Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental investigations on physical mechanisms of RMP-induced intrinsic rotations at EAST

Jin Yi-Fei Zhang Hong-Ming Yin Xiang-Hui Lü Bo Cheonho Bae Ye Kai-Xuan Sheng Hui Wang Shi-Fan Zhao Hai-Lin Gu Shuai Yuan Hong Lin Zi-Chao Fu Sheng-Yu Lu Di-An Fu Jia Wang Fu-Di

Citation:

Experimental investigations on physical mechanisms of RMP-induced intrinsic rotations at EAST

Jin Yi-Fei, Zhang Hong-Ming, Yin Xiang-Hui, Lü Bo, Cheonho Bae, Ye Kai-Xuan, Sheng Hui, Wang Shi-Fan, Zhao Hai-Lin, Gu Shuai, Yuan Hong, Lin Zi-Chao, Fu Sheng-Yu, Lu Di-An, Fu Jia, Wang Fu-Di
cstr: 32037.14.aps.73.20241357
PDF
HTML
Get Citation
  • Plasma spontaneous rotation significantly affects confinement performance and stability in tokamaks. Effectively inducing this rotation is essential for stabilizing resistive wall modes (RWMs) and ensuring the stable operation of the International Thermonuclear Experimental Reactor (ITER). Recent experiments conducted on the Korea Superconducting Tokamak Advanced Research (KSTAR) device demonstrated that resonant magnetic perturbations (RMPs) can induce neoclassical toroidal viscosity (NTV) torque under certain conditions, successfully driving plasma rotation. Similarly, on the Experimental Advanced Superconducting Tokamak (EAST), an increase in plasma rotation in the direction of the plasma current has been observed following RMP application. However, unlike the KSTAR findings, the NTV torque simulations for EAST are two orders of magnitude lower than experimental measurements, indicating additional mechanisms beyond NTV may drive the observed plasma rotations. In this paper, to investigate these mechanisms, momentum balance, causality, and statistical analyses are performed at EAST. An increase in rotation velocity is found to correlate with significant changes in the ${\boldsymbol{E}}\times{\boldsymbol{B}}$ flow, matching the RMP-induced torque distribution. This alignment suggests that residual stress, arising from variations in ${\boldsymbol{E}}\times{\boldsymbol{B}}$ shear, may cause the observed rotation to increase. The effects of stochastic fields on multi-scale turbulence are considered as a possible explanation for correlations between ${\boldsymbol{E}}\times{\boldsymbol{B}}$ velocity and toroidal rotation. Stochastic fields appear to enhance the inertia of large-scale turbulence while driving small-scale turbulence to maintain quasi-neutrality. The resulting turbulent Reynolds stress, generated by small-scale turbulence, may account for the increases of the observed ${\boldsymbol{E}}\times{\boldsymbol{B}}$ velocity during RMP application. Statistical analysis further highlights the importance of island width in understanding the threshold RMP current in ramping-up RMP experiments, supporting the conclusion that turbulence-driven ${\boldsymbol{E}}\times{\boldsymbol{B}}$ shear-related residual stress is the key mechanism of driving plasma rotation following RMP application.
      Corresponding author: Zhang Hong-Ming, hmzhang@ipp.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175278, U23A2077), the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 21B0439), and the Chinese Academy of Science President’s International Fellowship Initiative, China (Grant No. 2022VMB0007).
    [1]

    Garofalo A M, Strait E J, Johnson L C, La Haye R J, Lazarus E A, Navratil G A, Okabayashi M, Scoville J T, Taylor T S, Turnbull A D 2002 Phys. Rev. Lett. 89 235001Google Scholar

    [2]

    Chapman I T, Liu Y Q, Asunta O, Graves J P, Johnson T, Jucker M 2012 Phys. Plasmas 19 052502Google Scholar

    [3]

    Peeters A, Angioni C, Bortolon A, Camenen Y, Casson F, Duval B, Fiederspiel L, Hornsby W, Idomura Y, Hein T, Kluy N, Mantica P, Parra F, Snodin A, Szepesi G, Strintzi D, Tala T, Tardini G, De Vries P, Weiland J 2011 Nucl. Fusion 51 094027Google Scholar

    [4]

    Diamond P, Kosuga Y, Gürcan Ö D, McDevitt C, Hahm T, Fedorczak N, Rice J, Wang W, Ku S, Kwon J, Dif-Pradalier G, Abiteboul J, Wang L, Ko W, Shi Y, Ida K, Solomon W, Jhang H, Kim S, Yi S, Ko S, Sarazin Y, Singh R, Chang C 2013 Nucl. Fusion 53 104019Google Scholar

    [5]

    Ida K, Rice J 2014 Nucl. Fusion 54 045001Google Scholar

    [6]

    Rice J E 2016 Plasma Phys. Control. Fusion 58 083001Google Scholar

    [7]

    Stoltzfus-Dueck T 2019 Plasma Phys. Control. Fusion 61 124003Google Scholar

    [8]

    Taylor G I, Shaw W N 1915 Philos. Trans. R. Soc. London, Ser. A 215 1Google Scholar

    [9]

    Diamond P H, Itoh S I, Itoh K, Hahm T S 2005 Plasma Phys. Control. Fusion 47 R35Google Scholar

    [10]

    Gürcan ff D, Diamond P H, Hahm T S, Singh R 2007 Phys. Plasmas 14 042306Google Scholar

    [11]

    Diamond P H, McDevitt C J, Gürcan Ö D, Hahm T S, Naulin V 2008 Phys. Plasmas 15 012303Google Scholar

    [12]

