavity quantum control in atomic inner-shell transitions have demonstrated that cavity effects can simultaneously modify transition energies and core-hole lifetimes. These pioneering studies suggest that X-ray cavity quantum optics based on inner-shell transitions will become a promising new platform. Notably, the core-hole state is a fundamental concept in various modern X-ray spectroscopic techniques. Therefore, integrating X-ray quantum optics with X-ray spectroscopy holds the potential to open new frontiers in the field of core-level spectroscopy.In this review, we introduce the experimental systems used in X-ray cavity quantum optics with inner-shell transitions, covering cavity structures, sample fabrications, and experimental methodologies. We explain that X-ray thin-film cavity experiments require high flux, high energy resolution, minimal beam divergence, and precise angular control, necessitating the use of synchrotron radiations. Grazing reflectivity and fluorescence measurements are described in detail, along with a brief introduction to resonant inelastic X-ray scattering techniques. The review also outlines simulation tools, including the classical Parratt algorithm, semi-classical matrix formalism, quantum optical theory based on the Jaynes-Cummings model, and the quantum Green’s function method. We discuss the similarities and unique features of electronic inner-shell transitions and highlight recent advancements, focusing on cavity-induced phenomena such as collective Lamb shift, Fano interference, core-hole lifetime control, etc. Observables such as reflectivity and fluorescence spectra play a central role in these studies. Finally, we review and discuss potential future directions for the field. Designing novel cavities is crucial for addressing current debates regarding cavity effects in inner-shell transitions and uncovering new quantum optical phenomena. Integrating modern X-ray spectroscopies with X-ray cavity quantum optics represents a promising research frontier with significant application potential. Furthermore, X-ray free-electron lasers, with much higher pulse intensity and shorter pulse duration, are expected to propel X-ray cavity quantum optics into the nonlinear and multiphoton regimes, opening new avenues for exploration.
      Corresponding author: Huang Xin-Chao, xinchao.huang@xfel.eu ; Zhu Lin-Fan, lfzhu@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12334010, U1932207).
    [1]

    潘建伟 2024 物理学报 73 010301Google Scholar

    Pan J W 2024 Acta Phys. Sin. 73 010301Google Scholar

    [2]

    Adams B W, Buth C, Cavaletto S M, Cavaletto, Evers J, Harman Z, Keitel C H, Pálffy A, Picón A, Röhlsberger R, Rostovtsev Y, Tamasaku K 2013 J. Mod. Opt. 60 2Google Scholar

    [3]

    Kuznetsova E, Kocharovskaya O 2017 Nat. Photonics 11 685Google Scholar

    [4]

    Röhlsberger R, Evers J, Shwartz S 2020 Synchrotron Light Sources and Free-Electron Lasers: Ac-celerator Physics, Instrumentation and Science Applications, chap. Quantum and Nonlinear Optics with Hard X-Rays (Cham: Springer International Publishing) pp1399–1431

    [5]

    Röhlsberger R, Evers J 2021 Modern Mössbauer Spectroscopy, chap. Quantum Optical Phenomena in Nuclear Resonant Scattering (Topics in Applied Physics, Vol. 137) (Singapore: Springer) pp105–171

    [6]

    Wong L J, Kaminer I 2021 Appl. Phys. Lett. 119 130502Google Scholar

    [7]

    Röntgen W C 1895 Sitzung Physikal-Medicin Gesellschaft 137 132

    [8]

    Planck M 1901 Annalen der physik 4 553Google Scholar

    [9]

    ESRF website. https:www.esrf.fr/ [2024-8-30]

    [10]

    APS website. https://www.aps.anl.gov/ [2024-8-30]

    [11]

    SPring-8 website. http://www.spring8.or.jp/ja/ [2024-8-30]

    [12]

    PETRA-III website. https://photon-science.desy.de/facilities/petra_iii/index_eng. html [2024-8-30]

    [13]

    Raimondi P, Carmignani N, Carver L R, Chavanne J, Farvacque L, Le Bec G, Martin D, Liuzzo S M, Perron T, White S 2021 Phys. Rev. Accel. Beams 24 110701Google Scholar

    [14]

    Bostedt C, Boutet S, Fritz D M, Huang Z, Lee H J, Lemke H T, Robert A, Schlotter W F, Turner J J, Williams G J 2016 Rev. Mod. Phys. 88 015007Google Scholar

    [15]

    Yu L H, Babzien M, Ben-Zvi I, DiMauro L F, Doyuran A, Graves W, Johnson E, Krinsky S, Malone R, Pogorelsky I, Skaritka J, Rakowsky G, Solomon L, Wang X J, Woodle M, Yakimenko V, Biedron S G, Galayda J N, Gluskin E, Jagger J, Sajaev V, Vasserman I 2000 Science 289 932Google Scholar

    [16]

    Huang Z, Ruth R D 2006 Phys. Rev. Lett. 96 144801Google Scholar

    [17]

    Margraf R, Robles R, Halavanau A, Kryzywinski J, Li K, MacArthur J, Osaka T, Sakdinawat A, Sato T, Sun Y, Tamasaku K, Huang Z, Marcus G, Zhu D 2023 Nat. Photonics 17 878Google Scholar

    [18]

    Adams B, Aeppli G, Allison T, Baron A Q, Bucksbaum P, Chumakov A I, Corder C, Cramer S P, DeBeer S, Ding Y, Evers J, Frisch J, Fuchs M, Grübel G, Hastings J B, Heyl C M, Holberg L, Huang Z, Ishikawa T, Kaldun A, Kim K J, Kolodziej T, Krzywinski J, Li Z, Liao W T, Lindberg R, Madsen A, Maxwell T, Monaco G, Nelson K, Palffy A, Porat G, Qin W, Raubenheimer T, Reis D A, Röhlsberger R, Santra R, Schoenlein R, Schünemann V, Shpyrko O, Shvyd’ko Y, Shwartz S, Singer A, Sinha S K, Sutton M, Tamasaku K, Wille H C, Yabashi M, Ye J, Zhu D 2019 arXiv: 1903.09317 [physics.ins-det]

    [19]

    Brown M, Peierls R E, Stern E A 1977 Phys. Rev. B 15 738Google Scholar

    [20]

    Wei P S P, Lytle F W 1979 Phys. Rev. B 19 679Google Scholar

    [21]

    Mössbauer R L 1958 Zeitschrift für Physik 151 124Google Scholar

    [22]

    Röhlsberger R 2004 Nuclear Condensed Matter Physics with Synchrotron Radiation: Basic Principles, Methodology and Applications (Springer Science & Business Media) pp1–312

    [23]

    Röhlsberger R, Schlage K, Klein T, Leupold O 2005 Phys. Rev. Lett. 95 097601Google Scholar

    [24]

    Purcell E 1946 Phys. Rev. 69 681Google Scholar

    [25]

    Scully M O 2009 Phys. Rev. Lett. 102 143601Google Scholar

    [26]

    Röhlsberger R, Schlage K, Sahoo B, Couet S, Rüffer R 2010 Science 328 1248Google Scholar

    [27]

    Röhlsberger R, Wille H C, Schlage K, Sahoo B 2012 Nature 482 199Google Scholar

    [28]

    Heeg K P, Evers J 2013 Phys. Rev. A 88 043828Google Scholar

    [29]

    Heeg K P, Evers J 2015 Phys. Rev. A 91 063803Google Scholar

    [30]

    Lentrodt D, Heeg K P, Keitel C H, Evers J 2020 Phys. Rev. Res. 2 023396Google Scholar

    [31]

    Lentrodt D, Evers J 2020 Phys. Rev. X 10 011008Google Scholar

    [32]

    Kong X, Chang D E, Pálffy A 2020 Phys. Rev. A 102 033710Google Scholar

    [33]

    Andrejić P, Lohse L M, Pálffy A 2024 Phys. Rev. A 109 063702Google Scholar

    [34]

    Heeg K P, Wille H C, Schlage K, Guryeva T, Schumacher D, Uschmann I, Schulze K S, Marx B, Kämpfer T, Paulus G G, Röhlsberger R, Evers J 2013 Phys. Rev. Lett. 111 073601Google Scholar

    [35]

    Heeg K P, Ott C, Schumacher D, Wille H C, Röhlsberger R, Pfeifer T, Evers J 2015 Phys. Rev. Lett. 114 207401Google Scholar

    [36]

    Haber J, Schulze K S, Schlage K, Loetzsch R, Bocklage L, Gurieva T, Bernhardt H, Wille H C, Rüffer R, Uschmann I, Paulus G G, Röhlsberger R 2016 Nat. Photonics 10 445Google Scholar

    [37]

