Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ta2O5 980/1550 nm wavelength multiplexer/demultiplexer based on segmented cascaded multimode interference

HE Xiwen MA Deyue ZHANG Zheng WANG Rongping LIU Jiqiao CHEN Weibiao ZHOU Zhiping

Citation:

Ta2O5 980/1550 nm wavelength multiplexer/demultiplexer based on segmented cascaded multimode interference

HE Xiwen, MA Deyue, ZHANG Zheng, WANG Rongping, LIU Jiqiao, CHEN Weibiao, ZHOU Zhiping
cstr: 32037.14.aps.74.20241243
PDF
HTML
Get Citation
  • On-chip erbium-doped/erbium-ytterbium co-doped waveguide amplifiers (EDWAs/EYCDWAs) have received extensive research attention in recent years. However, there has been relatively little research on integrated wavelength division multiplexing/demultiplexing devices for 980-nm pump light and 1550-nm signal light. This work aims to propose a compact Ta2O5 diplexer for 980/1550-nm wavelengths based on multimode interference effects. The device utilizes a structure that combines symmetric interference with a cascaded paired interference design, thereby reducing the total length of the segmented multimode interference waveguide to one-third that of a conventional paired multimode interference waveguide. This is achieved without using any complex structure, such as subwavelength gratings, to adjust the beat length of the pump and signal light. The three-dimensional finite difference time domain (3D-FDTD) tool is used to analyze and optimize the established model. The results demonstrate that the designed MMI diplexer has low insertion loss and high process tolerance, with an insertion loss of 0.4 dB at 980 nm and 0.8 dB at 1550 nm, and that the extinction ratios are both better than 16 dB. Moreover, the 1 dB bandwidth reaches up to 150 nm near the 1550 nm wavelength and up to 70 nm near the 980 nm wavelength. The segmented structure designed in this work greatly reduces both the difficulty in designing the MMI devices and the overall size of 980/1550 nm wavelength division multiplexers/demultiplexers. It is expected to be applied to on-chip integrated erbium-doped waveguide amplifiers and lasers. In addition, the segmented design method of cascading the hybrid multimode interference mechanism provides a technical reference for separating two optical signals with long center wavelengths such as 800/1310 nm and 1550/2000 nm, and has potential application value in communication and mid infrared diplexing devices.
      Corresponding author: ZHOU Zhiping, zjzhou@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62035001), the International Partnership Program of Chinese Academy of Sciences (Grant No. 18123KYSB20210013), and the Shanghai Science and Technology Innovation Action Plan, China (Grant No. 22dz208700).
    [1]

    Shekhar S, Bogaerts W, Chrostowski L, Bowers J E, Hochberg M, Soref R, Shastri B J 2024 Nat. Commun. 15 751Google Scholar

    [2]

    Gao D S, Zhou Z P 2022 Front. Optoelectron. 15 27Google Scholar

    [3]

    Zhou Z P, Chen W B, He X W, Ma D Y 2023 IEEE Photonics J. 16 0600109

    [4]

    Wang B, Zhou P Q, Wang X J, He Y D 2022 Sci. China Inf. Sci. 65 162405Google Scholar

    [5]

    Liu Y, Qiu Z R, Ji X R, Lukashchuk A, He J J, Riemensberger J, Hafermann M, Wang R N, Liu J Q, Ronning C, Kippenberg T J 2022 Science 376 1309Google Scholar

    [6]

    Bonneville D B, Frankis H C, Wang R J, Bradley J D 2020 Opt. Express 28 30130Google Scholar

    [7]

    Rönn J, Zhang W W, Autere A, et al 2019 Nat. Commun. 10 432Google Scholar

    [8]

    Mu J F, Dijkstra M, Korterik J, Offerhaus H, García-Blanco S M 2020 Photonics Res. 8 1634Google Scholar

    [9]

    Liang Y T, Zhou J X, Liu Z X, Zhang H S, Fang Z W, Zhou Y, Yin D D, Lin J T, Yu J P, Wu R B, Wang M, Cheng Y 2022 Nanophotonics 11 1033Google Scholar

    [10]

    Zhang Z H, Li S M, Gao R H, Zhang H S, Lin J T, Fang Z W, Wu R B, Wang M, Wang Z H, Hang Y, Cheng Y 2023 Opt. Lett. 48 4344Google Scholar

    [11]

    Kik P, Polman A 1998 MRS. Bull. 23 48

    [12]

