Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Microscopic study on low-energy quadrupole states in Ni isotope chain atomic nuclei

SUN Shuai AN Rong QI Miao CAO Ligang ZHANG Fengshou

Citation:

Microscopic study on low-energy quadrupole states in Ni isotope chain atomic nuclei

SUN Shuai, AN Rong, QI Miao, CAO Ligang, ZHANG Fengshou
cstr: 32037.14.aps.74.20240991
PDF
HTML
Get Citation
  • This work mainly investigates the properties of the low-energy quadrupole strength in Ni isotopes, especially the evolution of the pygmy quadrupole states with the increase of neutron number. And the effect of shell evolution on the pygmy resonance is also discussed in detail. Based on the Skyrme Hartree-Fock+Bardeen-Cooper-Schrieffer (HF+BCS) theory and the self-consistent quasiparticle random phase approximation (RPA) method, the evolution in the nickel isotope chain with the increase of neutron number is studied. And in the calculations, three effective Skyrme interactions, namely SGII, SLy5 and SKM*, and a density-dependent zero-range type force are adopted. The properties of the first 2+ state in Ni isotopes are studied. A good description on the experimental excited energies of the first 2+ states are achieved, and the SGII and SLy5 can well describe the reduced electric transition probabilities for $^{58-68}{\rm{Ni}}$. It is found that the energy value of the first 2+ state for $^{68}{\rm{Ni}}$ and $^{78}{\rm{Ni}}$ are obviously high than those of other nuclei, reflecting the obvious shell effect. In addition to the first 2+ states, pygmy quadrupole states between 3 MeV and 5 MeV with relatively large electric transition probabilities are evidently found for $^{70-76}{\rm{Ni}}$ in the isoscalar quadruple strength distribution. The pygmy quadrupole states have the energy values decreasing with the number of neutrons increasing, but their strengths increase gradually. Therefore, they are more sensitive to the change in the shell structure. This is due to the fact that the gradual filling of the neutron level $1{{\mathrm{g}}}_{9/2}$ has a significant effect on the pygmy quadrupole states of $^{70-76}{\rm{Ni}}$, and it leads to switching from proton-dominated excitations to neutron-dominated ones. The pygmy quadrupole states for $^{70-76}{\rm{Ni}}$ are sensitive to the proton and neutron shell gaps, so they can provide the information about the shell evolution in neutron-rich nuclei.
      Corresponding author: CAO Ligang, caolg@bnu.edu.cn ; ZHANG Fengshou, fszhang@bnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275025, 11975096, 12135004, 11961141004) and the Fundamental Research Fund for the Central Universities, China (Grant No. 2020NTST06).
    [1]

    Paar N, Vretenar D, Khan E, Colò G 2007 Rep. Prog. Phys. 70 691Google Scholar

    [2]

    Garg U, Colò G 2015 Prog. Part. Nucl. Phys. 84 124Google Scholar

    [3]

    Horowitz C J, Pollock S J, Souder P A, Michaels R 2001 Phys. Rev. C 63 025501Google Scholar

    [4]

    Roca-Maza X, Cao L G, Colò G, Sagawa H 2016 Phys. Rev. C 94 044313Google Scholar

    [5]

    Chen L W, Ko C M, Li B A 2005 Phys. Rev. C 72 064309Google Scholar

    [6]

    Fang D Q 2023 Nucl. Tech. 46 080016Google Scholar

    [7]

    An R, Sun S, Cao L G, Zhang F S 2023 Nucl. Sci. Tech. 34 119Google Scholar

    [8]

    Cao L G, Ma Z Y 2004 Eur. Phys. J. A 22 189Google Scholar

    [9]

    Ma C W, Liu Y P, Wei H L, Pu J, Cheng K X, Wang Y T 2022 Nucl. Sci. Tech. 33 6Google Scholar

    [10]

    Ren Z Z, Mittig W, Chen B Q, Ma Z Y 1995 Phys. Rev. C 52 R20(RGoogle Scholar

    [11]

    Meng J, Ring P 1996 Phys. Rev. Lett. 77 3963Google Scholar

    [12]

    Zhou S G, Meng J, Ring P, Zhao E G 2010 Phys. Rev. C 82 011301(RGoogle Scholar

    [13]

    Zhong S Y, Zhang S S, Sun X X, Smith M S 2022 Sci. China Phys. Mech. Astron. 65 262011Google Scholar