    Heeg K P, Haber J, Schumacher D, Bocklage L, Wille H C, Schulze K S, Loetzsch R, Uschmann I, Paulus G G, Rüffer R, Röhlsberger R, Evers J 2015 Phys. Rev. Lett. 114 203601Google Scholar

    [38]

    Kong X, Pálffy A 2016 Phys. Rev. Lett. 116 197402Google Scholar

    [39]

    Haber J, Kong X, Strohm C, Willing S, Gollwitzer J, Bocklage L, Rüffer R, Pálffy A, Röhlsberger R 2017 Nat. Photonics 11 720Google Scholar

    [40]

    Lentrodt D, Diekmann O, Keitel C H, Rotter S, Evers J 2023 Phys. Rev. Lett. 130 263602Google Scholar

    [41]

    Velten S, Bocklage L, Zhang X, Schlage K, Panchwanee A, Sadashivaiah S, Sergeev I, Leupold O, Chumakov A I, Kocharovskaya O, Röhlsberger R 2024 Sci. Adv. 10 eadn9825Google Scholar

    [42]

    Raimond J M, Brune M, Haroche S 2001 Rev. Mod. Phys. 73 565Google Scholar

    [43]

    Ivchenko E, Poddubny A 2013 Phys. Solid State 55 905Google Scholar

    [44]

    Cowan P L, Golovchenko J A, Robbins M F 1980 Phys. Rev. Lett. 44 1680Google Scholar

    [45]

    Zegenhagen J, Kazimirov A 2013 X-ray Standing Wave Technique: Principles and Applications (Vol. 7) (Singapore: World Scientific) pp122–131

    [46]

    Kossel W, Loeck V, Voges H 1935 Zeitschrift für Physik 94 139Google Scholar

    [47]

    Jonnard P, André J M, Bonnelle C, Bridou F, Pardo B 2002 Appl. Phys. Lett. 81 1524Google Scholar

    [48]

    André J M, Jonnard P 2010 E. Phys. J. D 57 411Google Scholar

    [49]

    André J, Jonnard P, Le Guen K, Bridou F 2015 Phys. Scr. 90 085503Google Scholar

    [50]

    Li W B, Yuan X F, Zhu J T, Zhu J, Wang Z S 2014 Phys. Scr. 90 015804Google Scholar

    [51]

    Feng X P, Ujihara K 1990 Phys. Rev. A 41 2668Google Scholar

    [52]

    Ujihara K 1993 Opt. Commun. 101 179Google Scholar

    [53]

    de Boer D K G 1991 Phys. Rev. B 44 498Google Scholar

    [54]

    Ghose S K, Dev B N, Gupta A 2001 Phys. Rev. B 64 233403Google Scholar

    [55]

    Pfeiffer F, David C, Burghammer M, Riekel C, Salditt T 2002 Science 297 230Google Scholar

    [56]

    Salditt T, Krüger S P, Fuhse C, Bähtz C 2008 Phys. Rev. Lett. 100 184801Google Scholar

    [57]

    Okamoto K, Noma T, Komoto A, Kubo W, Takahashi M, Iida A, Miyata H 2012 Phys. Rev. Lett. 109 233907Google Scholar

    [58]

    Vassholz M, Salditt T 2021 Sci. Adv. 7 eabd5677Google Scholar

    [59]

    Haber J, Gollwitzer J, Francoual S, Tolkiehn M, Strempfer J, Röhlsberger R 2019 Phys. Rev. Lett. 122 123608Google Scholar

    [60]

    Huang X C, Kong X J, Li T J, Ma Z R, Wang H C, Liu G C, Wang Z S, Li W B, Zhu L F 2021 Phys. Rev. Res. 3 033063Google Scholar

    [61]

    Ma Z R, Huang X C, Li T J, Wang H C, Liu G C, Wang Z S, Li B, Li W B, Zhu L F 2022 Phys. Rev. Lett. 129 213602Google Scholar

    [62]

    Gu B, Cavaletto S M, Nascimento D R, Khalil M, Govind N, Mukamel S 2021 Chem. Sci. 12 8088Google Scholar

    [63]

    Gu B, Nenov A, Segatta F, Garavelli M, Mukamel S 2021 Phys. Rev. Lett. 126 053201Google Scholar

    [64]

    Huang X C, Li T J, Lima F A, Zhu L F 2024 Phys. Rev. A 109 033703Google Scholar

    [65]

    Vettier C 2012 Eur. Phys. J. Spec. Top. 208 3Google Scholar

    [66]

    Fink J, Schierle E, Weschke E, Geck J 2013 Rep. Prog. Phys. 76 056502Google Scholar

    [67]

    Bergmann U, Glatzel P 2009 Photosynth. Res. 102 255Google Scholar

    [68]

    Van Bokhoven J A, Lamberti C 2016 X-Ray Absorption and X-Ray Emission Spectroscopy: Theory and Applications(Vol. 1) (John Wiley & Sons) pp125–149

    [69]

    Kotani A, Shin S 2001 Rev. Mod. Phys. 73 203Google Scholar

    [70]

    Schülke W 2007 Electron Dynamics by Inelastic X-Ray Scattering, vol. 7 (Oxford University Press) pp377–485

    [71]

    Ament L J P, van Veenendaal M, Devereaux T P, Hill J P, van den Brink J 2011 Rev. Mod. Phys. 83 705Google Scholar

    [72]

    CXRO website. https://henke.lbl.gov/optical_constants/.[2024-11-12]

    [73]

    Shvyd’Ko Y 2004 X-Ray Optics: High-Energy-Resolution Applications, vol. 98 (Springer Science & Business Media) pp 215–286

    [74]

    Als-Nielsen J, McMorrow D 2011 Elements of Modern X-Ray Physics (John Wiley & Sons) pp207–238

    [75]

    Heeg K P 2014 Ph. D. Dissertation (Heidelberg: Ruperto-Carola-Universität of Heidelberg

    [76]

    Kong X 2016 Ph. D. Dissertation (Heidelberg: Ruprecht-Karls-Universität Heidelberg

    [77]

    Haber J F A 2017 Ph. D. Dissertation (Hamburg: Universität Hamburg

    [78]

    黄新朝 2020 博士学位论文 (合肥: 中国科学技术大学)

    Huang X C 2020 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [79]

    Lentrodt D 2021 Ph. D. Dissertation (Heidelberg: Ruprecht-Karls-Universität Heidelberg

    [80]

    李天钧 2023 博士学位论文 (合肥: 中国科学技术大学)

    Li T J 2023 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [81]

    马子茹 2023 博士学位论文 (合肥: 中国科学技术大学)

    Ma Z R 2023 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [82]

    Wach A, Sá J, Szlachetko J 2020 J. Synchrotron Radiat. 27 689Google Scholar

    [83]

    Spiller E, Segmüller A 1974 Appl. Phys. Lett. 24 60Google Scholar

    [84]

    唐伟忠 1998 薄膜材料制备原理, 技术及应用 (北京: 冶金工业出版社)第1—323页

    Tang W Z 1998 Principles, Technologies, and Applications of Thin Film Material Preparation (Beijing: Metallurgical Industry Press) pp1–323

    [85]

    Zheng W T 2004 Thin Film Materials and Thin Film Technology (Beijing: Chemical Industry Press) pp1–962 [郑伟涛 2004 薄膜材料与薄膜技术 (北京: 化学工业出版社) 第1—962页]

    Zheng W T 2004 Thin Film Materials and Thin Film Technology (Beijing: Chemical Industry Press) pp1–962

    [86]

    刘小虹, 颜肖慈, 罗明道, 李伟 2002 自然杂志 24 36Google Scholar

    Liu X H, Yan X C, Luo M D, Li W 2002 Chin. J. Nat. 24 36Google Scholar

    [87]

    Phua L, Phuoc N, Ong C 2013 J. Alloys Compd. 553 146Google Scholar

    [88]

    Khyzhun O Y, Solonin Y M, Dobrovolsky V 2001 J. Alloys Compd. 320 1Google Scholar

    [89]

    Shahin A M, Grandjean F, Long G J, Schuman T P 2005 Chem. Mater. 17 315Google Scholar

    [90]

    P23 bealine of PETRA-III. https: //photon-science.desy.de/facilities/petra_iii/beamlines/p23_in_situ_x_ray_diffraction_and_imaging/beamline_layout/index_eng.html [2024-11-12]

    [91]

    Chumakov A I, Shvyd’ko Y, Sergueev I, Bessas D, Rüffer R 2019 Phys. Rev. Lett. 123 097402Google Scholar

    [92]

    Potapkin V, Chumakov A I, Smirnov G V, Celse J P, Rüffer R, McCammon C, Dubrovinsky L 2012 J. Synchrotron Radiat. 19 559Google Scholar

    [93]

