Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical analysis and performance optimization of Cs2AgBiI6 solar cells with dual hole transport layers

WANG Jiwei TIAN Hanmin WANG Yuerong CAO Rui XU Wu

Citation:

Theoretical analysis and performance optimization of Cs2AgBiI6 solar cells with dual hole transport layers

WANG Jiwei, TIAN Hanmin, WANG Yuerong, CAO Rui, XU Wu
cstr: 32037.14.aps.74.20241361
PDF
HTML
Get Citation
  • Double perovskite materials have received significant attention in the photovoltaic field due to their low cost, environmental friendliness, and lead-free composition, which make them ideal candidates for next-generation solar cell applications. In this work, the photovoltaic performance of solar cells using Cs2AgBiI6 as the light-absorbing layer is systematically investigated through simulations using Silvaco ATLAS software. Based on the previously reported single hole transport layer device architecture, namely ITO/ZnO/Cs2AgBiI6/HTL/Au, a new dual hole transport layer structure ITO/ZnO/Cs2AgBiI6/HTL1/HTL2/Au is proposed. Different dual hole transport layer combinations are explored, and their influence on the internal physical mechanism and the device performance are analyzed and optimized in detail. The simulation results show that the devices using Cu2O/NiO and NiO/Si respectively as dual hole transport layer significantly improve charge extraction and generate a negative electric field at the interface, thereby reducing recombination losse and accelerating the transport of hole carriers. These two configurations exhibit substantially higher efficiencies than those configurations with a single hole transport layer, confirming the advantages of the dual hole transport layer structure. Additionally, devices using Cu2O/CZTS and MoO3/CZTS as dual hole transport layer show better performance than the reference structure using Spiro-OMeTAD/CZTS, indicating the potential for further improvement by optimizing material selection and layer properties. Of the various dual hole transport layer combinations tested, the structure utilizing Cu2O/CZTS achieves the highest simulated power conversion efficiency (PCE) of 22.85%. By optimizing the thickness of each functional layer, the efficiency can be further increased to 25.62%, and the optimal layer thickness is determined to be 40 nm for ZnO, 850 nm for Cs2AgBiI6, 140 nm for Cu2O, and 150 nm for CZTS. Furthermore, the effects of environmental and material parameters, such as temperature and hole transport layer doping concentration, on device performance are investigated. This study lays a theoretical foundation for the design and enhancement of double perovskite solar cells. By demonstrating the potential that the dual hole transport layer structures can significantly improve device efficiency, their value in advancing environmentally friendly and lead-free photovoltaic technologies becomes very prominent. The insights gained from this research pave the way for developing high-performance double perovskite solar cells with optimized architectures and material properties.
      Corresponding author: TIAN Hanmin, tianhanmin@hebut.edu.cn
    [1]

    Hasan S A U, Zahid M A, Park S, Yi J 2024 Sol. RRL 8 2300967Google Scholar

    [2]

    Cheng M, Jiang J, Yan C, Lin Y, Mortazavi M, Kaul A B, Jiang Q 2024 Nanomaterials 14 391Google Scholar

    [3]

    Liu H R, Zhang Z H, Yang F, Yang J E, Grace A N, Li J M, Tripathi S, Jain S M 2021 Coatings 11 1045Google Scholar

    [4]

    Machin A, Marquez F 2024 Materials 17 1165Google Scholar

    [5]

    万婷婷, 朱安康, 郭友敏, 汪春昌 2017 材料导报 31 16Google Scholar

    Wan T T, Zhu A K, Guo Y M, Wang C C 2017 Mater. Rev. 31 16Google Scholar

    [6]

    Zhai M, Chen C, Cheng M 2023 Sol. Energy 253 563Google Scholar

    [7]

    Meyer E, Mutukwa D, Zingwe N, Taziwa R 2018 Metals 8 667Google Scholar

    [8]

    Yuan Y, Yan G, Hong R, Liang Z, Kirchartz T 2022 Adv. Mater. 34 2108132Google Scholar