    [14]

    Tian Y J, Liu Q, Heng T H, Guo J Y 2017 Phys. Rev. C 95 064329Google Scholar

    [15]

    Piekarewicz J 2006 Phys. Rev. C 73 044325Google Scholar

    [16]

    Vretenar D, Paar N, Ring P, Lalazissis G A 2001 Phys. Rev. C 63 047301Google Scholar

    [17]

    Yang D, Cao L G, Tian Y, Ma Z Y 2010 Phys. Rev. C 82 054305Google Scholar

    [18]

    Sun S, Yu R Q, Cao L G, Zhang C L, Zhang F S 2024 Eur. Phys. J. A 60 61Google Scholar

    [19]

    Cao L G, Ma Z Y 2004 Mod. Phys. Lett. A 19 2845Google Scholar

    [20]

    Pei J C, Kortelainen M, Zhang Y N, Xu F R 2014 Phys. Rev. C 90 051304Google Scholar

    [21]

    Khan E, Paar N, Vretenar D, Cao L G, Sagawa H, Colò G 2013 Phys. Rev. C 87 064311Google Scholar

    [22]

    Tao C, Ma Y G, Zhang G Q, Cao X G, Fang D Q, Wang H W 2013 Nucl. Sci. Tech. 24 030502Google Scholar

    [23]

    Zhang Z, Chen L W 2014 Phys. Rev. C 90 064317Google Scholar

    [24]

    Cao L G, Ma Z Y 2008 Chin. Phys. Lett. 25 1625Google Scholar

    [25]

    Cortés M L, Rodriguez W, Doornenbal P, et al. 2020 Phys. Lett. B 800 135071Google Scholar

    [26]

    Allmond J M, Brown B A, Stuchbery A E, et al. 2014 Phys. Rev. C 90 034309Google Scholar

    [27]

    Marchi T, de Angelis G, Valiente-Dobón J J, et al. 2014 Phys. Rev. Lett. 113 182501Google Scholar

    [28]

    Pellegri L, Bracco A, Tsoneva N, et al. 2015 Phys. Rev. C 92 014330Google Scholar

    [29]

    Spieker M, Tsoneva N, Derya V, et al. 2016 Phys. Lett. B 752 102Google Scholar

    [30]

    Yüksel E, Colò G, Khan E, Niu Y F 2018 Phys. Rev. C 97 064308Google Scholar

    [31]

    Tsoneva N, Lenske H 2011 Phys. Lett. B 695 174Google Scholar

    [32]

    Langanke K, Terasaki J, Nowacki F, Dean D J, Nazarewicz W 2003 Phys. Rev. C 67 044314Google Scholar

    [33]

    Ansari A, Ring P 2006 Phys. Rev. C 74 054313Google Scholar

    [34]

    Colò G, Cao L G, Giai N V, Capelli L 2013 Comput. Phys. Commun. 184 142Google Scholar

    [35]

    Liu L, Liu S, Zhang S S, Cao L G 2021 Chin. Phys. C 45 044105Google Scholar

    [36]

    Shang X L, Zuo W 2013 Phys. Rev. C 88 025806Google Scholar

    [37]

    Yan Y J, Shang X L, Dong J M, Zuo W 2021 Chin. Phys. C 45 074105Google Scholar

    [38]

    Zhang S S, Cao L G, Lombardo U, Schuck P 2016 Phys. Rev. C 93 044329Google Scholar

    [39]

    Zhang S S, Cao L G, Lombardo U, Zhao E G, Zhou S G 2010 Phys. Rev. C 81 044313Google Scholar

    [40]

    Wang M, Audi G, Kondev F G, Huang W J, Naimi S, Xu X 2017 Chin. Phys. C 41 030003Google Scholar

    [41]

    Giai N V, Sagawa H 1981 Phys. Lett. B 106 379Google Scholar

    [42]

    Chabanat E, Bonche P, Haensel P, Meyer J, Schaeffer R 1998 Nucl. Phys. A 635 231Google Scholar

    [43]

    Bartel J, Quentin P, Brack M, Guet C, Håkansson H B 1982 Nucl. Phys. A 386 79Google Scholar

    [44]

    Colò G, Roca-Maza X 2021 arXiv: 2102.06562 [nucl-th]

    [45]

    Sun S, Zhang S S, Zhang Z H, Cao L G 2021 Chin. Phys. C 45 094101Google Scholar

    [46]

    Pritychenko B, Birch M, Singh B, Horoi M 2016 At. Data Nucl. Data Tables 107 1Google Scholar

    [47]

    Severyukhin A P, Voronov V V, Giai N V 2008 Phys. Rev. C 77 024322Google Scholar

  • 图 1  利用SGII, SLy5和SkM*相互作用计算的镍同位素链原子核的中子对能隙与实验值[40]的对比

    Figure 1.  Neutron pairing gaps in Ni isotopes calculated by using SGII, SLy5, and SkM* interactions, and compared with the experimental values[40].