    Rüffer R, Chumakov A I 1996 Hyper. Int. 97 589Google Scholar

    [94]

    Li W B, Zhu J T, Ma X Y, Li H C, Wang H C, Sawhney K J, Wang Z S 2012 Rev. Sci. Instrum. 83 053114Google Scholar

    [95]

    Hoszowska J, Dousse J C, Kern J, Rhême C 1996 Nucl. Instrum. Methods Phys. Res. Sect. A 376 129Google Scholar

    [96]

    Kleymenov E, Bokhoven J A V, David C, Glatzel P, Janousch M, Alonso-Mori R, Studer M, Willi-mann M, Bergamaschi A, Henrich B, Nachtegaal M 2011 Rev. Sci. Instrum. 82 065107Google Scholar

    [97]

    Jagodzinski P, Szlachetko J, Dousse J C, Hoszowska J, Szlachetko M, Vogelsang U, Banaś D, Pak-endorf T, Meents A, van Bokhoven J A, Kubala-Kukuś A, Pajek M, Nachtegaal M 2019 Rev. Sci. Instrum. 90 063106Google Scholar

    [98]

    Sawhney K J S, Dolbnya I P, Tiwari M K, Alianelli L, Scott S M, Preece G M, Pedersen U K, Walton R D 2010 AIP Conf. Proc. 1234 387Google Scholar

    [99]

    Frahm R, Nachtegaal M, Stötzel J, Harfouche M, van Bokhoven J A, Grunwaldt J 2010 AIP Conf. Proc. 1234 251Google Scholar

    [100]

    Rueff J P, Ablett J M, Céolin D, Prieur D, Moreno T, Balédent V, Lassalle-Kaiser B, Rault J E, Simon M, Shukla A 2015 J. Synchrotron Radiat. 22 175Google Scholar

    [101]

    Parratt L G 1954 Phys. Rev. 95 359Google Scholar

    [102]

    Röhlsberger R, Klein T, Schlage K, Leupold O, Rüffer R 2004 Phys. Rev. B 69 235412Google Scholar

    [103]

    Tomaš M S 1995 Phys. Rev. A 51 2545Google Scholar

    [104]

    Scheel S, Buhmann S Y 2008 Acta Phys. Slovaca 58 675

    [105]

    Scully M O, Fry E S, Ooi C H R, Wódkiewicz K 2006 Phys. Rev. Lett. 96 010501Google Scholar

    [106]

    Fano U 1961 Phys. Rev. 124 1866Google Scholar

    [107]

    Fano U, Cooper J W 1965 Phys. Rev. 137 A1364Google Scholar

    [108]

    Li T J, Huang X C, Ma Z R, Li B, Zhu L F 2022 Phys. Rev. Res. 4 023081Google Scholar

    [109]

    Li T J, Huang X C, Ma Z R, Li B, Wang X Y, Zhu L F 2023 Phys. Rev. A 108 033715Google Scholar

    [110]

    Dutra S M, Knight P L 1996 Phys. Rev. A 53 3587Google Scholar

    [111]

    Bauer M 2014 Phys. Chem. Chem. Phys. 16 13827Google Scholar

    [112]

    Błachucki W, Szlachetko J, Hoszowska J, Dousse J C, Kayser Y, Nachtegaal M, Sá J 2014 Phys. Rev. Lett. 112 173003Google Scholar

    [113]

    Gel’mukhanov F, Ågren H 1999 Phys. Rep. 312 87Google Scholar

    [114]

    Lohse L M, Andrejić P, Velten S, Vassholz M, Neuhaus C, Negi A, Panchwanee A, Sergeev I, Pálffy A, Salditt T, Röhlsberger R 2024 arXiv: 2403.06508 [quant-ph]

    [115]

    Chumakov A I, Baron A Q, Sergueev I, Strohm C, Leupold O, Shvyd’ko Y, Smirnov G V, Rüffer R, Inubushi Y, Yabashi M, Tono K, Kudo T, Ishikawa T 2018 Nat. Phys. 14 261Google Scholar

    [116]

    Fukuzawa H, Son S K, Motomura K, Mondal S, Nagaya K, Wada S, Liu X J, Feifel R, Tachibana T, Ito Y, Kimura M, Sakai T, Matsunami K, Hayashita H, Kajikawa J, Johnsson P, Siano M, Kukk E, Rudek B, Erk B, Foucar L, Robert E, Miron C, Tono K, Inubushi Y, Hatsui T, Yabashi M, Yao M, Santra R, Ueda K 2013 Phys. Rev. Lett. 110 173005Google Scholar

    [117]

    LaForge A C, Son S K, Mishra D, Ilchen M, Duncanson S, Eronen E, Kukk E, Wirok-Stoletow S, Kolbasova D, Walter P, Boll R, De Fanis A, Meyer M, Ovcharenko Y, Rivas D E, Schmidt P, Usenko S, Santra R, Berrah N 2021 Phys. Rev. Lett. 127 213202Google Scholar

    [118]

    Tamasaku K, Shigemasa E, Inubushi Y, Inoue I, Osaka T, Katayama T, Yabashi M, Koide A, Yokoyama T, Ishikawa T 2018 Phys. Rev. Lett. 121 083901Google Scholar

    [119]

    Yoneda H, Inubushi Y, Nagamine K, Michine Y, Ohashi H, Yumoto H, Yamauchi K, Mimura H, Kitamura H, Katayama T, Ishikawa T, Yabashi M 2015 Nature 524 446Google Scholar

    [120]

    Wu B, Wang T, Graves C E, Zhu D, Schlotter W, Turner J, Hellwig O, Chen Z, Dürr H, Scherz A, Stöhr J 2016 Phys. Rev. Lett. 117 027401Google Scholar

    [121]

    Chen Z, Higley D J, Beye M, Hantschmann M, Mehta V, Hellwig O, Mitra A, Bonetti S, Bucher M, Carron S, Chase T, Jal E, Kukreja R, Liu T, Reid A H, Dakovski G L, Föhlisch A, Schlotter W F, Dürr H A, Stöhr J 2018 Phys. Rev. Lett. 121 137403Google Scholar

    [122]

    Liu J, Li Y, Wang L, Zhao J, Yuan J, Kong X 2021 Phys. Rev. A 104 L031101Google Scholar

    [123]

    Mercadier L, Benediktovitch A, Weninger C, Blessenohl M A, Bernitt S, Bekker H, Dobrodey S, Sanchez-Gonzalez A, Erk B, Bomme C, Boll R, Yin Z, Majety V P, Steinbrügge R, Khalal M A, Penent F, Palaudoux J, Lablanquie P, Rudenko A, Rolles D, Crespo López-Urrutia J R, Rohringer N 2019 Phys. Rev. Lett. 123 023201Google Scholar

    [124]

    Nandi S, Olofsson E, Bertolino M, Carlström S, Zapata F, Busto D, Callegari C, Di Fraia M, Eng-Johnsson P, Feifel R, Gallician G, Gisselbrecht M, Maclot S, Neoričić L, Peschel J, Plekan O, Prince K C, Squibb R J, Zhong S, Demekhin P V, Meyer M, Miron C, Badano L, Danailov M B, Giannessi L, Manfredda M, Sottocorona F, Zangrando M, Dahlström J M 2022 Nature 608 488Google Scholar

    [125]

    Cui J J, Cheng Y, Wang X, Li Z, Rohringer N, Kimberg V, Zhang S B 2023 Phys. Rev. Lett. 131 043201Google Scholar

    [126]

    Kayser Y, Milne C, Juranić P, Sala L, Czapla-Masztafiak J, Follath R, Kavčič M, Knopp G, Rehanek J, Błachucki W, Delcey M G, Lundberg M, Tyrała K, Zhu D, Alonso-Mori R, Abela R, Sá J, Szlachetko J 2019 Nat. Commun. 10 4761Google Scholar

    [127]

    Rohringer N 2019 Philos. Trans. R. Soc. A 377 20170471Google Scholar

    [128]

    Matsuda I, Arafune R 2023 Nonlinear X-Ray Spectroscopy for Materials Science (Springer) pp1–160

    [129]

    Shwartz S, Harris S E 2011 Phys. Rev. Lett. 106 080501Google Scholar

    [130]

    Shwartz S, Coffee R N, Feldkamp J M, Feng Y, Hastings J B, Yin G Y, Harris S E 2012 Phys. Rev. Lett. 109 013602Google Scholar

    [131]

    Shwartz S, Fuchs M, Hastings J B, Inubushi Y, Ishikawa T, Katayama T, Reis D A, Sato T, Tono K, Yabashi M, Yudovich S, Harris S E 2014 Phys. Rev. Lett. 112 163901Google Scholar

    [132]