    Gürcan Ö D, Diamond P H, Hennequin P, McDevitt C J, Garbet X, Bourdelle C 2010 Phys. Plasmas 17 112309Google Scholar

    [13]

    Kosuga Y, Diamond P H, Gürcan Ö D 2010 Phys. Plasmas 17 102313Google Scholar

    [14]

    Fedorczak N, Diamond P, Tynan G, Manz P 2012 Nucl. Fusion 52 103013Google Scholar

    [15]

    Wang L, Diamond P H 2013 Phys. Rev. Lett. 110 265006Google Scholar

    [16]

    Evans T, Fenstermacher M, Moyer R, Osborne T, Watkins J, Gohil P, Joseph I, Schaffer M, Baylor L, Bécoulet M, Boedo J, Burrell K, deGrassie J, Finken K, Jernigan T, Jakubowski M, Lasnier C, Lehnen M, Leonard A, Lonnroth J, Nardon E, Parail V, Schmitz O, Unterberg B, West W 2008 Nucl. Fusion 48 024002Google Scholar

    [17]

    Sun Y, Liang Y, Liu Y, Gu S, Yang X, Guo W, Shi T, Jia M, Wang L, Lyu B, Zhou C, Liu A, Zang Q, Liu H, Chu N, Wang H, Zhang T, Qian J, Xu L, He K, Chen D, Shen B, Gong X, Ji X, Wang S, Qi M, Song Y, Yuan Q, Sheng Z, Gao G, Fu P, Wan B 2016 Phys. Rev. Lett. 117 115001Google Scholar

    [18]

    李春雨, 郝广周, 刘钺强, 王炼, 刘艺慧子 2022 物理学报 71 075202Google Scholar

    Li C Y, Hao G Z, Liu Y Q, Wang L, Liu Y H Z 2022 Acta Phys. Sin. 71 075202Google Scholar

    [19]

    Xiong J Y, Jiang Z H, Jiao Z X, Li Z, Liang Y F, Chen Z Y, Ding Y H, Team J T 2023 Chin. Phys. B 32 075210Google Scholar

    [20]

    潘姗姗, 段艳敏, 徐立清, 晁燕, 钟国强, 孙有文, 盛回, 刘海庆, 储宇奇, 吕波, 金仡飞, 胡立群 2023 物理学报 72 135203Google Scholar

    Pan S S, Duan Y M, Xu L Q, Chao Y, Zhong G Q, Sun Y W, Sheng H, Liu H Q, Chu Y Q, Lü B, Jin Y F, Hu L Q 2023 Acta Phys. Sin. 72 135203Google Scholar

    [21]

    Solomon W, Burrell K, Garofalo A, Cole A, Budny R, deGrassie J, Heidbrink W, Jackson G, Lanctot M, Nazikian R, Reimerdes H, Strait E, Van Zeeland M 2009 Nucl. Fusion 49 085005Google Scholar

    [22]

    Sun Y, Liang Y, Koslowski H R, et al. 2010 Plasma Phys. Control. Fusion 52 105007Google Scholar

    [23]

    Callen J 2011 Nucl. Fusion 51 094026Google Scholar

    [24]

    Sun Y, Liang Y, Shaing K, et al. 2012 Nucl. Fusion 52 083007Google Scholar

    [25]

    Yan W, Chen Z Y, Huang D W, Hu Q M, Shi Y J, Ding Y H, Cheng Z F, Yang Z J, Pan X M, Lee S G, Tong R H, Wei Y N, Dong Y B, J-TEXT Team 2018 Plasma Phys. Controlled Fusion 60 035007Google Scholar

    [26]

    Jiang M, Xu Y, Zhong W, Li D, Huang Z, Yang Z, Shi Z, Wang N, Cheng Z, Yang Z, Liang A, Shi P, Wen J, Chen Z, Chen Z, Pan X, Shi P, Ruan B, Guo D, Cai Q, Hu Q, Wang S, Ding Y, Ji X, Li Y, Liu Y, Xu M 2019 Nucl. Fusion 59 046003Google Scholar

    [27]

    陈撷宇, 牟茂淋, 苏春燕, 陈少永, 唐昌建 2020 物理学报 69 195201Google Scholar

    Chen X Y, Mou M L, Su C Y, Chen S Y, Tang C J 2020 Acta Phys. Sin. 69 195201Google Scholar

    [28]

    Li J, Lin Z, Cheng J, Wu Z X, Xu J, He Y, Huang Z H, Liang A S, Sun T F, Dong J Q, Shi Z B, Zhong W, Xu M, Team H A 2024 Phys. Plasmas 31 042502Google Scholar

    [29]

    Waltz R E, Ferraro N M 2015 Phys. Plasmas 22 042507Google Scholar

    [30]

    Sugama H, Watanabe T H 2006 Phys. Plasmas 13 012501Google Scholar

    [31]

    Leconte M, Diamond P H 2012 Phys. Plasmas 19 055903Google Scholar

    [32]

    Terry P W, Pueschel M J, Carmody D, Nevins W M 2013 Phys. Plasmas 20 112502Google Scholar

    [33]

    Leconte M, Diamond P, Xu Y 2014 Nucl. Fusion 54 013004Google Scholar

    [34]

    Choi G, Hahm T 2018 Nucl. Fusion 58 026001Google Scholar

    [35]

    Williams Z, Pueschel M, Terry P, Nishizawa T, Kriete D, Nornberg M, Sarff J, McKee G, Orlov D, Nogami S 2020 Nucl. Fusion 60 096004Google Scholar

    [36]