    [9]

    Zhao X G, Yang J H, Fu Y, Yang D, Xu Q, Yu L, Wei S H, Zhang L 2017 J. Am. Chem. Soc. 139 2630Google Scholar

    [10]

    Ji F, Boschloo G, Wang F, Gao F 2023 Sol. RRL 7 2201112Google Scholar

    [11]

    chrafih Y, Al Hattab M, Rahmani K 2023 J. Alloys Compd. 960 170650Google Scholar

    [12]

    Amraoui S, Feraoun A, Kerouad M 2022 Inorg. Chem. Commun. 140 109395Google Scholar

    [13]

    Slavney A H, Hu T, Lindenberg A M, Karunadasa H I 2016 J. Am. Chem. Soc. 138 2138Google Scholar

    [14]

    Huang Q, Liu J, Qi F, Pu Y, Zhang N, Yang J, Liang Z, Tian C 2023 J. Environ. Chem. Eng. 11 109960Google Scholar

    [15]

    Creutz S E, Crites E N, De Siena M C, Gamelin D R 2018 Nano Lett. 18 1118Google Scholar

    [16]

    Rehman M A, Ur Rehman J, Tahir M B 2023 J. Phys. Chem. Solids. 181 111443Google Scholar

    [17]

    Yadav S C, Srivastava A, Manjunath V, Kanwade A, Devan R S, Shirage P M 2022 Mater. Today Phys. 26 100731Google Scholar

    [18]

    Volonakis G, Filip M R, Haghighirad A A, Sakai N, Wenger B, Snaith H J, Giustino F 2016 J. Phys. Chem. Lett. 7 1254Google Scholar

    [19]

    Igbari F, Wang R, Wang Z K, Ma X J, Wang Q, Wang K L, Zhang Y, Liao L S, Yang Y 2019 Nano Lett. 19 2066Google Scholar

    [20]

    Hossain M K, Samajdar D P, Das R C, Arnab A A, Rahman M F, Rubel M H K, Islam M R, Bencherif H, Pandey R, Madan J, Mohammed M K A 2023 Energy Fuels 37 3957Google Scholar

    [21]

    Alla M, Manjunath V, Choudhary E, Samtham M, Sharma S, Shaikh P A, Rouchdi M, Fares B 2023 Phys. Status Solidi A 220 2200642Google Scholar

    [22]

    Zarabinia N, Rasuli R 2021 Energy Sources Part A 43 2443Google Scholar

    [23]

    Chen Q M, Ni Y, Dou X M, Yoshinori Y 2022 Crystals 12 68Google Scholar

    [24]

    Azadinia M, Ameri M, Ghahrizjani R T, Fathollahi M 2021 Mater. Today Energy 20 100647Google Scholar

    [25]

    Yoon S, Kim H, Shin E Y, Bae I G, Park B, Noh Y Y, Hwang I 2016 Org. Electron. 32 200Google Scholar

    [26]

    Chen G S, Chen Y C, Lee C T, Lee H Y 2018 Sol. Energy 174 897Google Scholar

    [27]

    Dahal B, Rezaee M D, Gotame R C, Li W 2023 Mater. Today Commun. 36 106846Google Scholar

    [28]

    Kim D I, Lee J W, Jeong R H, Nam S H, Hwang K H, Boo J H 2019 Surf. Coat. Technol. 357 189Google Scholar

    [29]

    Chen Y, Zhang M, Li F Q, Yang Z Y 2023 Coatings 13 644Google Scholar

    [30]

    Islam T, Jani R, Amin S M A, Shorowordi K M, Nishat S S, Kabir A, Taufique M F N, Chowdhury S, Banerjee S, Ahmed S 2020 Comput. Mater. Sci. 184 109865Google Scholar

    [31]

    Anoop K M, Ahipa T N 2023 Sol. Energy 263 111937Google Scholar

    [32]