    Liu Y, Qiu Z R, Ji X R, Bancora A, Lihachev G, Riemensberger J, Wang R N, Voloshin A, Kippenberg T J 2024 Nat. Photonics 18 829Google Scholar

    [13]

    Qiu Z R, Ji X R, Liu Y, Hafermann M, Kim T, Olson J C, Ning W R, Ronning C, Kippenberg T J 2024 Optical Fiber Communication Conference San Diego, March 24–28, 2024 pM4A.5

    [14]

    Bonneville D B, Osornio-Martinez C E, Dijkstra M, García-Blanco S M 2024 Opt. Express 32 15527Google Scholar

    [15]

    Bao R, Fang Z W, Liu J, Liu Z X, Chen J M, Wang M, Wu R B, Zhang H S, Cheng Y 2024 Laser Photonics Rev. 19 2400765

    [16]

    Zhang Z, Liu R X, Wang W, Yan K L, Yang Z, Song M Z, Wu D D, Xu P P, Wang X S, Wang R P 2023 Opt. Lett. 48 5799Google Scholar

    [17]

    Subramanian A Z, Murugan G S, Zervas M N, Wilkinson J S 2012 J. Lightwave Technol. 30 1455Google Scholar

    [18]

    Mu J F, Vázquez-Córdova S A, Sefunc M A, Yong Y S, García-Blanco S M 2016 J. Lightwave Technol. 34 3603Google Scholar

    [19]

    Paiam M, Janz C, MacDonald R, Broughton J 1995 IEEE Photonics Technol. Lett. 7 1180Google Scholar

    [20]

    Han X Y, Pang F F, Cai H W, Qu R H, Fang Z J 2008 Optik 119 69Google Scholar

    [21]

    Yang Y D, Li Y, Huang Y Z, Poon A W 2014 Opt. Express 22 22172Google Scholar

    [22]

    He J H, Zhang M, Liu D J, Bao Y X, Li C L, Pan B H, Huang Y S, Yu Z J, Liu L, Shi Y C, Dai D X 2024 Nanophotonics 13 85Google Scholar

    [23]

    Weissman Z, Nir D, Ruschin S, Hardy A 1995 Appl. Phys. Lett. 67 302Google Scholar

    [24]

    Bucci D, Grelin J, Ghibaudo E, Broquin J E 2007 IEEE Photonics Tech. Lett. 19 698Google Scholar

    [25]

    Onestas L, Bucci D, Ghibaudo E, Broquin J E 2011 IEEE Photonics Tech. Lett. 23 648Google Scholar

    [26]

    Chen S T, Fu X, Wang J, Shi Y C, He S L, Dai D X 2015 J. Lightwave Technol. 33 2279Google Scholar

    [27]

    Sabri L, Nabki F, Ménard M 2024 Opt. Express 32 10660Google Scholar

    [28]

    Pathak S, Dumon P, Van Thourhout D, Bogaerts W 2014 IEEE Photonics J. 6 1

    [29]

    Paśnikowska A, Stopiński S, Kaźmierczak A, Piramidowicz R 2023 J. Lightwave Technol. 42 2371

    [30]

    Liu L, Deng Q Z, Zhou Z P 2017 IEEE Photonics Technol. Lett. 29 1927Google Scholar

    [31]

    Zhang S C, Ji W, Yin R, Li X, Gong Z S, Lv L Y 2017 IEEE Photonics Technol. Lett. 30 107

    [32]

    Han J L, Bao R, Wu R B, Liu Z X, Wang Z, Sun C, Zhang Z H, Li M Q, Fang Z W, Wang M, Zhang H S, Cheng Y 2024 Nanophotonics 13 2839

    [33]

    Belt M, Davenport M L, Bowers J E, Blumenthal D J 2017 Optica 4 532Google Scholar

    [34]

    Zhang C, Chen L, Lin Z L, Song J, Wang D Y, Li M X, Koksal O, Wang Z, Spektor G, Carlson D R, J Lezec H, Zhu W Q, Papp S B, Agrawal A 2024 Light Sci. Appl. 13 23Google Scholar

    [35]

    Black J A, Streater R, Lamee K F, Carlson D R, Yu S P, Papp S B 2021 Opt. Lett. 46 817Google Scholar

    [36]

    Dorche A E, Nader N, Stanton E J, Nam S W, Mirin R P 2023 Optical Fiber Communication Conference San Diego, March 05–09, 2023 pTu3C-6