    Xu Y, Carralero D, Hidalgo C, Jachmich S, Manz P, Martines E, Van Milligen B, Pedrosa M, Ramisch M, Shesterikov I, Silva C, Spolaore M, Stroth U, Vianello N 2011 Nucl. Fusion 51 063020Google Scholar

    [37]

    Basu D, Nakajima M, Melnikov A, McColl D, Rohollahi A, Elgriw S, Xiao C, Hirose A 2018 Nucl. Fusion 58 024001Google Scholar

    [38]

    Zhao K, Shi Y, Hahn S, Diamond P, Sun Y, Cheng J, Liu H, Lie N, Chen Z, Ding Y, Chen Z, Rao B, Leconte M, Bak J, Cheng Z, Gao L, Zhang X, Yang Z, Wang N, Wang L, Jin W, Yan L, Dong J, Zhuang G 2015 Nucl. Fusion 55 073022Google Scholar

    [39]

    Zhao K, Shi Y, Liu H, Diamond P, Li F, Cheng J, Chen Z, Nie L, Ding Y, Wu Y, Chen Z, Rao B, Cheng Z, Gao L, Zhang X, Yang Z, Wang N, Wang L, Jin W, Xu J, Yan L, Dong J, Zhuang G, Team J T 2016 Nucl. Fusion 56 076005Google Scholar

    [40]

    Zhao K, Chen Z, Shi Y, et al. 2020 Nucl. Fusion 60 106030Google Scholar

    [41]

    Garofalo A M, Burrell K H, DeBoo J C, deGrassie J S, Jackson G L, Lanctot M, Reimerdes H, Schaffer M J, Solomon W M, Strait E J 2008 Phys. Rev. Lett. 101 195005Google Scholar

    [42]

    Callen J D, Cole A J, Hegna C C 2009 Phys. Plasmas 16 082504Google Scholar

    [43]

    Sun Y, Liang Y, Shaing K C, Koslowski H R, Wiegmann C, Zhang T 2010 Phys. Rev. Lett. 105 145002Google Scholar

    [44]

    Sun Y, Liang Y, Shaing K, Koslowski H, Wiegmann C, Zhang T 2011 Nucl. Fusion 51 053015Google Scholar

    [45]

    Sun Y, Shaing K, Liang Y, Casper T, Loarte A, Shen B, Wan B 2013 Nucl. Fusion 53 093010Google Scholar

    [46]

    Shaing K, Ida K, Sabbagh S 2015 Nucl. Fusion 55 125001Google Scholar

    [47]

    Li H, Sun Y, Wang L, He K, Shaing K C 2021 Nucl. Fusion 61 104002Google Scholar

    [48]

    Yang S, Park J K, Na Y S, Wang Z, Ko W, In Y, Lee J, Lee K, Kim S 2019 Phys. Rev. Lett. 123 095001Google Scholar

    [49]

    Sheng H, Lyu B, Sun Y W, Li H H, Li Y Y, Bae C, Liu Y Q, Jin Y F, Mao S F, Yan X T, Xie P C, Ma Q, Wang H H, Shi T H, Zang Q, Qian J P, Jia M N, Chu N, Ye C, Chang Y Y, Wu X M, Zhang Y N, Yang H, Wu M F, Ye M Y, EAST Team 2024 Phys. Plasmas 31 032507Google Scholar

    [50]

    Wan B, Gong X, Liang Y, Xiang N, Xu G, Sun Y, Wang L, Qian J, Liu H, Zhang B, Xia T, Huang J, Ding R, Zhang T, Zuo G, Sun Z, Zeng L, Zhang X, Zang Q, Lyu B, Garofalo A, Li G, Li K, Yang Q, the East Team and Collaborators 2022 Nucl. Fusion 62 042010Google Scholar

    [51]

    Li Y Y, Fu J, Lyu B, Du X W, Li C Y, Zhang Y, Yin X H, Yu Y, Wang Q P, Von Hellermann M, Shi Y J, Ye M Y, Wan B N 2014 Rev. Sci. Instrum. 85 11E428Google Scholar

    [52]

    Fu S, Yin X, Fu J, Li Y, Wang F, Zhang H, Bae C, Lyu B, Huang Q, Shen Y, Li Y, He L, Jin Y, Gong X 2022 Rev. Sci. Instrum. 93 043504Google Scholar

    [53]

    Li G, Wei X, Liu H, Shen J, Jie Y, Lian H, Zeng L, Zou Z, Zhang J, Wang S 2017 Plasma Sci. Technol. 19 084003Google Scholar

    [54]

    Wang Y, Zhang T, Liu X, Zhao C, Qu H, Li G, Wu M, Ye K, Wen F, Xiang H, Geng K, Zhong F, Huang J, Han X, Zhang S, Liu S, Nan J, Gao X 2019 Fusion Eng. Des. 148 111286Google Scholar

    [55]

    Zhao H, Zhou T, Liu Y, Ti A, Ling B, Austin M E, Houshmandyar S, Huang H, Rowan W L, Hu L 2018 Rev. Sci. Instrum. 89 10H111Google Scholar

    [56]

    Wu M, Wen F, Xiang H, Zhang T, Mao G, Liu Z, Wang Y, Li G, Liu Y, Geng K, Zhong F, Ye K, Huang J, Zhou Z, Han X, Zhang S, Zhuang G, Gao X 2020 JINST 15 P12009Google Scholar

    [57]

    Zhou C, Liu A D, Zhang X H, Hu J Q, Wang M Y, Li H, Lan T, Xie J L, Sun X, Ding W X, Liu W D, Yu C X 2013 Rev. Sci. Instrum. 84 103511Google Scholar

    [58]

    Goldston R J 1981 J. Comput. Phys. 43 61Google Scholar

    [59]