    Bencivenga F, Cucini R, Capotondi F, Battistoni A, Mincigrucci R, Giangrisostomi E, Gessini A, Manfredda M, Nikolov I, Pedersoli E, Principi E, Svetina C, Parisse P, Casolari F, Danailov M B, Kiskinova M, Masciovecchio C 2015 Nature 520 205Google Scholar

    [133]

    Rouxel J R, Fainozzi D, Mankowsky R, Rösner B, Seniutinas G, Mincigrucci R, Catalini S, Foglia L, Cucini R, Döring F, Kubec A, Koch F, Bencivenga F, Haddad A A, Gessini A, Maznev A A, Cirelli C, Gerber S, Pedrini B, Mancini G F, Razzoli E, Burian M, Ueda H, Pamfilidis G, Ferrari E, Deng Y, Mozzanica A, Johnson P J M, Ozerov D, Izzo M G, Bottari C, Arrell C, Divall E J, Zerdane S, Sander M, Knopp G, Beaud P, Lemke H T, Milne C J, David C, Torre R, Chergui M, Nelson K A, Masciovecchio C, Staub U, Patthey L, Svetina C 2021 Nat. Photonics 15 499Google Scholar

    [134]

    Trost F, Ayyer K, Prasciolu M, Fleckenstein H, Barthelmess M, Yefanov O, Dresselhaus J L, Li C, Bajt S C V, Carnis J, Wollweber T, Mall A, Shen Z, Zhuang Y, Richter S, Karl S, Cardoch S, Patra K K, Möller J, Zozulya A, Shayduk R, Lu W, Braue F, Friedrich B, Boesenberg U, Petrov I, Tomin S, Guetg M, anders M, Timneanu N, Caleman C, Röhlsberger R, von Zanthier J, Chapman H N 2023 Phys. Rev. Lett. 130 173201Google Scholar

    [135]

    Inoue I, Tamasaku K, Osaka T, Inubushi Y, Yabashi M 2019 J. Synchrotron Radiat. 26 2050Google Scholar

    [136]

    Klein Y, Tripathi A K, Strizhevsky E, Capotondi F, De Angelis D, Giannessi L, Pancaldi M, Pedersoli E, Prince K C, Sefi O, Kim Y Y, Vartanyants I A, Shwartz S 2023 Phys. Rev. A 107 053503Google Scholar

  • 图 1  实验体系原理图, 反射谱和荧光谱插图取自文献[61], 共振发射谱插图取自文献[82]

    Figure 1.  Sketch of the experimental scheme, the reflectivity and fluorescence maps refer to Ref. [61], and the emission spectra map following inelastic scattering is taken from Ref. [82].

    图 2  WSi2内壳层白线跃迁示意图

    Figure 2.  Schematic diagram of inner-shell transitions in WSi2.

    图 3  PETRA III光源P23线站布局示意图[90]

    Figure 3.  Layout of the P23 beamline of the PETRA III synchrotron[90].

    图 4  Parratt迭代方法示意图. 其中$ n_i $为第i层介质对X射线的折射率, $ d_i $为第i层介质的厚度, $ r_{i-1,i} $和$ t_{i-1,i} $为X射线在介质($i-1 $)与i界面处的反射和透射系数

    Figure 4.  Illustration of Parratt’s method. $ n_i $ and $ d_i $ are the refractive indices and thickness of the$ i\text{-}\mathrm{th} $ layer, $ r_{i-1,i} $ and $ t_{i-1,i} $ are the Fresnel coefficients for reflection and transmission at the interface between $ (i-1) $ and $ i\text{-}\mathrm{th} $ layers.

    图 5  平面腔中场幅度分布示意图

    Figure 5.  Sketch map of field amplitudes in the cavity.

    图 6  表面平行度较好(a)和较差的(b)的反射光图像, 入射光斑尺寸横向大于纵向

    Figure 6.  Reflected X-ray patterns from the cavity samples with (a) flat surface and (b) distorted surface, respectively. The horizontal beam size is larger than the vertical one.

    图 7  (a)结构Pt(2.0 nm)/C(18.0 nm)/WSi2(2.0 nm)/C(18.0 nm)/Pt(16.0 nm)/Si100(infinitely thick)的薄膜平面腔的X射线反射率曲线; (b)不同角度下腔内场强随着z方向深度的分布, 其中白色实线描绘了不同膜层的边界

    Figure 7.  (a) Rocking curve of the cavity with the structure of Pt(2.0 nm)/C(18.0 nm)/WSi2(2.0 nm)/C(18.0 nm)/Pt(16.0 nm)/Si100(infinitely thick); (b) the field intensity distribution inside the cavity. The white solid lines dipict the boundaries of different layers.

    图 8  入射X射线在共振能量和偏离共振能量下的摇摆曲线

    Figure 8.  Rocking curves under on-resonance and off-resonance X-ray energies.

    图 9  (a) Parratt迭代、(b) 传输矩阵以及(c) 格林函数方法模拟的平面腔一阶模式角附近的反射率二维谱

    Figure 9.  Simulated two-dimensional reflectivity maps of the cavity around the first mode angle using (a) the Parratt’s recursion, (b) the transfer matrix method, and (c) the Green’s function framework, respectively.

    图 10  3种方法计算的反射谱对比, 入射角度相对于一阶模式角分别为(a) –0.001°角失谐、(b) 0° 以及(c) 0.001°角失谐

    Figure 10.  Comparisons of reflectivity spectra at (a) –0.001°, (b) 0° and (c) 0.001° offsets deviate from the first mode angle.

    图 11  薄膜平面腔内的57Fe核跃迁的集体兰姆移位与超辐射速率增强效应, 腔结构与图8中使用的一致

    Figure 11.  Collective Lamb shift and superradiance of Mössbauer transition of 57Fe due to the cavity effect. The cavity structure used here is same to Fig. 8.

    图 12  实验测量与理论模拟的X射线反射二维谱 (a)实验测量结果; (b)实验数据扣除吸收边; (c)理论模拟结果; (d)理论模拟扣除吸收边

    Figure 12.  X-ray reflection two-dimensional spectrum of experimental measurements and theoretical simulations: (a) Experimental reflectivity map; (b) experimental data by exclusion of the absorption edge; (c) simulated reflectivity map; (d) simulated map by exclusion of the absorption edge.

    图 13  3种腔结构下实验测量的模式角度下的反射谱及拟合曲线, 其中数据点和红色虚线分别为实验测量结果与拟合结果, 绿色实线为实验数据去除拟合的吸收边得到的法诺线形, 数据引自文献[61]

    Figure 13.  Measured reflectivity spectra at the first mode angle. The dots are experimental data, and the dashed lines are the fit to data according to the theoretical model. The solid lines present the Fano profiles in the reflectivity spectra by subtracting the fitted edge components from the experimental data. The squares of $ \mathrm{Im}(q) $ for each data set are also presented. Data are quoted from Ref. [61].

    图 14  不同57Fe占比的原子核层在(a)欠耦合腔和(b)过耦合腔中对入射角度为10 μrad负失谐、模式角与10 μrad正失谐的反射谱

    Figure 14.  Reflectivity spectra at the first mode angle and $ \pm 10\; $μrad offsets of (a) undercritical cavities and (b) overcritical cavities with different fractions of 57Fe.

    图 15  SDD探测器采集的荧光全谱

    Figure 15.  Full fluorescence spectrum collected by the SDD detector.

    图 16  (a) 原子层位置处的场强模拟值与X射线能量及入射角度的关系, 使用的腔结构与图7相同; (b) 根据互易定理模拟的荧光二维谱; (c) 实验测量的荧光二维谱

    Figure 16.  (a) Simulated field intensity at the atom position for the cavity in Fig. 7; (b) simulated fluorescence 2D map according to the reciprocal theory; (c) the measured fluorescence 2D map.

    图 17  (a)一阶、(b)三阶、(c)五阶模式角以及(d)远离腔模式角度下的荧光谱及拟合曲线, 远离腔模式时, 洛伦兹响应的线宽为原子本身的线宽3.6 eV, 而在模式角度下, 辐射速率受到腔效应增强, 线宽显著增大, 数据引自[60]

    Figure 17.  Selected fluorescence spectra at the (a) 1st, (b) 3rd, (c) 5th mode angles, and (d) offset angle far from the mode angles. The experimental spectra are fitted by the theoretical model, and the widths of the Lorentzian response are presented. Note that the response features as the natural linewidth of the atomic transition at off-resonant angles while the width is strongly altered by the cavity effect at mode angles. Data are quoted from Ref. [60].