    图 2  (a)利用SGII, SLy5和SkM*相互作用计算的镍同位素链原子核的第一个2+态激发能与实验值的对比; (b)对应的电磁跃迁强度与实验值的对比. 实验数据取自文献[46]

    Figure 2.  (a) Energies of the first 2+ state in Ni isotopes obtained by using SGII, SLy5, and SkM* interactions, and compared with the experimental data; (b) corresponding electromagnetic transition strengths. The experimental data is taken from Ref. [46].

    图 3  镍同位素链原子核的同位旋标量四极强度分布(计算采用了SGII相互作用) (a) $^{60—68}{\rm{Ni}}$; (b) $^{70—78}{\rm{Ni}}$

    Figure 3.  Isoscalar quadrupole strength distributions in Ni isotopes: (a) $^{60-68}{\rm{Ni}}$; (b) $^{70-78}{\rm{Ni}}$. The SGII interaction is employed in the calculations.

    图 4  镍同位素链原子核低能区跃迁强度(计算采用了SGII相互作用)

    Figure 4.  Transition strength for the low-energy region in Ni isotopes. The SGII interaction is employed in the calculations.

    图 5  组态$\nu 1\text{g}_{9/2} \to \nu 1\text{g}_{9/2}$和$\nu 1\text{g}_{9/2} \to \nu 2\text{d}_{5/2}$对$^{64—76}{\rm{Ni}}$矮四极共振态的(a)贡献百分比与(b)跃迁概率幅, 其中计算采用了SGII相互作用

    Figure 5.  (a) Contribution percentage and (b) reduced transition amplitudes ${b}_{ cd}$ of configurations $\nu 1\text{g}_{9/2}\to \nu 1\text{g}_{9/2}$ and $\nu 1\text{g}_{9/2}\to \nu 2\text{d}_{5/2}$ contributed to the pygmy quadrupole states in $^{64-76}{\rm{Ni}}$. The SGII interaction is employed in the calculations.

    表 1  利用SGII相互作用计算的$^{64, 68, 72, 76}{\rm{Ni}}$费米面附近中子态的准粒子能$E_{{\mathrm{q.p}}.}$ (MeV)、占据概率$\upsilon^{2}$以及中子费米面$\lambda_n$ (MeV)

    Table 1.  Quasi-particle energies ($E_{{\mathrm{q.p}}.}$ in MeV), occupation probabilities ($\upsilon^{2}$) of neutron states around the Fermi level and neutron Fermi energies ($\lambda_n$ in MeV) in $^{64, 68, 72, 76}{\rm{Ni}}$, which are calculated by using SGII interaction.

    States $^{64}{\rm{Ni}}$ $^{68}{\rm{Ni}}$ $^{72}{\rm{Ni}}$ $^{76}{\rm{Ni}}$
    $E_{{\mathrm{q.p}}.}$ $\upsilon^{2}$ $E_{{\mathrm{q.p}}.}$ $\upsilon^{2}$ $E_{{\mathrm{q.p}}.}$ $\upsilon^{2}$ $E_{{\mathrm{q.p.}}}$ $\upsilon^{2}$
    $1{\rm{f}}_{7/2}$ 7.43 0.98 8.89 0.99 10.47 0.99 11.47 1.00
    $2{\rm{p}}_{3/2}$ 2.51 0.86 3.60 0.96 5.17 0.98 6.20 0.99
    $1{\rm{f}}_{5/2}$ 1.95 0.55 2.66 0.89 4.34 0.95 5.48 0.98
    $2{\rm{p}}_{1/2}$ 1.70 0.47 2.04 0.86 3.53 0.95 4.57 0.99
    $1{\rm{g}}_{9/2}$ 4.30 0.05 2.59 0.12 1.84 0.44 1.68 0.80
    $2{\rm{d}}_{5/2}$ 8.45 0.00 6.65 0.01 4.91 0.01 3.61 0.01
    $\lambda_{n}$ –9.34 –7.98 –6.66 –5.84
    DownLoad: CSV

    表 2  对$^{64, 70, 76}{\rm{Ni}}$的第一个2+态以及矮四极共振态作出主要贡献的准粒子组态的组态能量${{E}}_{{\rm{conf}}.}$ (MeV)、贡献百分比以及对应的跃迁概率幅${{b}}_{{{cd}}}$ (fm2), 其中计算采用了SGII相互作用; π和ν分别代表质子态和中子态.