    Pankin A, McCune D, Andre R, Bateman G, Kritz A 2004 Comput. Phys. Commun. 159 157Google Scholar

    [60]

    McDermott R M, Angioni C, Dux R, Fable E, Pütterich T, Ryter F, Salmi A, Tala T, Tardini G, Viezzer E, the ASDEX Upgrade Team 2011 Plasma Phys. Control. Fusion 53 124013Google Scholar

    [61]

    Zhang X H, Liu A D, Zhou C, Hu J Q, Wang M Y, Yu C X, Liu W D, Li H, Lan T, Xie J L 2015 Chin. Phys. Lett. 32 125201Google Scholar

    [62]

    Conway G D, Schirmer J, Klenge S, Suttrop W, Holzhauer E, the ASDEX Upgrade Team 2004 Plasma Phys. Control. Fusion 46 951Google Scholar

    [63]

    Lao L, John H S, Stambaugh R, Pfeiffer W 1985 Nucl. Fusion 25 1421Google Scholar

    [64]

    Miller R L, Chu M S, Greene J M, Lin-Liu Y R, Waltz R E 1998 Phys. Plasmas 5 973Google Scholar

    [65]

    Ye C, Sun Y W, Wang H H, Liu Y Q, Shi T H, Zang Q, Jia T Q, Ma Q, Gu S, Chu N, He K Y, Jia M N, Wu X M, Xie P C, Sheng H, Yang H, Huang L S, Shen B, Li M H, Qian J P, the EAST Team 2023 Nucl. Fusion 63 076004Google Scholar

    [66]

    Cao M, Diamond P H 2022 Plasma Phys. Control. Fusion 64 035016Google Scholar

  • 图 1  EAST上, (a) CXRS和NBI的布局俯视图; (b) CXRS测量位置和RMP线圈的极向分布

    Figure 1.  (a) Top view of the CXRS and NBI layout on the EAST tokamak; (b) poloidal distribution of RMP coils on the EAST tokamak.

    图 2  (a), (b)上、下RMP线圈电流环向分布的时间演化; (c)线平均密度${\bar n}_{\rm e} $的时间演化; (d)芯部电子温度${ T}_{\rm e 0} $的时间演化; (e)芯部旋转速度$V_{\phi 0} $的时间演化; (f)芯部离子温度${ T}_{\rm i 0} $的时间演化

    Figure 2.  Time evolutions of toroidal distribution for (a) upper and (b) lower RMP coil currents; time evolutions of (c) line-averaged density, (d) central electron temperature, (e) central rotation velocity and (f) central ion temperature.

    图 3  不同RMP相位加入前后的电子密度剖面(上)、电子温度和离子温度剖面(中)、环向旋转速度剖面(下). 蓝色对应RMP加入前的时刻, 红色对应RMP加入后的时刻

    Figure 3.  Electron density (top), electron and ion temperature (middle), and toroidal rotation velocity profiles (bottom) before and after the application of RMP with different phases. The blue curves represent the conditions before RMP application, while the red curves correspond to the conditions after RMP application.

    图 4  (a) $ {\text{δ}} B_{{\mathrm{r}}} $环向分布的时间演化; (b) $ {\text{δ}} B_{{\mathrm{r}}} $$ n=1 $分量的时间演化

    Figure 4.  Time evolutions of (a) toroidal distribution of $ {\text{δ}} B_{{\mathrm{r}}} $ and (b) $ n = 1 $ component of $ {\text{δ}} B_{{\mathrm{r}}} $.

    图 5  (a)不同频率微波密度涨落反射计的截止密度; (b) 79.2 GHz密度剖面反射计测量的复信号功率谱; (c)—(e) 79.2 GHz, 85.2 GHz以及91.8 GHz三道使用重心法从复信号双边功率谱中计算得到的多普勒频移的时间演化

    Figure 5.  (a) Cutoff densities of microwave density fluctuation reflectometry at different frequencies; (b) power spectrum of the complex signal measured by the 79.2 GHz density fluctuation reflectometry; (c)–(e) Doppler shifts deriving from center of gravity of the double-sided power spectrum of 79.2, 85.2, and 91.8 GHz channels.

    图 6  (a)在普朗特常数为1的假设下, 根据离子功率平衡得到的离子热扩散系数(黑)以及动量对流速度(红)分布; (b)估算得到的RMP产生的力矩分布

    Figure 6.  (a) Ion heat diffusivity (black) and momentum convection velocity (red), obtained from ion power balance using TRANSP/NUBEAM under the assumption of a Prandtl number of 1; (b) estimated torque distribution generated by the RMP.

    图 7  (a) RMP线圈电流(黑)以及线平均密度(蓝)、(b) 4.6 GHz低杂波(黑)和内感(蓝)、(c)电子温度、(d)电子温度梯度以及(e) R ≈ 2.2 m处环向旋转速度(红)和$ {\boldsymbol{E}}\times{\boldsymbol{B}} $速度(蓝)的时间演化

    Figure 7.  Time evolutions of (a) the RMP coil current (black) and line-averaged density (blue), (b) 4.6 GHz lower hybrid wave power (black) and internal inductance (blue), (c) electron temperature and (d) their gradients at various locations, (e) toroidal rotation (red) and $ {\boldsymbol{E}}\times{\boldsymbol{B}} $ (blue) velocities at R ≈ 2.2 m.

    图 8  环向旋转速度增量与电子温度梯度的统计结果

    Figure 8.  Statistical results of the increment in toroidal rotation velocity as a function of the electron temperature gradient.