    图 18  远场下不同出射角度的Co Kα荧光辐射强度, 在第1阶和第3阶腔模式角度下观测到了明显的荧光强度增强. 黑色实线为基于互易定理的模拟结果, 蓝色点线是使用X射线激发空穴态, 红色点线是使用电子束激发空穴态, 数据引自[58]

    Figure 18.  Far-field fluorescence intensities at different emission angles. The directional emission is observed at the first and third cavity modes. The blue and red dotted lines are experimental data resulted from X-ray excitation and electron beam excitation, respectively. The solid black line is the simulation based on the reciprocity theorem. Data are digitized from [58].

  • [1]

    潘建伟 2024 物理学报 73 010301Google Scholar

    Pan J W 2024 Acta Phys. Sin. 73 010301Google Scholar

    [2]

    Adams B W, Buth C, Cavaletto S M, Cavaletto, Evers J, Harman Z, Keitel C H, Pálffy A, Picón A, Röhlsberger R, Rostovtsev Y, Tamasaku K 2013 J. Mod. Opt. 60 2Google Scholar

    [3]

    Kuznetsova E, Kocharovskaya O 2017 Nat. Photonics 11 685Google Scholar

    [4]

    Röhlsberger R, Evers J, Shwartz S 2020 Synchrotron Light Sources and Free-Electron Lasers: Ac-celerator Physics, Instrumentation and Science Applications, chap. Quantum and Nonlinear Optics with Hard X-Rays (Cham: Springer International Publishing) pp1399–1431

    [5]

    Röhlsberger R, Evers J 2021 Modern Mössbauer Spectroscopy, chap. Quantum Optical Phenomena in Nuclear Resonant Scattering (Topics in Applied Physics, Vol. 137) (Singapore: Springer) pp105–171

    [6]

    Wong L J, Kaminer I 2021 Appl. Phys. Lett. 119 130502Google Scholar

    [7]

    Röntgen W C 1895 Sitzung Physikal-Medicin Gesellschaft 137 132

    [8]

    Planck M 1901 Annalen der physik 4 553Google Scholar

    [9]

    ESRF website. https:www.esrf.fr/ [2024-8-30]

    [10]

    APS website. https://www.aps.anl.gov/ [2024-8-30]

    [11]

    SPring-8 website. http://www.spring8.or.jp/ja/ [2024-8-30]

    [12]

    PETRA-III website. https://photon-science.desy.de/facilities/petra_iii/index_eng. html [2024-8-30]

    [13]

    Raimondi P, Carmignani N, Carver L R, Chavanne J, Farvacque L, Le Bec G, Martin D, Liuzzo S M, Perron T, White S 2021 Phys. Rev. Accel. Beams 24 110701Google Scholar

    [14]

    Bostedt C, Boutet S, Fritz D M, Huang Z, Lee H J, Lemke H T, Robert A, Schlotter W F, Turner J J, Williams G J 2016 Rev. Mod. Phys. 88 015007Google Scholar

    [15]

    Yu L H, Babzien M, Ben-Zvi I, DiMauro L F, Doyuran A, Graves W, Johnson E, Krinsky S, Malone R, Pogorelsky I, Skaritka J, Rakowsky G, Solomon L, Wang X J, Woodle M, Yakimenko V, Biedron S G, Galayda J N, Gluskin E, Jagger J, Sajaev V, Vasserman I 2000 Science 289 932Google Scholar

    [16]

    Huang Z, Ruth R D 2006 Phys. Rev. Lett. 96 144801Google Scholar

    [17]

    Margraf R, Robles R, Halavanau A, Kryzywinski J, Li K, MacArthur J, Osaka T, Sakdinawat A, Sato T, Sun Y, Tamasaku K, Huang Z, Marcus G, Zhu D 2023 Nat. Photonics 17 878Google Scholar

    [18]

    Adams B, Aeppli G, Allison T, Baron A Q, Bucksbaum P, Chumakov A I, Corder C, Cramer S P, DeBeer S, Ding Y, Evers J, Frisch J, Fuchs M, Grübel G, Hastings J B, Heyl C M, Holberg L, Huang Z, Ishikawa T, Kaldun A, Kim K J, Kolodziej T, Krzywinski J, Li Z, Liao W T, Lindberg R, Madsen A, Maxwell T, Monaco G, Nelson K, Palffy A, Porat G, Qin W, Raubenheimer T, Reis D A, Röhlsberger R, Santra R, Schoenlein R, Schünemann V, Shpyrko O, Shvyd’ko Y, Shwartz S, Singer A, Sinha S K, Sutton M, Tamasaku K, Wille H C, Yabashi M, Ye J, Zhu D 2019 arXiv: 1903.09317 [physics.ins-det]

    [19]

    Brown M, Peierls R E, Stern E A 1977 Phys. Rev. B 15 738Google Scholar

    [20]

    Wei P S P, Lytle F W 1979 Phys. Rev. B 19 679Google Scholar

    [21]

    Mössbauer R L 1958 Zeitschrift für Physik 151 124Google Scholar

    [22]

    Röhlsberger R 2004 Nuclear Condensed Matter Physics with Synchrotron Radiation: Basic Principles, Methodology and Applications (Springer Science & Business Media) pp1–312

    [23]

    Röhlsberger R, Schlage K, Klein T, Leupold O 2005 Phys. Rev. Lett. 95 097601Google Scholar

    [24]

    Purcell E 1946 Phys. Rev. 69 681Google Scholar

    [25]

    Scully M O 2009 Phys. Rev. Lett. 102 143601Google Scholar

    [26]

    Röhlsberger R, Schlage K, Sahoo B, Couet S, Rüffer R 2010 Science 328 1248Google Scholar

    [27]

    Röhlsberger R, Wille H C, Schlage K, Sahoo B 2012 Nature 482 199Google Scholar

    [28]

    Heeg K P, Evers J 2013 Phys. Rev. A 88 043828Google Scholar

    [29]

    Heeg K P, Evers J 2015 Phys. Rev. A 91 063803Google Scholar

    [30]

    Lentrodt D, Heeg K P, Keitel C H, Evers J 2020 Phys. Rev. Res. 2 023396Google Scholar

    [31]

    Lentrodt D, Evers J 2020 Phys. Rev. X 10 011008Google Scholar

    [32]

    Kong X, Chang D E, Pálffy A 2020 Phys. Rev. A 102 033710Google Scholar

    [33]

    Andrejić P, Lohse L M, Pálffy A 2024 Phys. Rev. A 109 063702Google Scholar

    [34]

    Heeg K P, Wille H C, Schlage K, Guryeva T, Schumacher D, Uschmann I, Schulze K S, Marx B, Kämpfer T, Paulus G G, Röhlsberger R, Evers J 2013 Phys. Rev. Lett. 111 073601Google Scholar

    [35]

    Heeg K P, Ott C, Schumacher D, Wille H C, Röhlsberger R, Pfeifer T, Evers J 2015 Phys. Rev. Lett. 114 207401Google Scholar

    [36]

    Haber J, Schulze K S, Schlage K, Loetzsch R, Bocklage L, Gurieva T, Bernhardt H, Wille H C, Rüffer R, Uschmann I, Paulus G G, Röhlsberger R 2016 Nat. Photonics 10 445Google Scholar

    [37]

    Heeg K P, Haber J, Schumacher D, Bocklage L, Wille H C, Schulze K S, Loetzsch R, Uschmann I, Paulus G G, Rüffer R, Röhlsberger R, Evers J 2015 Phys. Rev. Lett. 114 203601Google Scholar

    [38]

    Kong X, Pálffy A 2016 Phys. Rev. Lett. 116 197402Google Scholar

    [39]

    Haber J, Kong X, Strohm C, Willing S, Gollwitzer J, Bocklage L, Rüffer R, Pálffy A, Röhlsberger R 2017 Nat. Photonics 11 720Google Scholar

    [40]

    Lentrodt D, Diekmann O, Keitel C H, Rotter S, Evers J 2023 Phys. Rev. Lett. 130 263602Google Scholar

    [41]

    Velten S, Bocklage L, Zhang X, Schlage K, Panchwanee A, Sadashivaiah S, Sergeev I, Leupold O, Chumakov A I, Kocharovskaya O, Röhlsberger R 2024 Sci. Adv. 10 eadn9825Google Scholar

    [42]

    Raimond J M, Brune M, Haroche S 2001 Rev. Mod. Phys. 73 565Google Scholar

    [43]

    Ivchenko E, Poddubny A 2013 Phys. Solid State 55 905Google Scholar

    [44]

    Cowan P L, Golovchenko J A, Robbins M F 1980 Phys. Rev. Lett. 44 1680Google Scholar

    [45]

    Zegenhagen J, Kazimirov A 2013 X-ray Standing Wave Technique: Principles and Applications (Vol. 7) (Singapore: World Scientific) pp122–131

    [46]