    Table 2.  Quasiparticle configurations giving the major contribution to the first 2+ and pygmy quadrupole states in Ni isotopes. For each transition, configuration energies (${{E}}_{{\rm{conf}}.}$ in MeV), their contribution to the norm of the state (in percentage) and the corresponding reduced transition amplitudes (${{b}}_{{{cd}}}$ in fm2) are given for $^{64}{\rm{Ni}}$, $^{70}{\rm{Ni}}$, and $^{76}{\rm{Ni}}$, respectively. The SGII interaction is employed in the calculations. Herein, the superscripts π and ν refer to the proton and neutron states, respectively.

    $^{64}{\rm{Ni}}$ $^{70}{\rm{Ni}}$ $^{76}{\rm{Ni}}$
    Configurations ${{E}}_{\rm{conf.}}$ Percentage/% ${{b}}_{{\mathrm{cd}}}$ Configurations ${{E}}_{\rm{conf.}}$ Percentage/% ${{b}}_{{\mathrm{cd}}}$ Configurations ${{E}}_{\rm{conf.}}$ Percentage/% ${{b}}_{{\mathrm{cd}}}$
    第一个2+ 1.46 MeV 2.52 MeV 2.08 MeV
    $\nu 1{\rm{f}}_{5/2}-\nu 2{\rm{p}}_{1/2}$ 3.65 27.85 –7.45 $\nu 1{\rm{g}}_{9/2}-\nu 1{\rm{g}}_{9/2}$ 4.07 68.71 17.43 $\nu 1{\rm{g}}_{9/2}-\nu 1{\rm{g}}_{9/2}$ 3.37 71.34 –16.45
    $\nu 1{\rm{f}}_{5/2}-\nu 1{\rm{f}}_{5/2}$ 3.89 24.67 –9.02 $\pi 1{\rm{f}}_{7/2}-\pi 2{\rm{p}}_{3/2}$ 5.12 15.53 7.55 $\nu 1{\rm{g}}_{9/2}-\nu 2{\rm{d}}_{5/2}$ 5.30 11.88 –8.64
    $\pi 1{\rm{f}}_{7/2}-\pi 2{\rm{p}}_{3/2}$ 4.83 18.58 –10.52 $\nu 1{\rm{g}}_{9/2}-\nu 2{\rm{d}}_{5/2}$ 7.68 4.39 3.00 $\pi 1{\rm{f}}_{7/2}-\pi 2{\rm{p}}_{3/2}$ 5.54 8.92 –6.30
    $\nu 2{\rm{p}}_{3/2}-\nu 2{\rm{p}}_{1/2}$ 4.22 12.75 –5.10 $\pi 1{\rm{f}}_{7/2}-\pi 1{\rm{f}}_{5/2}$ 6.15 2.40 1.49 $\pi 1{\rm{f}}_{7/2}-\pi 1{\rm{f}}_{5/2}$ 5.79 2.21 –1.49
    $\nu 2{\rm{p}}_{3/2}-\nu 1{\rm{f}}_{5/2}$ 4.46 3.27 –1.27 $\nu 1{\rm{f}}_{5/2}-\nu 1{\rm{f}}_{5/2}$ 7.22 1.42 0.84 $\nu 1{\rm{g}}_{9/2}-\nu 1{\rm{g}}_{7/2}$ 8.75 0.70 –0.83
    $\nu 2{\rm{p}}_{3/2}-\nu 2{\rm{p}}_{3/2}$ 5.03 2.35 –1.50 $\nu 1{\rm{f}}_{5/2}-\nu 2{\rm{p}}_{1/2}$ 6.48 1.13 0.53
    矮四极共振态 5.16 MeV 4.98 MeV 4.11 MeV