  • [1]

    Garofalo A M, Strait E J, Johnson L C, La Haye R J, Lazarus E A, Navratil G A, Okabayashi M, Scoville J T, Taylor T S, Turnbull A D 2002 Phys. Rev. Lett. 89 235001Google Scholar

    [2]

    Chapman I T, Liu Y Q, Asunta O, Graves J P, Johnson T, Jucker M 2012 Phys. Plasmas 19 052502Google Scholar

    [3]

    Peeters A, Angioni C, Bortolon A, Camenen Y, Casson F, Duval B, Fiederspiel L, Hornsby W, Idomura Y, Hein T, Kluy N, Mantica P, Parra F, Snodin A, Szepesi G, Strintzi D, Tala T, Tardini G, De Vries P, Weiland J 2011 Nucl. Fusion 51 094027Google Scholar

    [4]

    Diamond P, Kosuga Y, Gürcan Ö D, McDevitt C, Hahm T, Fedorczak N, Rice J, Wang W, Ku S, Kwon J, Dif-Pradalier G, Abiteboul J, Wang L, Ko W, Shi Y, Ida K, Solomon W, Jhang H, Kim S, Yi S, Ko S, Sarazin Y, Singh R, Chang C 2013 Nucl. Fusion 53 104019Google Scholar

    [5]

    Ida K, Rice J 2014 Nucl. Fusion 54 045001Google Scholar

    [6]

    Rice J E 2016 Plasma Phys. Control. Fusion 58 083001Google Scholar

    [7]

    Stoltzfus-Dueck T 2019 Plasma Phys. Control. Fusion 61 124003Google Scholar

    [8]

    Taylor G I, Shaw W N 1915 Philos. Trans. R. Soc. London, Ser. A 215 1Google Scholar

    [9]

    Diamond P H, Itoh S I, Itoh K, Hahm T S 2005 Plasma Phys. Control. Fusion 47 R35Google Scholar

    [10]

    Gürcan ff D, Diamond P H, Hahm T S, Singh R 2007 Phys. Plasmas 14 042306Google Scholar

    [11]

    Diamond P H, McDevitt C J, Gürcan Ö D, Hahm T S, Naulin V 2008 Phys. Plasmas 15 012303Google Scholar

    [12]

    Gürcan Ö D, Diamond P H, Hennequin P, McDevitt C J, Garbet X, Bourdelle C 2010 Phys. Plasmas 17 112309Google Scholar

    [13]

    Kosuga Y, Diamond P H, Gürcan Ö D 2010 Phys. Plasmas 17 102313Google Scholar

    [14]

    Fedorczak N, Diamond P, Tynan G, Manz P 2012 Nucl. Fusion 52 103013Google Scholar

    [15]

    Wang L, Diamond P H 2013 Phys. Rev. Lett. 110 265006Google Scholar

    [16]

    Evans T, Fenstermacher M, Moyer R, Osborne T, Watkins J, Gohil P, Joseph I, Schaffer M, Baylor L, Bécoulet M, Boedo J, Burrell K, deGrassie J, Finken K, Jernigan T, Jakubowski M, Lasnier C, Lehnen M, Leonard A, Lonnroth J, Nardon E, Parail V, Schmitz O, Unterberg B, West W 2008 Nucl. Fusion 48 024002Google Scholar

    [17]

    Sun Y, Liang Y, Liu Y, Gu S, Yang X, Guo W, Shi T, Jia M, Wang L, Lyu B, Zhou C, Liu A, Zang Q, Liu H, Chu N, Wang H, Zhang T, Qian J, Xu L, He K, Chen D, Shen B, Gong X, Ji X, Wang S, Qi M, Song Y, Yuan Q, Sheng Z, Gao G, Fu P, Wan B 2016 Phys. Rev. Lett. 117 115001Google Scholar

    [18]

    李春雨, 郝广周, 刘钺强, 王炼, 刘艺慧子 2022 物理学报 71 075202Google Scholar

    Li C Y, Hao G Z, Liu Y Q, Wang L, Liu Y H Z 2022 Acta Phys. Sin. 71 075202Google Scholar

    [19]

    Xiong J Y, Jiang Z H, Jiao Z X, Li Z, Liang Y F, Chen Z Y, Ding Y H, Team J T 2023 Chin. Phys. B 32 075210Google Scholar

    [20]

    潘姗姗, 段艳敏, 徐立清, 晁燕, 钟国强, 孙有文, 盛回, 刘海庆, 储宇奇, 吕波, 金仡飞, 胡立群 2023 物理学报 72 135203Google Scholar

    Pan S S, Duan Y M, Xu L Q, Chao Y, Zhong G Q, Sun Y W, Sheng H, Liu H Q, Chu Y Q, Lü B, Jin Y F, Hu L Q 2023 Acta Phys. Sin. 72 135203Google Scholar

    [21]

    Solomon W, Burrell K, Garofalo A, Cole A, Budny R, deGrassie J, Heidbrink W, Jackson G, Lanctot M, Nazikian R, Reimerdes H, Strait E, Van Zeeland M 2009 Nucl. Fusion 49 085005Google Scholar

    [22]

    Sun Y, Liang Y, Koslowski H R, et al. 2010 Plasma Phys. Control. Fusion 52 105007Google Scholar

    [23]

    Callen J 2011 Nucl. Fusion 51 094026Google Scholar

    [24]

    Sun Y, Liang Y, Shaing K, et al. 2012 Nucl. Fusion 52 083007Google Scholar

    [25]

    Yan W, Chen Z Y, Huang D W, Hu Q M, Shi Y J, Ding Y H, Cheng Z F, Yang Z J, Pan X M, Lee S G, Tong R H, Wei Y N, Dong Y B, J-TEXT Team 2018 Plasma Phys. Controlled Fusion 60 035007Google Scholar