    [37]

    Bankwitz J R, Wolff M A, Abazi A S, Piel P M, Jin L, Pernice W H, Wurstbauer U, Schuck C 2023 Opt. Lett. 48 5783Google Scholar

    [38]

    Splitthoff L, Wolff M A, Grottke T, Schuck C 2020 Opt. Express 28 11921Google Scholar

    [39]

    李赵一, 范作文, 丛庆宇, 周敬杰, 曾宪峰, 郑少南, 董渊, 胡挺, 钟其泽, 贾连希 2023 光通信研究 3 53

    Li Z Y, Fan Z W, Cong Q Y, Zhou J J, Zeng X F, Zheng S N, Dong Y, Hu T, Zhong Q Z, Jia L X 2023 Study on Optical Communications 3 53

    [40]

    汪静丽, 陈子玉, 陈鹤鸣 2020 物理学报 69 054206Google Scholar

    Wang J L, Chen Z Y, Chen H M 2020 Acta Phys. Sin. 69 054206Google Scholar

  • 图 1  泵浦光和信号光的拍长比与多模波导宽度规律 曲线

    Figure 1.  Relationship curve between beat length ratio ($ q/p $) and multimode waveguide width.

    图 2  分段多模干涉耦合器结构示意图

    Figure 2.  Schematic diagram of two-section multimode interference coupler.

    图 3  分段MMI的光场分布图 (a) 1550 nm; (b) 980 nm

    Figure 3.  The field distributions of the two-section MMI: (a) 1550 nm; (b) 980 nm.

    图 4  分段MMI的传输谱线图 (a) 1550 nm波段的IL/CT; (b) 980 nm波段的IL/CT

    Figure 4.  Transmission spectrum of the two-section MMI: (a) IL/CT in 1550 nm band; (b) IL/CT in 980 nm band.

    图 5  性能参数随薄膜厚度的变化 (a) IL; (b) CT

    Figure 5.  Performances with vary film thickness: (a) IL; (b) CT.

    图 6  性能参数随第 1 级MMI结构参数的变化 (a) $ W_{{\mathrm{M1}}} $; (b) $ L_{{\mathrm{M1}}} $

    Figure 6.  Performances with vary 1 st level MMI structural parameters: (a) $ W_{{\mathrm{M1}}} $; (b) $ L_{{\mathrm{M1}}} $.

    图 7  性能参数随第 2 级MMI结构参数的变化 (a) $ W_{{\mathrm{M2}}} $; (b) $ L_{{\mathrm{M2}}} $

    Figure 7.  Performances with vary 2 nd level MMI structural parameters: (a) $ W_{{\mathrm{M2}}} $; (b) $ L_{{\mathrm{M2}}} $.

    表 1  不同干涉机制MMI的输入条件和成像位置[39]

    Table 1.  Input conditions and imaging positions of MMI with different interference mechanisms[39].

    一般干涉 配对干涉 对称干涉
    输入 × 输出 N × N 2 × N 1 × N
    第1个单重像位置 $ 3 L_{\text{π}} $ $ L_{\text{π}}$ $ 3L_{\text{π}}/4 $
    第1个N重像位置 $ 3 L_{\text{π}}/N $ $ L_{\text{π}}/N $ $ 3 L_{\text{π}}/(4 N) $
    限制条件 $ C_{{\rm{\nu}}} = 0,~~ \nu = 2, 5, 8\cdots $ $ C_{{\rm{\nu}}} = 0, ~~\nu = 1, 3, 5\cdots$
    输入位置 任意 $ \pm W_{{\rm{e}}}/6 $ 0
    DownLoad: CSV
  • [1]

    Shekhar S, Bogaerts W, Chrostowski L, Bowers J E, Hochberg M, Soref R, Shastri B J 2024 Nat. Commun. 15 751Google Scholar

    [2]

    Gao D S, Zhou Z P 2022 Front. Optoelectron. 15 27Google Scholar

    [3]

    Zhou Z P, Chen W B, He X W, Ma D Y 2023 IEEE Photonics J. 16 0600109

    [4]

    Wang B, Zhou P Q, Wang X J, He Y D 2022 Sci. China Inf. Sci. 65 162405Google Scholar

    [5]

    Liu Y, Qiu Z R, Ji X R, Lukashchuk A, He J J, Riemensberger J, Hafermann M, Wang R N, Liu J Q, Ronning C, Kippenberg T J 2022 Science 376 1309Google Scholar