    $\pi 1{\rm{f}}_{7/2}-\pi 2{\rm{p}}_{3/2}$ 4.83 61.35 –10.38 $\pi 1{\rm{f}}_{7/2}-\pi 2{\rm{p}}_{3/2}$ 5.12 57.89 10.52 $\nu 1{\rm{g}}_{9/2}-\nu 2{\rm{d}}_{5/2}$ 5.30 45.03 –13.35
    $\nu 2{\rm{p}}_{3/2}-\nu 2{\rm{p}}_{3/2}$ 5.03 22.68 3.22 $\nu 1{\rm{g}}_{9/2}-\nu 1{\rm{g}}_{9/2}$ 4.07 28.57 –8.98 $\nu 1{\rm{g}}_{9/2}-\nu 1{\rm{g}}_{9/2}$ 3.37 26.99 7.85
    $\nu 2{\rm{p}}_{3/2}-\nu 2{\rm{p}}_{1/2}$ 4.22 6.20 1.97 $\nu 1{\rm{f}}_{5/2}-\nu 2{\rm{p}}_{1/2}$ 6.48 3.85 1.23 $\pi 1{\rm{f}}_{7/2}-\pi 2{\rm{p}}_{3/2}$ 5.54 20.62 –6.82
    $\nu 1{\rm{f}}_{5/2}-\nu 1{\rm{f}}_{5/2}$ 3.89 4.72 2.14 $\nu 1{\rm{g}}_{9/2}-\nu 2{\rm{d}}_{5/2}$ 7.68 3.77 2.46 $\pi 1{\rm{f}}_{7/2}-\pi 1{\rm{f}}_{5/2}$ 5.79 3.27 –1.29
    $\nu 2{\rm{p}}_{3/2}-\nu 1{\rm{f}}_{5/2}$ 4.46 2.78 0.70 $\nu 1{\rm{f}}_{5/2}-\nu 1{\rm{f}}_{5/2}$ 7.22 1.75 1.18 $\nu 1{\rm{g}}_{9/2}-\nu 1{\rm{g}}_{7/2}$ 8.75 0.64 –0.71
    $\nu 1{\rm{f}}_{5/2}-\nu 2{\rm{p}}_{1/2}$ 3.65 1.62 0.93 $\pi 1{\rm{f}}_{7/2}-\pi 1{\rm{f}}_{5/2}$ 6.15 1.15 0.80
    矮四极共振态 6.89 MeV 6.46 MeV 6.31 MeV
    $\pi 1{\rm{f}}_{7/2}-\pi 1{\rm{f}}_{5/2}$ 6.59 90.06 –5.54 $\pi 1{\rm{f}}_{7/2}-\pi 1{\rm{f}}_{5/2}$ 6.15 75.16 –5.15 $\pi 1{\rm{f}}_{7/2}-\pi 1{\rm{f}}_{5/2}$ 5.79 51.09 –4.34
    $\nu 1{\rm{g}}_{9/2}-\nu 1{\rm{g}}_{9/2}$ 8.60 2.14 –1.48 $\nu 1{\rm{f}}_{5/2}-\nu 2{\rm{p}}_{1/2}$ 6.48 12.00 1.83 $\nu 1{\rm{g}}_{9/2}-\nu 2{\rm{d}}_{5/2}$ 5.29 30.23 9.29
    $\pi 1{\rm{f}}_{7/2}-\pi 2{\rm{p}}_{3/2}$ 4.83 2.06 1.49 $\pi 1{\rm{f}}_{7/2}-\pi 2{\rm{p}}_{3/2}$ 5.12 4.39 2.44 $\pi 1{\rm{f}}_{7/2}-\pi 2{\rm{p}}_{3/2}$ 5.54 16.37 –5.49
    $\nu 2{\rm{p}}_{3/2}-\nu 2{\rm{p}}_{1/2}$ 4.22 1.07 0.82 $\nu 1{\rm{g}}_{9/2}-\nu 2{\rm{d}}_{5/2}$ 7.68 3.47 –2.21 $\nu 1{\rm{g}}_{9/2}-\nu 1{\rm{g}}_{7/2}$ 8.75 1.04 –0.63
    $\nu 1{\rm{f}}_{5/2}-\nu 1{\rm{f}}_{5/2}$ 3.89 0.9 1.02 $\nu 1{\rm{f}}_{5/2}-\nu 1{\rm{f}}_{5/2}$ 7.22 1.42 –0.88
    $\nu 1{\rm{f}}_{7/2}-\nu 1{\rm{f}}_{5/2}$ 9.37 0.9 –0.45 $\nu 1{\rm{g}}_{9/2}-\nu 1{\rm{g}}_{9/2}$ 4.07 1.38 1.69
    DownLoad: CSV
  • [1]