    [26]

    Jiang M, Xu Y, Zhong W, Li D, Huang Z, Yang Z, Shi Z, Wang N, Cheng Z, Yang Z, Liang A, Shi P, Wen J, Chen Z, Chen Z, Pan X, Shi P, Ruan B, Guo D, Cai Q, Hu Q, Wang S, Ding Y, Ji X, Li Y, Liu Y, Xu M 2019 Nucl. Fusion 59 046003Google Scholar

    [27]

    陈撷宇, 牟茂淋, 苏春燕, 陈少永, 唐昌建 2020 物理学报 69 195201Google Scholar

    Chen X Y, Mou M L, Su C Y, Chen S Y, Tang C J 2020 Acta Phys. Sin. 69 195201Google Scholar

    [28]

    Li J, Lin Z, Cheng J, Wu Z X, Xu J, He Y, Huang Z H, Liang A S, Sun T F, Dong J Q, Shi Z B, Zhong W, Xu M, Team H A 2024 Phys. Plasmas 31 042502Google Scholar

    [29]

    Waltz R E, Ferraro N M 2015 Phys. Plasmas 22 042507Google Scholar

    [30]

    Sugama H, Watanabe T H 2006 Phys. Plasmas 13 012501Google Scholar

    [31]

    Leconte M, Diamond P H 2012 Phys. Plasmas 19 055903Google Scholar

    [32]

    Terry P W, Pueschel M J, Carmody D, Nevins W M 2013 Phys. Plasmas 20 112502Google Scholar

    [33]

    Leconte M, Diamond P, Xu Y 2014 Nucl. Fusion 54 013004Google Scholar

    [34]

    Choi G, Hahm T 2018 Nucl. Fusion 58 026001Google Scholar

    [35]

    Williams Z, Pueschel M, Terry P, Nishizawa T, Kriete D, Nornberg M, Sarff J, McKee G, Orlov D, Nogami S 2020 Nucl. Fusion 60 096004Google Scholar

    [36]

    Xu Y, Carralero D, Hidalgo C, Jachmich S, Manz P, Martines E, Van Milligen B, Pedrosa M, Ramisch M, Shesterikov I, Silva C, Spolaore M, Stroth U, Vianello N 2011 Nucl. Fusion 51 063020Google Scholar

    [37]

    Basu D, Nakajima M, Melnikov A, McColl D, Rohollahi A, Elgriw S, Xiao C, Hirose A 2018 Nucl. Fusion 58 024001Google Scholar

    [38]

    Zhao K, Shi Y, Hahn S, Diamond P, Sun Y, Cheng J, Liu H, Lie N, Chen Z, Ding Y, Chen Z, Rao B, Leconte M, Bak J, Cheng Z, Gao L, Zhang X, Yang Z, Wang N, Wang L, Jin W, Yan L, Dong J, Zhuang G 2015 Nucl. Fusion 55 073022Google Scholar

    [39]

    Zhao K, Shi Y, Liu H, Diamond P, Li F, Cheng J, Chen Z, Nie L, Ding Y, Wu Y, Chen Z, Rao B, Cheng Z, Gao L, Zhang X, Yang Z, Wang N, Wang L, Jin W, Xu J, Yan L, Dong J, Zhuang G, Team J T 2016 Nucl. Fusion 56 076005Google Scholar

    [40]

    Zhao K, Chen Z, Shi Y, et al. 2020 Nucl. Fusion 60 106030Google Scholar

    [41]

    Garofalo A M, Burrell K H, DeBoo J C, deGrassie J S, Jackson G L, Lanctot M, Reimerdes H, Schaffer M J, Solomon W M, Strait E J 2008 Phys. Rev. Lett. 101 195005Google Scholar

    [42]

    Callen J D, Cole A J, Hegna C C 2009 Phys. Plasmas 16 082504Google Scholar

    [43]

    Sun Y, Liang Y, Shaing K C, Koslowski H R, Wiegmann C, Zhang T 2010 Phys. Rev. Lett. 105 145002Google Scholar

    [44]

    Sun Y, Liang Y, Shaing K, Koslowski H, Wiegmann C, Zhang T 2011 Nucl. Fusion 51 053015Google Scholar

    [45]

    Sun Y, Shaing K, Liang Y, Casper T, Loarte A, Shen B, Wan B 2013 Nucl. Fusion 53 093010Google Scholar

    [46]

    Shaing K, Ida K, Sabbagh S 2015 Nucl. Fusion 55 125001Google Scholar

    [47]

    Li H, Sun Y, Wang L, He K, Shaing K C 2021 Nucl. Fusion 61 104002Google Scholar

    [48]

    Yang S, Park J K, Na Y S, Wang Z, Ko W, In Y, Lee J, Lee K, Kim S 2019 Phys. Rev. Lett. 123 095001Google Scholar

    [49]

    Sheng H, Lyu B, Sun Y W, Li H H, Li Y Y, Bae C, Liu Y Q, Jin Y F, Mao S F, Yan X T, Xie P C, Ma Q, Wang H H, Shi T H, Zang Q, Qian J P, Jia M N, Chu N, Ye C, Chang Y Y, Wu X M, Zhang Y N, Yang H, Wu M F, Ye M Y, EAST Team 2024 Phys. Plasmas 31 032507Google Scholar

    [50]

    Wan B, Gong X, Liang Y, Xiang N, Xu G, Sun Y, Wang L, Qian J, Liu H, Zhang B, Xia T, Huang J, Ding R, Zhang T, Zuo G, Sun Z, Zeng L, Zhang X, Zang Q, Lyu B, Garofalo A, Li G, Li K, Yang Q, the East Team and Collaborators 2022 Nucl. Fusion 62 042010Google Scholar