    Kumar A 2021 Superlattices Microstructure. 153 106872Google Scholar

    [33]

    Hossain M K, Arnab A A, Das R C, Hossain K M, Rubel M H K, Rahman M F, Bencherif H, Emetere M E, Mohammed M K A, Pandey R 2022 RSC Adv. 12 34850Google Scholar

    [34]

    Bhattarai S, Hossain M K, Pandey R, Madan J, Samajdar D P, Rahman M F, Ansari M Z, Amami M 2023 Energy Fuels 37 10631Google Scholar

  • 图 1  (a) Cs2AgBiI6单HTL钙钛矿太阳能电池; (b) Cs2AgBiI6双HTL钙钛矿太阳电池结构

    Figure 1.  Device structure of (a) Cs2AgBiI6-based single HTL perovskite solar cell and (b) Cs2AgBiI6-based dual HTLs perovskite solar cell.

    图 2  基于Cs2AgBiI6的不同单空穴传输层太阳能电池的J-V参数曲线

    Figure 2.  J-V parameter curves for different single HTL solar cells based on Cs2AgBiI6.

    图 3  基于Cs2AgBiI6的不同双空穴传输层太阳能电池的J-V参数曲线

    Figure 3.  J-V parameter curves for different dual HTLs solar cells based on Cs2AgBiI6.

    图 4  具有不同双空穴传输层的Cs2AgBiI6太阳能电池界面电场 (a) Cu2O/NiO; (b) NiO/Si; (c) MoO3/Cu2O; (d) MoO3/Spiro

    Figure 4.  Electric fields at the interfaces of Cs2AgBiI6 PSCs with different HTL combinations: (a) Cu2O/NiO; (b) NiO/Si; (c) MoO3/Cu2O; (d) MoO3/Spiro.

    图 5  具有不同双空穴传输层的Cs2AgBiI6太阳能电池复合率 (a) Cu2O/NiO; (b) NiO/Si; (c) MoO3/Cu2O, (d) MoO3/Spiro

    Figure 5.  Charge recombination rate of Cs2AgBiI6 PSCs with different HTL combinations: (a) Cu2O/NiO; (b) NiO/Si; (c) MoO3/Cu2O; (d) MoO3/Spiro.

    图 6  具有不同双空穴传输层的Cs2AgBiI6太阳能电池的能带图 (a) NiO/Si; (b) Cu2O/NiO.

    Figure 6.  Energy band diagram of Cs2AgBiI6 PSCs with different HTL combinations: (a) NiO/Si; (b) Cu2O/NiO.

    图 7  基于Cs2AgBiI6的不同HTL/CZTS双空穴传输层太阳能电池的J-V参数曲线

    Figure 7.  J-V parameter curves for different HTL/CZTS solar cells based on Cs2AgBiI6.

    图 8  Cs2AgBiI6太阳能电池中(a) Spiro/CZTS, (b) MoO3/CZTS, (c) Cu2O/CZTS双空穴传输层界面上的电场, 以及(d) Spiro/CZTS, (e) MoO3/CZTS, (f) Cu2O/CZTS双空穴传输层的复合率

    Figure 8.  Electric fields at the interfaces of Cs2AgBiI6 PSCs with different HTL combinations: (a) Spiro/CZTS; (b) MoO3/CZTS; (c) Cu2O/CZTS. Charge recombination dynamics of Cs2AgBiI6 PSCs with different HTL combinations: (d) Spiro/CZTS; (e) MoO3/ CZTS; (f) Cu2O/CZTS.

    图 9  Cu2O/CZTS双空穴传输层Cs2AgBiI6太阳能电池的能带图

    Figure 9.  Energy band diagram of Cs2AgBiI6 solar cell with Cu2O/CZTS dual hole transport layer.