    [6]

    Bonneville D B, Frankis H C, Wang R J, Bradley J D 2020 Opt. Express 28 30130Google Scholar

    [7]

    Rönn J, Zhang W W, Autere A, et al 2019 Nat. Commun. 10 432Google Scholar

    [8]

    Mu J F, Dijkstra M, Korterik J, Offerhaus H, García-Blanco S M 2020 Photonics Res. 8 1634Google Scholar

    [9]

    Liang Y T, Zhou J X, Liu Z X, Zhang H S, Fang Z W, Zhou Y, Yin D D, Lin J T, Yu J P, Wu R B, Wang M, Cheng Y 2022 Nanophotonics 11 1033Google Scholar

    [10]

    Zhang Z H, Li S M, Gao R H, Zhang H S, Lin J T, Fang Z W, Wu R B, Wang M, Wang Z H, Hang Y, Cheng Y 2023 Opt. Lett. 48 4344Google Scholar

    [11]

    Kik P, Polman A 1998 MRS. Bull. 23 48

    [12]

    Liu Y, Qiu Z R, Ji X R, Bancora A, Lihachev G, Riemensberger J, Wang R N, Voloshin A, Kippenberg T J 2024 Nat. Photonics 18 829Google Scholar

    [13]

    Qiu Z R, Ji X R, Liu Y, Hafermann M, Kim T, Olson J C, Ning W R, Ronning C, Kippenberg T J 2024 Optical Fiber Communication Conference San Diego, March 24–28, 2024 pM4A.5

    [14]

    Bonneville D B, Osornio-Martinez C E, Dijkstra M, García-Blanco S M 2024 Opt. Express 32 15527Google Scholar

    [15]

    Bao R, Fang Z W, Liu J, Liu Z X, Chen J M, Wang M, Wu R B, Zhang H S, Cheng Y 2024 Laser Photonics Rev. 19 2400765

    [16]

    Zhang Z, Liu R X, Wang W, Yan K L, Yang Z, Song M Z, Wu D D, Xu P P, Wang X S, Wang R P 2023 Opt. Lett. 48 5799Google Scholar

    [17]

    Subramanian A Z, Murugan G S, Zervas M N, Wilkinson J S 2012 J. Lightwave Technol. 30 1455Google Scholar

    [18]

    Mu J F, Vázquez-Córdova S A, Sefunc M A, Yong Y S, García-Blanco S M 2016 J. Lightwave Technol. 34 3603Google Scholar

    [19]

    Paiam M, Janz C, MacDonald R, Broughton J 1995 IEEE Photonics Technol. Lett. 7 1180Google Scholar

    [20]

    Han X Y, Pang F F, Cai H W, Qu R H, Fang Z J 2008 Optik 119 69Google Scholar

    [21]

    Yang Y D, Li Y, Huang Y Z, Poon A W 2014 Opt. Express 22 22172Google Scholar

    [22]

    He J H, Zhang M, Liu D J, Bao Y X, Li C L, Pan B H, Huang Y S, Yu Z J, Liu L, Shi Y C, Dai D X 2024 Nanophotonics 13 85Google Scholar

    [23]

    Weissman Z, Nir D, Ruschin S, Hardy A 1995 Appl. Phys. Lett. 67 302Google Scholar

    [24]

    Bucci D, Grelin J, Ghibaudo E, Broquin J E 2007 IEEE Photonics Tech. Lett. 19 698Google Scholar

    [25]

    Onestas L, Bucci D, Ghibaudo E, Broquin J E 2011 IEEE Photonics Tech. Lett. 23 648Google Scholar

    [26]

    Chen S T, Fu X, Wang J, Shi Y C, He S L, Dai D X 2015 J. Lightwave Technol. 33 2279Google Scholar

    [27]

    Sabri L, Nabki F, Ménard M 2024 Opt. Express 32 10660Google Scholar

    [28]

    Pathak S, Dumon P, Van Thourhout D, Bogaerts W 2014 IEEE Photonics J. 6 1

    [29]

    Paśnikowska A, Stopiński S, Kaźmierczak A, Piramidowicz R 2023 J. Lightwave Technol. 42 2371

    [30]

    Liu L, Deng Q Z, Zhou Z P 2017 IEEE Photonics Technol. Lett. 29 1927Google Scholar

    [31]