    [51]

    Li Y Y, Fu J, Lyu B, Du X W, Li C Y, Zhang Y, Yin X H, Yu Y, Wang Q P, Von Hellermann M, Shi Y J, Ye M Y, Wan B N 2014 Rev. Sci. Instrum. 85 11E428Google Scholar

    [52]

    Fu S, Yin X, Fu J, Li Y, Wang F, Zhang H, Bae C, Lyu B, Huang Q, Shen Y, Li Y, He L, Jin Y, Gong X 2022 Rev. Sci. Instrum. 93 043504Google Scholar

    [53]

    Li G, Wei X, Liu H, Shen J, Jie Y, Lian H, Zeng L, Zou Z, Zhang J, Wang S 2017 Plasma Sci. Technol. 19 084003Google Scholar

    [54]

    Wang Y, Zhang T, Liu X, Zhao C, Qu H, Li G, Wu M, Ye K, Wen F, Xiang H, Geng K, Zhong F, Huang J, Han X, Zhang S, Liu S, Nan J, Gao X 2019 Fusion Eng. Des. 148 111286Google Scholar

    [55]

    Zhao H, Zhou T, Liu Y, Ti A, Ling B, Austin M E, Houshmandyar S, Huang H, Rowan W L, Hu L 2018 Rev. Sci. Instrum. 89 10H111Google Scholar

    [56]

    Wu M, Wen F, Xiang H, Zhang T, Mao G, Liu Z, Wang Y, Li G, Liu Y, Geng K, Zhong F, Ye K, Huang J, Zhou Z, Han X, Zhang S, Zhuang G, Gao X 2020 JINST 15 P12009Google Scholar

    [57]

    Zhou C, Liu A D, Zhang X H, Hu J Q, Wang M Y, Li H, Lan T, Xie J L, Sun X, Ding W X, Liu W D, Yu C X 2013 Rev. Sci. Instrum. 84 103511Google Scholar

    [58]

    Goldston R J 1981 J. Comput. Phys. 43 61Google Scholar

    [59]

    Pankin A, McCune D, Andre R, Bateman G, Kritz A 2004 Comput. Phys. Commun. 159 157Google Scholar

    [60]

    McDermott R M, Angioni C, Dux R, Fable E, Pütterich T, Ryter F, Salmi A, Tala T, Tardini G, Viezzer E, the ASDEX Upgrade Team 2011 Plasma Phys. Control. Fusion 53 124013Google Scholar

    [61]

    Zhang X H, Liu A D, Zhou C, Hu J Q, Wang M Y, Yu C X, Liu W D, Li H, Lan T, Xie J L 2015 Chin. Phys. Lett. 32 125201Google Scholar

    [62]

    Conway G D, Schirmer J, Klenge S, Suttrop W, Holzhauer E, the ASDEX Upgrade Team 2004 Plasma Phys. Control. Fusion 46 951Google Scholar

    [63]

    Lao L, John H S, Stambaugh R, Pfeiffer W 1985 Nucl. Fusion 25 1421Google Scholar

    [64]

    Miller R L, Chu M S, Greene J M, Lin-Liu Y R, Waltz R E 1998 Phys. Plasmas 5 973Google Scholar

    [65]

    Ye C, Sun Y W, Wang H H, Liu Y Q, Shi T H, Zang Q, Jia T Q, Ma Q, Gu S, Chu N, He K Y, Jia M N, Wu X M, Xie P C, Sheng H, Yang H, Huang L S, Shen B, Li M H, Qian J P, the EAST Team 2023 Nucl. Fusion 63 076004Google Scholar

    [66]