    图 10  (a)电子传输层ZnO、(b)钙钛矿层Cs2AgBiI6、双空穴传输层(c) CZTS和(d) Cu2O厚度对钙钛矿太阳能电池VOC, JSC, FF和PCE的影响

    Figure 10.  Effects of thicknesses of (a) electron transport layer ZnO, (b) perovskite layer Cs2AgBiI6, (c) hole transport layer Ⅰ CZTS, (d) hole transport layer Ⅱ Cu2O on VOC, JSC, FF and PCE of dual HTLs perovskite solar cell.

    图 11  基于Cs2AgBiI6的Cu2O/CZTS钙钛矿太阳能电池优化前后J-V参数曲线

    Figure 11.  J-V parameter curves before and after optimization of Cu2O/CZTS dual HTLs perovskite solar cell based on Cs2AgBiI6.

    图 12  空穴传输层CZTS和Cu2O浓度对Cs2AgBiI6钙钛矿太阳能电池的(a) JSC, (b) VOC, (c) PCE和(d) FF的影响

    Figure 12.  Effects of the concentrations of the CZTS and Cu2O on (a) JSC, (b) VOC, (c) PCE and (d) FF of the Cs2AgBiI6 perovskite solar cell.

    图 13  电池输出参数随HTL空穴迁移率的变化

    Figure 13.  Variations of solar cell output parameters with HTL hole mobility.

    图 14  温度对Cs2AgBiI6钙钛矿太阳能电池的(a)VOC, (b) JSC, (c) PCE和(d)FF的影响  

    Figure 14.  Effects of the temperature on (a) JSC, (b) VOC, (c) PCE and (d) FF of the Cs2AgBiI6 perovskite solar cell.

    表 1  太阳能电池不同层材料的参数

    Table 1.  Device parameters for different layers of the cells.

    Parameter ZnO Cs2AgBiI6 Cu2O MoO3 CZTS Spiro-OMeTAD NiO P3HT Si
    Thickness/nm 50 800 50 50 100 200 100 50 50
    Permittivity εr 9 6.5 7.5 12.5 9 3 10.7 3 11.9
    Band gap/eV 3.3 1.6 2.17 3 1.4 2.2 3.8 1.7 1.12
    Affinity/eV 4 3.9 3.2 2.5 3.8 3 1.46 3.5 4.17
    NC/(1018 cm–3) 3.7 10.0 2.0 2.2 2.2 2.2 28.0 2000.0 250.0
    NV/(1018 cm–3) 18.0 10.0 11.0 18.0 1.8 250.0 10.0 2000.0 180.0
    ND(1018 cm–3) 1 0 0 0 0 0 0 0 0
    NA/(1015 cm–3) 0 1 1000 1000 10000 1000 1000 1000 10
    μn/(cm2·V–1·s–1) 100 2 200 25 100 2×10–4 12 1.8×10–3 1500
    μp/(cm2·V–1·s–1) 25 2 80 100 12.5 2×10–4 2.8 1.86×10–2 480
    DownLoad: CSV

    表 2  不同单空穴传输层电池的输出参数

    Table 2.  Performance parameters of PSCs with various HTLs.

    电池结构 VOC/V JSC/(mA·cm–2) PCE/% FF/%
    FTO/ZnO/Cs2AgBiI6/Cu2O/Au 1.096 23.02 21.17 83.91
    FTO/ZnO/Cs2AgBiI6/MoO3/Au 1.097 23.01 21.16 83.83
    FTO/ZnO/Cs2AgBiI6/CZTS/Au 1.088 22.07 20.00 83.29
    FTO/ZnO/Cs2AgBiI6/Spiro/Au 1.095 23.08 20.14 79.69
    FTO/ZnO/Cs2AgBiI6/NiO/Au 1.095 23.00 20.64 82.10
    FTO/ZnO/Cs2AgBiI6/P3HT/Au 1.070 23.04 17.91 72.65
    FTO/ZnO/Cs2AgBiI6/Si/Au 1.055 22.00 17.18 74.02
    ITO/ZnO/Cs2AgBiI6/Spiro/Au[34] 1.08 24.20 21.72 83.14
    ITO/ZnO/Cs2AgBiI6/Spiro/Au[33] 1.08 23.74 20.31 79.28
    DownLoad: CSV

    表 3  不同双空穴传输层电池的输出参数

    Table 3.  Performance parameters of PSCs with dual HTLs.