    Kossel W, Loeck V, Voges H 1935 Zeitschrift für Physik 94 139Google Scholar

    [47]

    Jonnard P, André J M, Bonnelle C, Bridou F, Pardo B 2002 Appl. Phys. Lett. 81 1524Google Scholar

    [48]

    André J M, Jonnard P 2010 E. Phys. J. D 57 411Google Scholar

    [49]

    André J, Jonnard P, Le Guen K, Bridou F 2015 Phys. Scr. 90 085503Google Scholar

    [50]

    Li W B, Yuan X F, Zhu J T, Zhu J, Wang Z S 2014 Phys. Scr. 90 015804Google Scholar

    [51]

    Feng X P, Ujihara K 1990 Phys. Rev. A 41 2668Google Scholar

    [52]

    Ujihara K 1993 Opt. Commun. 101 179Google Scholar

    [53]

    de Boer D K G 1991 Phys. Rev. B 44 498Google Scholar

    [54]

    Ghose S K, Dev B N, Gupta A 2001 Phys. Rev. B 64 233403Google Scholar

    [55]

    Pfeiffer F, David C, Burghammer M, Riekel C, Salditt T 2002 Science 297 230Google Scholar

    [56]

    Salditt T, Krüger S P, Fuhse C, Bähtz C 2008 Phys. Rev. Lett. 100 184801Google Scholar

    [57]

    Okamoto K, Noma T, Komoto A, Kubo W, Takahashi M, Iida A, Miyata H 2012 Phys. Rev. Lett. 109 233907Google Scholar

    [58]

    Vassholz M, Salditt T 2021 Sci. Adv. 7 eabd5677Google Scholar

    [59]

    Haber J, Gollwitzer J, Francoual S, Tolkiehn M, Strempfer J, Röhlsberger R 2019 Phys. Rev. Lett. 122 123608Google Scholar

    [60]

    Huang X C, Kong X J, Li T J, Ma Z R, Wang H C, Liu G C, Wang Z S, Li W B, Zhu L F 2021 Phys. Rev. Res. 3 033063Google Scholar

    [61]

    Ma Z R, Huang X C, Li T J, Wang H C, Liu G C, Wang Z S, Li B, Li W B, Zhu L F 2022 Phys. Rev. Lett. 129 213602Google Scholar

    [62]

    Gu B, Cavaletto S M, Nascimento D R, Khalil M, Govind N, Mukamel S 2021 Chem. Sci. 12 8088Google Scholar

    [63]

    Gu B, Nenov A, Segatta F, Garavelli M, Mukamel S 2021 Phys. Rev. Lett. 126 053201Google Scholar

    [64]

    Huang X C, Li T J, Lima F A, Zhu L F 2024 Phys. Rev. A 109 033703Google Scholar

    [65]

    Vettier C 2012 Eur. Phys. J. Spec. Top. 208 3Google Scholar

    [66]

    Fink J, Schierle E, Weschke E, Geck J 2013 Rep. Prog. Phys. 76 056502Google Scholar

    [67]

    Bergmann U, Glatzel P 2009 Photosynth. Res. 102 255Google Scholar

    [68]

    Van Bokhoven J A, Lamberti C 2016 X-Ray Absorption and X-Ray Emission Spectroscopy: Theory and Applications(Vol. 1) (John Wiley & Sons) pp125–149

    [69]

    Kotani A, Shin S 2001 Rev. Mod. Phys. 73 203Google Scholar

    [70]

    Schülke W 2007 Electron Dynamics by Inelastic X-Ray Scattering, vol. 7 (Oxford University Press) pp377–485

    [71]

    Ament L J P, van Veenendaal M, Devereaux T P, Hill J P, van den Brink J 2011 Rev. Mod. Phys. 83 705Google Scholar

    [72]

    CXRO website. https://henke.lbl.gov/optical_constants/.[2024-11-12]

    [73]

    Shvyd’Ko Y 2004 X-Ray Optics: High-Energy-Resolution Applications, vol. 98 (Springer Science & Business Media) pp 215–286

    [74]

    Als-Nielsen J, McMorrow D 2011 Elements of Modern X-Ray Physics (John Wiley & Sons) pp207–238

    [75]

    Heeg K P 2014 Ph. D. Dissertation (Heidelberg: Ruperto-Carola-Universität of Heidelberg

    [76]

    Kong X 2016 Ph. D. Dissertation (Heidelberg: Ruprecht-Karls-Universität Heidelberg

    [77]

    Haber J F A 2017 Ph. D. Dissertation (Hamburg: Universität Hamburg

    [78]

    黄新朝 2020 博士学位论文 (合肥: 中国科学技术大学)

    Huang X C 2020 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [79]

    Lentrodt D 2021 Ph. D. Dissertation (Heidelberg: Ruprecht-Karls-Universität Heidelberg

    [80]

    李天钧 2023 博士学位论文 (合肥: 中国科学技术大学)

    Li T J 2023 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [81]

    马子茹 2023 博士学位论文 (合肥: 中国科学技术大学)

    Ma Z R 2023 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [82]

    Wach A, Sá J, Szlachetko J 2020 J. Synchrotron Radiat. 27 689Google Scholar

    [83]

    Spiller E, Segmüller A 1974 Appl. Phys. Lett. 24 60Google Scholar

    [84]

    唐伟忠 1998 薄膜材料制备原理, 技术及应用 (北京: 冶金工业出版社)第1—323页

    Tang W Z 1998 Principles, Technologies, and Applications of Thin Film Material Preparation (Beijing: Metallurgical Industry Press) pp1–323

    [85]

    Zheng W T 2004 Thin Film Materials and Thin Film Technology (Beijing: Chemical Industry Press) pp1–962 [郑伟涛 2004 薄膜材料与薄膜技术 (北京: 化学工业出版社) 第1—962页]

    Zheng W T 2004 Thin Film Materials and Thin Film Technology (Beijing: Chemical Industry Press) pp1–962

    [86]

    刘小虹, 颜肖慈, 罗明道, 李伟 2002 自然杂志 24 36Google Scholar

    Liu X H, Yan X C, Luo M D, Li W 2002 Chin. J. Nat. 24 36Google Scholar

    [87]

    Phua L, Phuoc N, Ong C 2013 J. Alloys Compd. 553 146Google Scholar

    [88]

    Khyzhun O Y, Solonin Y M, Dobrovolsky V 2001 J. Alloys Compd. 320 1Google Scholar

    [89]

    Shahin A M, Grandjean F, Long G J, Schuman T P 2005 Chem. Mater. 17 315Google Scholar

    [90]

    P23 bealine of PETRA-III. https: //photon-science.desy.de/facilities/petra_iii/beamlines/p23_in_situ_x_ray_diffraction_and_imaging/beamline_layout/index_eng.html [2024-11-12]

    [91]

    Chumakov A I, Shvyd’ko Y, Sergueev I, Bessas D, Rüffer R 2019 Phys. Rev. Lett. 123 097402Google Scholar

    [92]

    Potapkin V, Chumakov A I, Smirnov G V, Celse J P, Rüffer R, McCammon C, Dubrovinsky L 2012 J. Synchrotron Radiat. 19 559Google Scholar

    [93]

    Rüffer R, Chumakov A I 1996 Hyper. Int. 97 589Google Scholar

    [94]

    Li W B, Zhu J T, Ma X Y, Li H C, Wang H C, Sawhney K J, Wang Z S 2012 Rev. Sci. Instrum. 83 053114Google Scholar

    [95]

    Hoszowska J, Dousse J C, Kern J, Rhême C 1996 Nucl. Instrum. Methods Phys. Res. Sect. A 376 129Google Scholar

    [96]

    Kleymenov E, Bokhoven J A V, David C, Glatzel P, Janousch M, Alonso-Mori R, Studer M, Willi-mann M, Bergamaschi A, Henrich B, Nachtegaal M 2011 Rev. Sci. Instrum. 82 065107Google Scholar

    [97]

    Jagodzinski P, Szlachetko J, Dousse J C, Hoszowska J, Szlachetko M, Vogelsang U, Banaś D, Pak-endorf T, Meents A, van Bokhoven J A, Kubala-Kukuś A, Pajek M, Nachtegaal M 2019 Rev. Sci. Instrum. 90 063106Google Scholar

    [98]

    Sawhney K J S, Dolbnya I P, Tiwari M K, Alianelli L, Scott S M, Preece G M, Pedersen U K, Walton R D 2010 AIP Conf. Proc. 1234 387Google Scholar

    [99]

    Frahm R, Nachtegaal M, Stötzel J, Harfouche M, van Bokhoven J A, Grunwaldt J 2010 AIP Conf. Proc. 1234 251Google Scholar

    [100]