    Paar N, Vretenar D, Khan E, Colò G 2007 Rep. Prog. Phys. 70 691Google Scholar

    [2]

    Garg U, Colò G 2015 Prog. Part. Nucl. Phys. 84 124Google Scholar

    [3]

    Horowitz C J, Pollock S J, Souder P A, Michaels R 2001 Phys. Rev. C 63 025501Google Scholar

    [4]

    Roca-Maza X, Cao L G, Colò G, Sagawa H 2016 Phys. Rev. C 94 044313Google Scholar

    [5]

    Chen L W, Ko C M, Li B A 2005 Phys. Rev. C 72 064309Google Scholar

    [6]

    Fang D Q 2023 Nucl. Tech. 46 080016Google Scholar

    [7]

    An R, Sun S, Cao L G, Zhang F S 2023 Nucl. Sci. Tech. 34 119Google Scholar

    [8]

    Cao L G, Ma Z Y 2004 Eur. Phys. J. A 22 189Google Scholar

    [9]

    Ma C W, Liu Y P, Wei H L, Pu J, Cheng K X, Wang Y T 2022 Nucl. Sci. Tech. 33 6Google Scholar

    [10]

    Ren Z Z, Mittig W, Chen B Q, Ma Z Y 1995 Phys. Rev. C 52 R20(RGoogle Scholar

    [11]

    Meng J, Ring P 1996 Phys. Rev. Lett. 77 3963Google Scholar

    [12]

    Zhou S G, Meng J, Ring P, Zhao E G 2010 Phys. Rev. C 82 011301(RGoogle Scholar

    [13]

    Zhong S Y, Zhang S S, Sun X X, Smith M S 2022 Sci. China Phys. Mech. Astron. 65 262011Google Scholar

    [14]

    Tian Y J, Liu Q, Heng T H, Guo J Y 2017 Phys. Rev. C 95 064329Google Scholar

    [15]

    Piekarewicz J 2006 Phys. Rev. C 73 044325Google Scholar

    [16]

    Vretenar D, Paar N, Ring P, Lalazissis G A 2001 Phys. Rev. C 63 047301Google Scholar

    [17]

    Yang D, Cao L G, Tian Y, Ma Z Y 2010 Phys. Rev. C 82 054305Google Scholar

    [18]

    Sun S, Yu R Q, Cao L G, Zhang C L, Zhang F S 2024 Eur. Phys. J. A 60 61Google Scholar

    [19]

    Cao L G, Ma Z Y 2004 Mod. Phys. Lett. A 19 2845Google Scholar

    [20]

    Pei J C, Kortelainen M, Zhang Y N, Xu F R 2014 Phys. Rev. C 90 051304Google Scholar

    [21]

    Khan E, Paar N, Vretenar D, Cao L G, Sagawa H, Colò G 2013 Phys. Rev. C 87 064311Google Scholar

    [22]

    Tao C, Ma Y G, Zhang G Q, Cao X G, Fang D Q, Wang H W 2013 Nucl. Sci. Tech. 24 030502Google Scholar

    [23]

    Zhang Z, Chen L W 2014 Phys. Rev. C 90 064317Google Scholar

    [24]

    Cao L G, Ma Z Y 2008 Chin. Phys. Lett. 25 1625Google Scholar

    [25]

    Cortés M L, Rodriguez W, Doornenbal P, et al. 2020 Phys. Lett. B 800 135071Google Scholar

    [26]

    Allmond J M, Brown B A, Stuchbery A E, et al. 2014 Phys. Rev. C 90 034309Google Scholar

    [27]

    Marchi T, de Angelis G, Valiente-Dobón J J, et al. 2014 Phys. Rev. Lett. 113 182501Google Scholar

    [28]

    Pellegri L, Bracco A, Tsoneva N, et al. 2015 Phys. Rev. C 92 014330Google Scholar

    [29]

    Spieker M, Tsoneva N, Derya V, et al. 2016 Phys. Lett. B 752 102Google Scholar

    [30]