    Device structures VOC/V JSC/(mA·cm–2) PCE/% FF/%
    FTO/ZnO/Cs2AgBiI6/Cu2O/NiO/Au 1.098 23.19 21.39 83.46
    FTO/ZnO/Cs2AgBiI6/NiO/Si/Au 1.093 23.05 20.71 82.21
    FTO/ZnO/Cs2AgBiI6/MoO3/Cu2O/Au 1.097 22.9 21.13 83.44
    FTO/ZnO/Cs2AgBiI6/MoO3/Spiro/Au 1.097 23.96 21.12 83.77
    DownLoad: CSV

    表 4  不同HTL/CZTS双空穴传输层电池的输出参数

    Table 4.  Performance parameters of PSCs with HTL/CZTS.

    Device structures VOC/V JSC/(mA·cm–2) PCE/% FF/%
    FTO/ZnO/Cs2AgBiI6/Spiro/CZTS/Au 1.1 24.73 22.62 83.15
    FTO/ZnO/Cs2AgBiI6/Cu2O/CZTS/Au 1.1 24.89 22.85 83.46
    FTO/ZnO/Cs2AgBiI6/MoO3/CZTS/Au 1.1 24.83 22.79 83.44
    DownLoad: CSV

    表 5  正交实验中Cu2O和CZTS作为HTL的太阳能电池性能参数

    Table 5.  Performance parameters of PSCs with Cu2O and CZTS as HTL in orthogonal experiments.

    Experiment No. Thickness/nm VOC/V JSC/(mA·cm–2) PCE/% FF/%
    ZnO Cs2AgBiI6 CZTS Cu2O
    1 40 850 150 140 1.103 28.31 25.62 82.05
    2 40 900 170 150 1.100 28.36 25.46 81.61
    3 40 950 160 160 1.098 28.37 25.25 81.06
    4 50 850 170 160 1.102 27.92 25.26 82.10
    5 50 900 160 140 1.101 28.10 25.21 81.49
    6 50 950 150 150 1.098 28.09 25.01 81.09
    7 60 850 160 150 1.103 27.80 25.15 82.02
    8 60 900 150 160 1.100 27.56 24.75 81.64
    9 60 950 170 140 1.098 28.30 25.15 80.94
    DownLoad: CSV
  • [1]

    Hasan S A U, Zahid M A, Park S, Yi J 2024 Sol. RRL 8 2300967Google Scholar

    [2]

    Cheng M, Jiang J, Yan C, Lin Y, Mortazavi M, Kaul A B, Jiang Q 2024 Nanomaterials 14 391Google Scholar

    [3]

    Liu H R, Zhang Z H, Yang F, Yang J E, Grace A N, Li J M, Tripathi S, Jain S M 2021 Coatings 11 1045Google Scholar

    [4]

    Machin A, Marquez F 2024 Materials 17 1165Google Scholar

    [5]

    万婷婷, 朱安康, 郭友敏, 汪春昌 2017 材料导报 31 16Google Scholar

    Wan T T, Zhu A K, Guo Y M, Wang C C 2017 Mater. Rev. 31 16Google Scholar

    [6]

    Zhai M, Chen C, Cheng M 2023 Sol. Energy 253 563Google Scholar

    [7]

    Meyer E, Mutukwa D, Zingwe N, Taziwa R 2018 Metals 8 667Google Scholar

    [8]

    Yuan Y, Yan G, Hong R, Liang Z, Kirchartz T 2022 Adv. Mater. 34 2108132Google Scholar

    [9]

    Zhao X G, Yang J H, Fu Y, Yang D, Xu Q, Yu L, Wei S H, Zhang L 2017 J. Am. Chem. Soc. 139 2630Google Scholar