    Rueff J P, Ablett J M, Céolin D, Prieur D, Moreno T, Balédent V, Lassalle-Kaiser B, Rault J E, Simon M, Shukla A 2015 J. Synchrotron Radiat. 22 175Google Scholar

    [101]

    Parratt L G 1954 Phys. Rev. 95 359Google Scholar

    [102]

    Röhlsberger R, Klein T, Schlage K, Leupold O, Rüffer R 2004 Phys. Rev. B 69 235412Google Scholar

    [103]

    Tomaš M S 1995 Phys. Rev. A 51 2545Google Scholar

    [104]

    Scheel S, Buhmann S Y 2008 Acta Phys. Slovaca 58 675

    [105]

    Scully M O, Fry E S, Ooi C H R, Wódkiewicz K 2006 Phys. Rev. Lett. 96 010501Google Scholar

    [106]

    Fano U 1961 Phys. Rev. 124 1866Google Scholar

    [107]

    Fano U, Cooper J W 1965 Phys. Rev. 137 A1364Google Scholar

    [108]

    Li T J, Huang X C, Ma Z R, Li B, Zhu L F 2022 Phys. Rev. Res. 4 023081Google Scholar

    [109]

    Li T J, Huang X C, Ma Z R, Li B, Wang X Y, Zhu L F 2023 Phys. Rev. A 108 033715Google Scholar

    [110]

    Dutra S M, Knight P L 1996 Phys. Rev. A 53 3587Google Scholar

    [111]

    Bauer M 2014 Phys. Chem. Chem. Phys. 16 13827Google Scholar

    [112]

    Błachucki W, Szlachetko J, Hoszowska J, Dousse J C, Kayser Y, Nachtegaal M, Sá J 2014 Phys. Rev. Lett. 112 173003Google Scholar

    [113]

    Gel’mukhanov F, Ågren H 1999 Phys. Rep. 312 87Google Scholar

    [114]

    Lohse L M, Andrejić P, Velten S, Vassholz M, Neuhaus C, Negi A, Panchwanee A, Sergeev I, Pálffy A, Salditt T, Röhlsberger R 2024 arXiv: 2403.06508 [quant-ph]

    [115]

    Chumakov A I, Baron A Q, Sergueev I, Strohm C, Leupold O, Shvyd’ko Y, Smirnov G V, Rüffer R, Inubushi Y, Yabashi M, Tono K, Kudo T, Ishikawa T 2018 Nat. Phys. 14 261Google Scholar

    [116]

    Fukuzawa H, Son S K, Motomura K, Mondal S, Nagaya K, Wada S, Liu X J, Feifel R, Tachibana T, Ito Y, Kimura M, Sakai T, Matsunami K, Hayashita H, Kajikawa J, Johnsson P, Siano M, Kukk E, Rudek B, Erk B, Foucar L, Robert E, Miron C, Tono K, Inubushi Y, Hatsui T, Yabashi M, Yao M, Santra R, Ueda K 2013 Phys. Rev. Lett. 110 173005Google Scholar

    [117]

    LaForge A C, Son S K, Mishra D, Ilchen M, Duncanson S, Eronen E, Kukk E, Wirok-Stoletow S, Kolbasova D, Walter P, Boll R, De Fanis A, Meyer M, Ovcharenko Y, Rivas D E, Schmidt P, Usenko S, Santra R, Berrah N 2021 Phys. Rev. Lett. 127 213202Google Scholar

    [118]

    Tamasaku K, Shigemasa E, Inubushi Y, Inoue I, Osaka T, Katayama T, Yabashi M, Koide A, Yokoyama T, Ishikawa T 2018 Phys. Rev. Lett. 121 083901Google Scholar

    [119]

    Yoneda H, Inubushi Y, Nagamine K, Michine Y, Ohashi H, Yumoto H, Yamauchi K, Mimura H, Kitamura H, Katayama T, Ishikawa T, Yabashi M 2015 Nature 524 446Google Scholar

    [120]

    Wu B, Wang T, Graves C E, Zhu D, Schlotter W, Turner J, Hellwig O, Chen Z, Dürr H, Scherz A, Stöhr J 2016 Phys. Rev. Lett. 117 027401Google Scholar

    [121]

    Chen Z, Higley D J, Beye M, Hantschmann M, Mehta V, Hellwig O, Mitra A, Bonetti S, Bucher M, Carron S, Chase T, Jal E, Kukreja R, Liu T, Reid A H, Dakovski G L, Föhlisch A, Schlotter W F, Dürr H A, Stöhr J 2018 Phys. Rev. Lett. 121 137403Google Scholar

    [122]

    Liu J, Li Y, Wang L, Zhao J, Yuan J, Kong X 2021 Phys. Rev. A 104 L031101Google Scholar

    [123]

    Mercadier L, Benediktovitch A, Weninger C, Blessenohl M A, Bernitt S, Bekker H, Dobrodey S, Sanchez-Gonzalez A, Erk B, Bomme C, Boll R, Yin Z, Majety V P, Steinbrügge R, Khalal M A, Penent F, Palaudoux J, Lablanquie P, Rudenko A, Rolles D, Crespo López-Urrutia J R, Rohringer N 2019 Phys. Rev. Lett. 123 023201Google Scholar

    [124]

    Nandi S, Olofsson E, Bertolino M, Carlström S, Zapata F, Busto D, Callegari C, Di Fraia M, Eng-Johnsson P, Feifel R, Gallician G, Gisselbrecht M, Maclot S, Neoričić L, Peschel J, Plekan O, Prince K C, Squibb R J, Zhong S, Demekhin P V, Meyer M, Miron C, Badano L, Danailov M B, Giannessi L, Manfredda M, Sottocorona F, Zangrando M, Dahlström J M 2022 Nature 608 488Google Scholar

    [125]

    Cui J J, Cheng Y, Wang X, Li Z, Rohringer N, Kimberg V, Zhang S B 2023 Phys. Rev. Lett. 131 043201Google Scholar

    [126]

    Kayser Y, Milne C, Juranić P, Sala L, Czapla-Masztafiak J, Follath R, Kavčič M, Knopp G, Rehanek J, Błachucki W, Delcey M G, Lundberg M, Tyrała K, Zhu D, Alonso-Mori R, Abela R, Sá J, Szlachetko J 2019 Nat. Commun. 10 4761Google Scholar

    [127]

    Rohringer N 2019 Philos. Trans. R. Soc. A 377 20170471Google Scholar

    [128]

    Matsuda I, Arafune R 2023 Nonlinear X-Ray Spectroscopy for Materials Science (Springer) pp1–160

    [129]

    Shwartz S, Harris S E 2011 Phys. Rev. Lett. 106 080501Google Scholar

    [130]

    Shwartz S, Coffee R N, Feldkamp J M, Feng Y, Hastings J B, Yin G Y, Harris S E 2012 Phys. Rev. Lett. 109 013602Google Scholar

    [131]

    Shwartz S, Fuchs M, Hastings J B, Inubushi Y, Ishikawa T, Katayama T, Reis D A, Sato T, Tono K, Yabashi M, Yudovich S, Harris S E 2014 Phys. Rev. Lett. 112 163901Google Scholar

    [132]

    Bencivenga F, Cucini R, Capotondi F, Battistoni A, Mincigrucci R, Giangrisostomi E, Gessini A, Manfredda M, Nikolov I, Pedersoli E, Principi E, Svetina C, Parisse P, Casolari F, Danailov M B, Kiskinova M, Masciovecchio C 2015 Nature 520 205Google Scholar

    [133]

    Rouxel J R, Fainozzi D, Mankowsky R, Rösner B, Seniutinas G, Mincigrucci R, Catalini S, Foglia L, Cucini R, Döring F, Kubec A, Koch F, Bencivenga F, Haddad A A, Gessini A, Maznev A A, Cirelli C, Gerber S, Pedrini B, Mancini G F, Razzoli E, Burian M, Ueda H, Pamfilidis G, Ferrari E, Deng Y, Mozzanica A, Johnson P J M, Ozerov D, Izzo M G, Bottari C, Arrell C, Divall E J, Zerdane S, Sander M, Knopp G, Beaud P, Lemke H T, Milne C J, David C, Torre R, Chergui M, Nelson K A, Masciovecchio C, Staub U, Patthey L, Svetina C 2021 Nat. Photonics 15 499Google Scholar

    [134]

    Trost F, Ayyer K, Prasciolu M, Fleckenstein H, Barthelmess M, Yefanov O, Dresselhaus J L, Li C, Bajt S C V, Carnis J, Wollweber T, Mall A, Shen Z, Zhuang Y, Richter S, Karl S, Cardoch S, Patra K K, Möller J, Zozulya A, Shayduk R, Lu W, Braue F, Friedrich B, Boesenberg U, Petrov I, Tomin S, Guetg M, anders M, Timneanu N, Caleman C, Röhlsberger R, von Zanthier J, Chapman H N 2023 Phys. Rev. Lett. 130 173201Google Scholar