    Yüksel E, Colò G, Khan E, Niu Y F 2018 Phys. Rev. C 97 064308Google Scholar

    [31]

    Tsoneva N, Lenske H 2011 Phys. Lett. B 695 174Google Scholar

    [32]

    Langanke K, Terasaki J, Nowacki F, Dean D J, Nazarewicz W 2003 Phys. Rev. C 67 044314Google Scholar

    [33]

    Ansari A, Ring P 2006 Phys. Rev. C 74 054313Google Scholar

    [34]

    Colò G, Cao L G, Giai N V, Capelli L 2013 Comput. Phys. Commun. 184 142Google Scholar

    [35]

    Liu L, Liu S, Zhang S S, Cao L G 2021 Chin. Phys. C 45 044105Google Scholar

    [36]

    Shang X L, Zuo W 2013 Phys. Rev. C 88 025806Google Scholar

    [37]

    Yan Y J, Shang X L, Dong J M, Zuo W 2021 Chin. Phys. C 45 074105Google Scholar

    [38]

    Zhang S S, Cao L G, Lombardo U, Schuck P 2016 Phys. Rev. C 93 044329Google Scholar

    [39]

    Zhang S S, Cao L G, Lombardo U, Zhao E G, Zhou S G 2010 Phys. Rev. C 81 044313Google Scholar

    [40]

    Wang M, Audi G, Kondev F G, Huang W J, Naimi S, Xu X 2017 Chin. Phys. C 41 030003Google Scholar

    [41]

    Giai N V, Sagawa H 1981 Phys. Lett. B 106 379Google Scholar

    [42]

    Chabanat E, Bonche P, Haensel P, Meyer J, Schaeffer R 1998 Nucl. Phys. A 635 231Google Scholar

    [43]

    Bartel J, Quentin P, Brack M, Guet C, Håkansson H B 1982 Nucl. Phys. A 386 79Google Scholar

    [44]

    Colò G, Roca-Maza X 2021 arXiv: 2102.06562 [nucl-th]

    [45]

    Sun S, Zhang S S, Zhang Z H, Cao L G 2021 Chin. Phys. C 45 094101Google Scholar

    [46]

    Pritychenko B, Birch M, Singh B, Horoi M 2016 At. Data Nucl. Data Tables 107 1Google Scholar

    [47]