    [10]

    Ji F, Boschloo G, Wang F, Gao F 2023 Sol. RRL 7 2201112Google Scholar

    [11]

    chrafih Y, Al Hattab M, Rahmani K 2023 J. Alloys Compd. 960 170650Google Scholar

    [12]

    Amraoui S, Feraoun A, Kerouad M 2022 Inorg. Chem. Commun. 140 109395Google Scholar

    [13]

    Slavney A H, Hu T, Lindenberg A M, Karunadasa H I 2016 J. Am. Chem. Soc. 138 2138Google Scholar

    [14]

    Huang Q, Liu J, Qi F, Pu Y, Zhang N, Yang J, Liang Z, Tian C 2023 J. Environ. Chem. Eng. 11 109960Google Scholar

    [15]

    Creutz S E, Crites E N, De Siena M C, Gamelin D R 2018 Nano Lett. 18 1118Google Scholar

    [16]

    Rehman M A, Ur Rehman J, Tahir M B 2023 J. Phys. Chem. Solids. 181 111443Google Scholar

    [17]

    Yadav S C, Srivastava A, Manjunath V, Kanwade A, Devan R S, Shirage P M 2022 Mater. Today Phys. 26 100731Google Scholar

    [18]

    Volonakis G, Filip M R, Haghighirad A A, Sakai N, Wenger B, Snaith H J, Giustino F 2016 J. Phys. Chem. Lett. 7 1254Google Scholar

    [19]

    Igbari F, Wang R, Wang Z K, Ma X J, Wang Q, Wang K L, Zhang Y, Liao L S, Yang Y 2019 Nano Lett. 19 2066Google Scholar

    [20]

    Hossain M K, Samajdar D P, Das R C, Arnab A A, Rahman M F, Rubel M H K, Islam M R, Bencherif H, Pandey R, Madan J, Mohammed M K A 2023 Energy Fuels 37 3957Google Scholar

    [21]

    Alla M, Manjunath V, Choudhary E, Samtham M, Sharma S, Shaikh P A, Rouchdi M, Fares B 2023 Phys. Status Solidi A 220 2200642Google Scholar

    [22]

    Zarabinia N, Rasuli R 2021 Energy Sources Part A 43 2443Google Scholar

    [23]

    Chen Q M, Ni Y, Dou X M, Yoshinori Y 2022 Crystals 12 68Google Scholar

    [24]

    Azadinia M, Ameri M, Ghahrizjani R T, Fathollahi M 2021 Mater. Today Energy 20 100647Google Scholar

    [25]

    Yoon S, Kim H, Shin E Y, Bae I G, Park B, Noh Y Y, Hwang I 2016 Org. Electron. 32 200Google Scholar

    [26]

    Chen G S, Chen Y C, Lee C T, Lee H Y 2018 Sol. Energy 174 897Google Scholar

    [27]

    Dahal B, Rezaee M D, Gotame R C, Li W 2023 Mater. Today Commun. 36 106846Google Scholar

    [28]

    Kim D I, Lee J W, Jeong R H, Nam S H, Hwang K H, Boo J H 2019 Surf. Coat. Technol. 357 189Google Scholar

    [29]

    Chen Y, Zhang M, Li F Q, Yang Z Y 2023 Coatings 13 644Google Scholar

    [30]

    Islam T, Jani R, Amin S M A, Shorowordi K M, Nishat S S, Kabir A, Taufique M F N, Chowdhury S, Banerjee S, Ahmed S 2020 Comput. Mater. Sci. 184 109865Google Scholar

    [31]

    Anoop K M, Ahipa T N 2023 Sol. Energy 263 111937Google Scholar

    [32]

    Kumar A 2021 Superlattices Microstructure. 153 106872Google Scholar

    [33]

    Hossain M K, Arnab A A, Das R C, Hossain K M, Rubel M H K, Rahman M F, Bencherif H, Emetere M E, Mohammed M K A, Pandey R 2022 RSC Adv. 12 34850Google Scholar