    Zhang S C, Ji W, Yin R, Li X, Gong Z S, Lv L Y 2017 IEEE Photonics Technol. Lett. 30 107

    [32]

    Han J L, Bao R, Wu R B, Liu Z X, Wang Z, Sun C, Zhang Z H, Li M Q, Fang Z W, Wang M, Zhang H S, Cheng Y 2024 Nanophotonics 13 2839

    [33]

    Belt M, Davenport M L, Bowers J E, Blumenthal D J 2017 Optica 4 532Google Scholar

    [34]

    Zhang C, Chen L, Lin Z L, Song J, Wang D Y, Li M X, Koksal O, Wang Z, Spektor G, Carlson D R, J Lezec H, Zhu W Q, Papp S B, Agrawal A 2024 Light Sci. Appl. 13 23Google Scholar

    [35]

    Black J A, Streater R, Lamee K F, Carlson D R, Yu S P, Papp S B 2021 Opt. Lett. 46 817Google Scholar

    [36]

    Dorche A E, Nader N, Stanton E J, Nam S W, Mirin R P 2023 Optical Fiber Communication Conference San Diego, March 05–09, 2023 pTu3C-6

    [37]

    Bankwitz J R, Wolff M A, Abazi A S, Piel P M, Jin L, Pernice W H, Wurstbauer U, Schuck C 2023 Opt. Lett. 48 5783Google Scholar

    [38]

    Splitthoff L, Wolff M A, Grottke T, Schuck C 2020 Opt. Express 28 11921Google Scholar

    [39]

    李赵一, 范作文, 丛庆宇, 周敬杰, 曾宪峰, 郑少南, 董渊, 胡挺, 钟其泽, 贾连希 2023 光通信研究 3 53

    Li Z Y, Fan Z W, Cong Q Y, Zhou J J, Zeng X F, Zheng S N, Dong Y, Hu T, Zhong Q Z, Jia L X 2023 Study on Optical Communications 3 53

    [40]