    [135]

    Inoue I, Tamasaku K, Osaka T, Inubushi Y, Yabashi M 2019 J. Synchrotron Radiat. 26 2050Google Scholar

    [136]

    Klein Y, Tripathi A K, Strizhevsky E, Capotondi F, De Angelis D, Giannessi L, Pancaldi M, Pedersoli E, Prince K C, Sefi O, Kim Y Y, Vartanyants I A, Shwartz S 2023 Phys. Rev. A 107 053503Google Scholar

  • [1] Zhao Chang-Zhe, Si Shang-Yu, Zhang Hai-Peng, Xue Lian, Li Zhong-Liang, Xiao Ti-Qiao. Beam splitting characteristics of crystal X-ray Laue diffraction. Acta Physica Sinica, 2022, 71(4): 046101. doi: 10.7498/aps.71.20211674
    [2] Beam splitting characteristics of crystal X-ray Laue diffraction. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211674
    [3] Zhou Guang-Zhao, Hu Zhe, Yang Shu-Min, Liao Ke-Liang, Zhou Ping, Liu Ke, Hua Wen-Qiang, Wang Yu-Zhu, Bian Feng-Gang, Wang Jie. Preliminary exploration of hard X-ray coherent diffraction imaging method at SSRF. Acta Physica Sinica, 2020, 69(3): 034102. doi: 10.7498/aps.69.20191586
    [4] Yang Jun-Liang, Li Zhong-Liang, Li Tang, Zhu Ye, Song Li, Xue Lian, Zhang Xiao-Wei. Characteristics of multi-crystals monfiguration X-ray diffraction and application in characterizing synchrotron beamline bandwidth. Acta Physica Sinica, 2020, 69(10): 104101. doi: 10.7498/aps.69.20200165
    [5] Wang Hai-Bo, Luo Zhen-Lin, Liu Qing-Qing, Jin Chang-Qing, Gao Chen, Zhang Li. Resonant X-ray diffraction studies on modulation structures of high temperature superconducting sample Sr2CuO3.4. Acta Physica Sinica, 2019, 68(18): 187401. doi: 10.7498/aps.68.20190494
    [6] Jin Xin, Yang Chun-Ming, Hua Wen-Qiang, Li Yi-Wen, Wang Jie. Temperature dependence of spherical micelles of PS3000-b-PAA5000 studied by in-situ small angle X-ray scattering. Acta Physica Sinica, 2018, 67(4): 048301. doi: 10.7498/aps.67.20172167
    [7] Sun Lu, Huo Yan, Zhou Chao, Liang Jian-Hui, Zhang Xiang-Zhi, Xu Zi-Jian, Wang Yong, Wu Yi-Zheng. STXM observation and quantitative study of magnetic vortex structure. Acta Physica Sinica, 2015, 64(19): 197502. doi: 10.7498/aps.64.197502
    [8] Qi Jun-Cheng, Ye Lin-Lin, Chen Rong-Chang, Xie Hong-Lan, Ren Yu-Qi, Du Guo-Hao, Deng Biao, Xiao Ti-Qiao. Coherence of X-ray in the third synchrotron radiation source. Acta Physica Sinica, 2014, 63(10): 104202. doi: 10.7498/aps.63.104202
    [9] Shan Xiao-Bin, Zhang Jie, Sheng Liu-Si, Wang Si-Sheng, Zhang Li-Hua, Zhao Yu-Jie, Hao Li-Qing, Wang Zhen-Ya. Rydberg series of CO in the region 14—20 eV. Acta Physica Sinica, 2011, 60(9): 093201. doi: 10.7498/aps.60.093201
    [10] Yan Fen, Zhang Ji-Chao, Li Ai-Guo, Yang Ke, Wang Hua, Mao Cheng-Wen, Liang Dong-Xu, Yan Shuai, Li Jiong, Yu Xiao-Han. Fast scanning X-ray microprobe fluorescence imaging based on synchrotron radiation. Acta Physica Sinica, 2011, 60(9): 090702. doi: 10.7498/aps.60.090702
    [11] Le Zi-Chun, Zhang Ming, Dong Wen, Quan Bi-Sheng, Liu Wei, Liu Kai. Study on the focusing performance of the compound X-ray refractive lenses with fabrication errors. Acta Physica Sinica, 2010, 59(9): 6284-6289. doi: 10.7498/aps.59.6284
    [12] Chen Can, Du Guo-Hao, Xiao Ti-Qiao, Guo Rong-Yi, Ren Yu-Qi, Xie Hong-Lan, Deng Biao, Xu Hong-Jie, Wu Li-Hong, Xue Yan-Ling. Investigation of characteristic microstructures of wild ginseng by X-ray phase contrast microscopy. Acta Physica Sinica, 2010, 59(8): 5496-5507. doi: 10.7498/aps.59.5496
    [13] Zhang Xiang-Zhi, Xu Zi-Jian, Zhen Xiang-Jun, Wang Yong, Guo Zhi, Yan Rui, Chang Rui, Zhou Ran-Ran, Tai Ren-Zhong. Soft X-ray spectromicroscopy dual-energy contrast image for element spatial distribution analysis. Acta Physica Sinica, 2010, 59(7): 4535-4541. doi: 10.7498/aps.59.4535
    [14] Le Zi-Chun, Dong Wen, Liu Wei, Zhang Ming, Liang Jing-Qiu, Quan Bi-Sheng, Liu Kai, Liang Zhong-Zhu, Zhu Pei-Ping, Yi Fu-Ting, Huang Wan-Xia. Theoretical and experimental results of focusing performance for the parabolic compound X-ray refractive lenses. Acta Physica Sinica, 2010, 59(3): 1977-1984. doi: 10.7498/aps.59.1977
    [15] Chen Bo-Lun, Yang Zheng-Hua, Cao Zhu-Rong, Dong Jian-Jun, Hou Li-Fei, Cui Yan-Li, Jiang Shao-En, Yi Rong-Qing, Li San-Wei, Liu Shen-Ye, Yang Jia-Min. Reflectivity uncertainty analysis of planar mirror calibration in BSRF. Acta Physica Sinica, 2010, 59(10): 7078-7085. doi: 10.7498/aps.59.7078
    [16] Yi Rong-Qing, Yang Guo-Hong, Cui Yan-Li, Du Hua-Bing, Wei Min-Xi, Dong Jian-Jun, Zhao Yi-Dong, Cui Ming-Qi, Zheng Lei. Study of X-ray detector system characteristics on the 3B3 medium energy beamline in BSRF. Acta Physica Sinica, 2006, 55(12): 6287-6292. doi: 10.7498/aps.55.6287
    [17] Huang Wan-Xia, Yuan Qing-Xi, Tian Yu-Lian, Zhu Pei-Ping, Jiang Xiao-Ming, Wang Jun-Yue. Diffraction-enhanced imaging experiments in BSRF. Acta Physica Sinica, 2005, 54(2): 677-681. doi: 10.7498/aps.54.677
    [18] Sun Ke-Xu, Yi Rong-Qing, Yang Guo-Hong, Jiang Shao-En, Cui Yan-Li, Liu Shen-Ye, Ding Yong-Kun, Cui Ming-Qi, Zhu Pei-Ping, Zhao Yi-Dong, Zhu Jie, Zheng Lei, Zhang Jing-He. The reflectance calibration of soft x-ray planar mirror with different grazing angle. Acta Physica Sinica, 2004, 53(4): 1099-1104. doi: 10.7498/aps.53.1099
    [19] Xie Hong-Lan, Gao Hong-Yi, Chen Jian-Wen, Wang Jun-Yue, Zhu Pei-Ping, Xiong Shi-Sheng, Xian Ding-Chang, Xu Zhi-Zhan. Numerical simulation study for atomic-resolution x-ray fluorescence holography. Acta Physica Sinica, 2003, 52(9): 2223-2228. doi: 10.7498/aps.52.2223
    [20] Guo Hong-Xia, Chen Yu-Sheng, Zhang Yi-Men, Han Fu-Bin, He Chao-Hui, Zhou Hui. . Acta Physica Sinica, 2002, 51(10): 2315-2319. doi: 10.7498/aps.51.2315
Metrics
  • Abstract views:  935
  • PDF Downloads:  33
  • Cited By: 0
Publishing process
  • Received Date:  30 August 2024
  • Accepted Date:  25 October 2024
  • Available Online:  19 November 2024
  • Published Online:  20 December 2024

/

返回文章
返回