    Cao M, Diamond P H 2022 Plasma Phys. Control. Fusion 64 035016Google Scholar

  • [1] Zhang Qi-Fan, Le Wen-Cheng, Zhang Yu-Hao, Ge Zhong-Xin, Kuang Zhi-Qiang, Xiao Sheng-Yang, Wang Lu. Effects of radiation from tungsten impurities on the thermal energy loss during the fast thermal quench stage of major disruption in tokamak plasmas. Acta Physica Sinica, 2024, 73(18): 185201. doi: 10.7498/aps.73.20240730
    [2] Liu Guan-Nan, LI Xin-Xia, Liu Hong-Bo, Sun Ai-Ping. Synergistic current drive of helicon wave and lower hybrid wave in HL-2M. Acta Physica Sinica, 2023, 72(24): 245202. doi: 10.7498/aps.72.20231077
    [3] Shen Yong, Dong Jia-Qi, He Hong-Da, Pan Wei, Hao Guang-Zhou. Ideal conductive wall and magnetohydrodynamic instability in Tokamak. Acta Physica Sinica, 2023, 72(3): 035203. doi: 10.7498/aps.72.20222043
    [4] Zhou Li-Na, Hu Han-Qing, Liu Yue-Qiang, Duan Ping, Chen Long, Zhang Han-Yu. Modelling study of fluid and kinetic responses of plasmas to resonant magnetic perturbation. Acta Physica Sinica, 2023, 72(7): 075202. doi: 10.7498/aps.72.20222196
    [5] Zhu Xiao-Long, Chen Wei, Wang Feng, Wang Zheng-Xiong. Hybrid numerical simulation on fast particle transport induced by synergistic interaction of low- and medium-frequency magnetohydrodynamic instabilities in tokamak plasma. Acta Physica Sinica, 2023, 72(21): 215210. doi: 10.7498/aps.72.20230620
    [6] Wang Fu-Qiong, Xu Ying-Feng, Zha Xue-Jun, Zhong Fang-Chuan. Multi-fluid and dynamic simulation of tungsten impurity in tokamak boundary plasma. Acta Physica Sinica, 2023, 72(21): 215213. doi: 10.7498/aps.72.20230991
    [7] Pan Shan-Shan, Duan Yan-Min, Xu Li-Qing, Chao Yan, Zhong Guo-Qiang, Sun You-Wen, Sheng Hui, Liu Hai-Qing, Chu Yu-Qi, Lü Bo, Jin Yi-Fei, Hu Li-Qun. Influence of resonant magnetic perturbation on sawtooth behavior in experimental advanced superconducting Tokamak. Acta Physica Sinica, 2023, 72(13): 135203. doi: 10.7498/aps.72.20230347
    [8] Li Chun-Yu, Hao Guang-Zhou, Liu Yue-Qiang, Wang Lian, Liu Yi-Hui-Zi. Influence of toroidal rotation on plasma response to external RMP fields in tokamak. Acta Physica Sinica, 2022, 71(7): 075202. doi: 10.7498/aps.71.20211975
    [9] Liu Zhao-Yang, Zhang Yang-Zhong, Xie Tao, Liu A-Di, Zhou Chu. Group velocity in spatiotemporal representation of collisionless trapped electron mode in tokamak. Acta Physica Sinica, 2021, 70(11): 115203. doi: 10.7498/aps.70.20202003
    [10] Su Chun-Yan, Mou Mao-Lin, Chen Shao-Yong, Guo Wen-Ping, Tang Chang-Jian. Field amplification effect of resonant magnetic perturbation on ion orbits in tokamak plasma. Acta Physica Sinica, 2021, 70(9): 095207. doi: 10.7498/aps.70.20201860
    [11] Chen Xie-Yu, Mou Mao-Lin, Su Chun-Yan, Chen Shao-Yong, Tang Chang-Jian. Effect of toroidal rotation on plasma response to resonant magnetic perturbations in HL-2A. Acta Physica Sinica, 2020, 69(19): 195201. doi: 10.7498/aps.69.20200519
    [12] Zhang Chong-Yang, Liu A-Di, Li Hong, Chen Zhi-Peng, Li Bin, Yang Zhou-Jun, Zhou Chu, Xie Jin-Lin, Lan Tao, Liu Wan-Dong, Zhuang Ge, Yu Chang-Xuan. Application of dual-polarization frequency-modulated microwave reflectometer to J-TEXT tokamak. Acta Physica Sinica, 2014, 63(12): 125204. doi: 10.7498/aps.63.125204
    [13] Du Hai-Long, Sang Chao-Feng, Wang Liang, Sun Ji-Zhong, Liu Shao-Cheng, Wang Hui-Qian, Zhang Ling, Guo Hou-Yang, Wang De-Zhen. Modelling of edge plasma transport during H-mode of EAST by SOLPS5.0. Acta Physica Sinica, 2013, 62(24): 245206. doi: 10.7498/aps.62.245206
    [14] Lu Hong-Wei, Zha Xue-Jun, Hu Li-Qun, Lin Shi-Yao, Zhou Rui-Jie, Luo Jia-Rong, Zhong Fang-Chuan. The effect of gas puffing on plasma during slide-away discharge in the HT-7 tokamak. Acta Physica Sinica, 2012, 61(7): 075202. doi: 10.7498/aps.61.075202
    [15] Hong Bin-Bin, Chen Shao-Yong, Tang Chang-Jian, Zhang Xin-Jun, Hu You-Jun. Study on synergy of electron-cyclotron and lower-hybrid current drive in Tokamak. Acta Physica Sinica, 2012, 61(11): 115207. doi: 10.7498/aps.61.115207
    [16] Lu Hong-Wei, Hu Li-Qun, Lin Shi-Yao, Zhong Guo-Qiang, Zhou Rui-Jie, Zhang Ji-Zong. Investigation of slide-away discharges in HT-7 tokamak. Acta Physica Sinica, 2010, 59(8): 5596-5601. doi: 10.7498/aps.59.5596
    [17] Xu Qiang, Gao Xiang, Shan Jia-Fang, Hu Li-Qun, Zhao Jun-Yu. Experimental study of large power lower hybrid current drive on HT-7 tokamak. Acta Physica Sinica, 2009, 58(12): 8448-8453. doi: 10.7498/aps.58.8448
    [18] Gong Xue-Yu, Peng Xiao-Wei, Xie An-Ping, Liu Wen-Yan. Electron cyclotron current drive under different operational regimes in tokamak plasma. Acta Physica Sinica, 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [19] Xu Wei, Wan Bao-Nian, Xie Ji-Kang. The impurity transport in HT-6M tokamak. Acta Physica Sinica, 2003, 52(8): 1970-1978. doi: 10.7498/aps.52.1970
    [20] WANG WEN-HAO, XU YU-HONG, YU CHANG-XUAN, WEN YI-ZHI, LING BI-LI, SONG MEI, WAN BAO-NIAN. ELECTROSTATIC FLUCTUATIONS AND TURBULENT TRANSPORT STUDIES IN THE HT-7 SUPERCONDUCTING TOKAMAK EDGE PLASMAS . Acta Physica Sinica, 2001, 50(10): 1956-1963. doi: 10.7498/aps.50.1956
Metrics
  • Abstract views:  297
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Received Date:  26 September 2024
  • Accepted Date:  22 October 2024
  • Available Online:  12 November 2024
  • Published Online:  20 December 2024

/

返回文章
返回