    Severyukhin A P, Voronov V V, Giai N V 2008 Phys. Rev. C 77 024322Google Scholar

  • [1] Li Yuan-Yuan, Hu Zhu-Bin, Sun Hai-Tao, Sun Zhen-Rong. Density functional theory studies on the excited-state properties of Bilirubin molecule. Acta Physica Sinica, 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [2] Luo Qiang, Yang Heng, Guo Ping, Zhao Jian-Fei. Density functional theory calculation of structure and electronic properties in N-methane hydrate. Acta Physica Sinica, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [3] Sun Yan, Hu Feng, Sang Cui-Cui, Mei Mao-Fei, Liu Dong-Dong, Gou Bing-Cong. Radiative and Auger transitions of K-shell excited resonance states in boron-like sulfur ion. Acta Physica Sinica, 2019, 68(16): 163101. doi: 10.7498/aps.68.20190481
    [4] Li Ya-Sha, Xie Yun-Long, Huang Tai-Huan, Xu Cheng, Liu Guo-Cheng. Molecular structure and properties of salt cross-linked polyethylene under external electric field based on density functional theory. Acta Physica Sinica, 2018, 67(18): 183101. doi: 10.7498/aps.67.20180808
    [5] Jiang Yuan-Qi, Peng Ping. Electronic structures of stable Cu-centered Cu-Zr icosahedral clusters studied by density functional theory. Acta Physica Sinica, 2018, 67(13): 132101. doi: 10.7498/aps.67.20180296
    [6] Song Qing-Gong, Zhao Jun-Pu, Gu Wei-Feng, Zhen Dan-Dan, Guo Yan-Rui, Li Ze-Peng. Ductile and electronic properties of La-doped gamma-TiAl systems based on density functional theory. Acta Physica Sinica, 2017, 66(6): 066103. doi: 10.7498/aps.66.066103
    [7] Chi Bao-Qian, Liu Yi, Xu Jing-Cheng, Qin Xu-Ming, Sun Chen, Bai Cheng-Hao, Liu Yi-Fan, Zhao Xin-Luo, Li Xiao-Wu. Density functional theory study of structure stability and electronic structures of graphyne derivatives. Acta Physica Sinica, 2016, 65(13): 133101. doi: 10.7498/aps.65.133101
    [8] Cao Qing-Song, Yuan Yong-Bo, Xiao Chuan-Yun, Lu Rui-Feng, Kan Er-Jun, Deng Kai-Ming. Density functional study on the geometric and electronic properties of C80H80. Acta Physica Sinica, 2012, 61(10): 106101. doi: 10.7498/aps.61.106101
    [9] Jin Rong, Chen Xiao-Hong. Structure and properties of ZrnPd clusters by density-functional theory. Acta Physica Sinica, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [10] Chen Liang, Xu Can, Zhang Xiao-Fang. Electronic properties of MgO nanotube clusters studied with density functional theory. Acta Physica Sinica, 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [11] Ge Gui-Xian, Luo You-Hua. Density functional theory study of the structure and electronic properties of MgnOn(n=2—8) clusters. Acta Physica Sinica, 2008, 57(8): 4851-4856. doi: 10.7498/aps.57.4851
    [12] Lei Xue-Ling, Zhu Heng-Jiang, Ge Gui-Xian, Wang Xian-Ming, Luo You-Hua. Structures and magnetism of BnNi(n=6—12) clusters from density-functional theory. Acta Physica Sinica, 2008, 57(9): 5491-5499. doi: 10.7498/aps.57.5491
    [13] Ren Feng-Zhu, Wang Yuan-Xu, Tian Fu-Yang, Zhao Wen-Jie, Luo You-Hua. Density-functional study of ZrnCo(n=1—13) cluster structers and their magnetism. Acta Physica Sinica, 2008, 57(4): 2165-2173. doi: 10.7498/aps.57.2165
    [14] Lei Xue-Ling, Wang Qing-Lin, Yan Yu-Li, Zhao Wen-Jie, Yang Zhi, Luo You-Hua. Structures and magnetism of small BnNi(n≤5) clusters. Acta Physica Sinica, 2007, 56(8): 4484-4490. doi: 10.7498/aps.56.4484
    [15] Wang Qing-Lin, Ge Gui-Xian, Zhao Wen-Jie, Lei Xue-Ling, Yan Yu-Li, Yang Zhi, Luo You-Hua. Density functional theory study on the structure and properties of CoBen(n=1—12) clusters. Acta Physica Sinica, 2007, 56(6): 3219-3226. doi: 10.7498/aps.56.3219
    [16] Zhao Wen-Jie, Yang Zhi, Yan Yu-Li, Lei Xue-Ling, Ge Gui-Xian, Wang Qing-Lin, Luo You-Hua. Ground-state structures and magnetisms of GenFe(n=1—8) clusters: The density functional investigations. Acta Physica Sinica, 2007, 56(5): 2596-2602. doi: 10.7498/aps.56.2596
    [17] Chen Yu-Hong, Zhang Cai-Rong, Ma Jun. Density functional theory study on the structure and properties of MgmBn(m=1,2;n=1—4) clusters. Acta Physica Sinica, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [18] Chen Zhong-Jun, Xiao Hai-Yan, Zu Xiao-Tao. Density functional theory investigation on structural properties of MgS crystal. Acta Physica Sinica, 2005, 54(11): 5301-5307. doi: 10.7498/aps.54.5301
    [19] Cai Jian-Qiu, Tao Xiang-Ming, Chen Wen-Bin, Zhao Xin-Xin, Tan Ming-Qiu. Density functional theory study on the atomic structure and electronic states of Cu(100) (2×22)R45°-O surface. Acta Physica Sinica, 2005, 54(11): 5350-5355. doi: 10.7498/aps.54.5350
    [20] TONG HONG-YONG, GU MU, TANG XUE-FENG, LIANG LING, YAO MING-ZHEN. ELECTRONIC STRUCTURES OF PbWO4 CRYSTAL CALCULATED IN TERMS OF DENSITY FUNCTIONAL THEORY. Acta Physica Sinica, 2000, 49(8): 1545-1549. doi: 10.7498/aps.49.1545
Metrics
  • Abstract views:  222
  • PDF Downloads:  9
  • Cited By: 0
Publishing process
  • Received Date:  16 July 2024
  • Accepted Date:  05 December 2024
  • Available Online:  19 December 2024
  • Published Online:  05 February 2025

/

返回文章
返回