    汪静丽, 陈子玉, 陈鹤鸣 2020 物理学报 69 054206Google Scholar

    Wang J L, Chen Z Y, Chen H M 2020 Acta Phys. Sin. 69 054206Google Scholar

  • [1] Cao Ruo-Lin, Peng Qing-Xuan, Wang Jin-Dong, Chen Yong-Jie, Huang Yun-Fei, Yu Ya-Fei, Wei Zheng-Jun, Zhang Zhi-Ming. Real-time polarization compensation system for wavelength division multiplexing in low noise fiber channel based on single photon counting feedback. Acta Physica Sinica, 2022, 71(13): 130306. doi: 10.7498/aps.71.20220120
    [2] Sang Di, Xu Ming-Feng, An Qiang, Fu Yun-Qi. Freeform wavelength division multiplexing metagrating based on topology optimization. Acta Physica Sinica, 2022, 71(22): 224204. doi: 10.7498/aps.71.20221013
    [3] Wang Jing-Li, Chen Zi-Yu, Chen He-Ming. Design of polarization-insensitive 1 × 2 multimode interference demultiplexer based on Si3N4/SiNx/Si3N4 sandwiched structure. Acta Physica Sinica, 2020, 69(5): 054206. doi: 10.7498/aps.69.20191449
    [4] Ying Kang, Gui You-Zhen, Sun Yan-Guang, Cheng Nan, Xiong Xiao-Feng, Wang Jia-Liang, Yang Fei, Cai Hai-Wen. Key technology of high-precision time frequency transfer via 200 km desert urban fiber link. Acta Physica Sinica, 2019, 68(6): 060602. doi: 10.7498/aps.68.20182000
    [5] Li Ning, Lü Xiao-Jing, Jing Weng. Laser intensity and absorbance measurements by tunable diode laser absorption spectroscopy based on non-line fitting algorithm. Acta Physica Sinica, 2018, 67(5): 057801. doi: 10.7498/aps.67.20171905
    [6] Du Bing-Zheng, Zhu Jing-Ping, Mao Yu-Zheng, Liu Hong, Wang Kai, Hou Xun. Effects of Bragg periods per grating period on performance of Bragg concave diffraction grating. Acta Physica Sinica, 2017, 66(22): 224202. doi: 10.7498/aps.66.224202
    [7] Xiao Jin-Biao, Wang Deng-Feng. Full-vectorial analysis of a silicon-based multimode interference mode-order converter for slot waveguide nanowires. Acta Physica Sinica, 2017, 66(7): 074203. doi: 10.7498/aps.66.074203
    [8] Cui Lu, Tang Yi, Zhu Qing-Wei, Luo Jia-Bin, Hu Shan-Shan. Analysis of channel crosstalk in muliti-spectrum visible light communication system. Acta Physica Sinica, 2016, 65(9): 094208. doi: 10.7498/aps.65.094208
    [9] Li Bao, Du Bing-Zheng, Zhu Jing-Ping. Study on planar concave diffraction grating with Bragg reflector facets. Acta Physica Sinica, 2015, 64(15): 154211. doi: 10.7498/aps.64.154211
    [10] Wang Guang-Yi, Yuan Fang. Cascade chaos and its dynamic characteristics. Acta Physica Sinica, 2013, 62(2): 020506. doi: 10.7498/aps.62.020506
    [11] Zhong Kai, Yao Jian-Quan, Xu De-Gang, Zhang Hui-Yun, Wang Peng. Theoretical research on cascaded difference frequency generation of terahertz radiation. Acta Physica Sinica, 2011, 60(3): 034210. doi: 10.7498/aps.60.034210
    [12] Zou Jian-Long, Ma Xi-Kui. Analysis of coupling nonlinear dynamical behaviors between two stages in a cascade power-factor-correction converter. Acta Physica Sinica, 2010, 59(6): 3794-3801. doi: 10.7498/aps.59.3794
    [13] Ye Tao, Xu Xu-Ming. The design and optimization of high efficiency heterostructure four-wavelength wavelength division multiplexing. Acta Physica Sinica, 2010, 59(9): 6273-6278. doi: 10.7498/aps.59.6273
    [14] Zhang Jian-Zhong, Wang An-Bang, Wang Yun-Cai. Wavelength division multiplexing of chaotic optical communication and OC-48 fiber communication. Acta Physica Sinica, 2009, 58(6): 3793-3798. doi: 10.7498/aps.58.3793
    [15] Li Qi-Liang, Sun Li-Li, Chen Jun-Lang, Li Qing-Shan, Tang Xiang-Hong, Qian Sheng, Lin Li-Bin. Theoretical analysis of cross-phase modulational sideband instability in wavelength-division multiplexed system with periodic dispersion managed fiber links. Acta Physica Sinica, 2007, 56(2): 805-810. doi: 10.7498/aps.56.805
    [16] Yu Tian-Bao, Wang Ming-Hua, Jiang Xiao-Qing, Yang Jian-Yi. Coupling characteristics of electromagnetic waves in parallel three photonic crystal waveguides and its application. Acta Physica Sinica, 2006, 55(4): 1851-1856. doi: 10.7498/aps.55.1851
    [17] Qin Xiao-Yun, Huang Bi-Qin, Chen Hai-Xing, Yang Li-Gong, Gu Pei-Fu. Wavelength demultiplexer using the spatial dispersion of repeated-period double-chirped structures*. Acta Physica Sinica, 2004, 53(11): 3794-3799. doi: 10.7498/aps.53.3794
    [18] Li Cheng-Ren, Song Chang-Lie, Rao Wen-Xiong, Li Shu-Feng. Experimental investigation of photoluminescence spectrum of two erbium-doped glass samples in series. Acta Physica Sinica, 2003, 52(3): 751-755. doi: 10.7498/aps.52.751
    [19] LIU XUE-MING, ZHANG MING-DE, SUN XIAO-HAN, LIU LIN. A NOVEL ALL-OPTICAL SWITCH BASED ON THE CASCADING OF SECOND-ORDER NONLINEARITY. Acta Physica Sinica, 2001, 50(2): 287-292. doi: 10.7498/aps.50.287
    [20] LIU XUE-MING, LIU LING, SUN XIAO-HAN, ZHANG MING-DE. THEORETICAL ANALYSIS OF WAVELENGTH CONVERSION FOR CASCADING SECOND-ORDER NONLINE ARITIES IN SILICA FIBER. Acta Physica Sinica, 2000, 49(9): 1792-1797. doi: 10.7498/aps.49.1792
Metrics
  • Abstract views:  474
  • PDF Downloads:  18
  • Cited By: 0
Publishing process
  • Received Date:  05 September 2024
  • Accepted Date:  03 December 2024
  • Available Online:  10 December 2024
  • Published Online:  20 January 2025

/

返回文章
返回