    [34]

    Bhattarai S, Hossain M K, Pandey R, Madan J, Samajdar D P, Rahman M F, Ansari M Z, Amami M 2023 Energy Fuels 37 10631Google Scholar

  • [1] Xiong Xiang-Jie, Zhong Fang, Zhang Zi-Wen, Chen Fang, Luo Jing-Lan, Zhao Yu-Qing, Zhu Hui-Ping, Jiang Shao-Long. Photovoltaic properties of two-dimensional van der Waals heterostructure Cs3X2I9/InSe (X = Bi, Sb). Acta Physica Sinica, 2024, 73(13): 137101. doi: 10.7498/aps.73.20240434
    [2] Wang Yue-Rong, Tian Han-Min, Zhang Deng-Qi, Liu Wei-Long, Ma Xu-Lei. Optimal design of Cs2AgBi0.75Sb0.25Br6 perovskite solar cells. Acta Physica Sinica, 2024, 73(2): 028802. doi: 10.7498/aps.73.20231299
    [3] Li Xue-Rui, Lin Jun-Hui, Tang Rong, Zheng Zhuang-Hao, Su Zheng-Hua, Chen Shuo, Fan Ping, Liang Guang-Xing. Back contact optimization for Sb2Se3 solar cells. Acta Physica Sinica, 2023, 72(3): 036401. doi: 10.7498/aps.72.20221929
    [4] Wang Lan, Cheng Si-Yuan, Zeng Hang-Hang, Xie Cong-Wei, Gong Yuan-Hao, Zheng Zhi, Fan Xiao-Li. Structure prediction of CuBiI ternary compound and first-principles study of photoelectric properties. Acta Physica Sinica, 2021, 70(20): 207305. doi: 10.7498/aps.70.20210145
    [5] Chen Zhuo,  Fang Lei,  Chen Yuan-Fu. Fabrication and photovoltaic performance of counter electrode of 3D porous carbon composite. Acta Physica Sinica, 2019, 68(1): 017802. doi: 10.7498/aps.68.20181833
    [6] Wu Tong, Sun Shuai-Shuai, Wang Xu-Hui, Wang Ji-Ming, He Chong-Jun, Gu Xiao-Rong, Liu You-Wen. Optimized linear wavenumber spectrometer based spectral-domain optical coherence tomography system. Acta Physica Sinica, 2018, 67(10): 104208. doi: 10.7498/aps.67.20172606
    [7] Han Ding-Ding, Yao Qing-Qing, Chen Qu, Qian Jiang-Hai. An assessment method for aviation network optimization based on time-varying small world model. Acta Physica Sinica, 2017, 66(24): 248901. doi: 10.7498/aps.66.248901
    [8] Yuan Huai-Liang, Li Jun-Peng, Wang Ming-Kui. Recent progress in research on solid organic-inorganic hybrid solar cells. Acta Physica Sinica, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [9] Wang Yun-Feng, Gu Cheng-Ming, Zhang Xiao-Hui, Wang Yu-Shun, Han Yue-Qi. Expanded four-dimensional variatiaonal data assimilation method to optimize model physical parameters. Acta Physica Sinica, 2014, 63(24): 240202. doi: 10.7498/aps.63.240202
    [10] Liu Le-Zhu, Zhang Ji-Qian, Xu Gui-Xia, Liang Li-Si, Huang Shou-Fang. A modified chaotic ant swarm optimization algorithm. Acta Physica Sinica, 2013, 62(17): 170501. doi: 10.7498/aps.62.170501
    [11] Jiang Bing-Yi, Zheng Jian-Bang, Wang Chun-Feng, Hao Juan, Cao Chong-De. Optimization of quantum dot solar cells based on structures of GaAs/InAs-GaAs/ZnSe. Acta Physica Sinica, 2012, 61(13): 138801. doi: 10.7498/aps.61.138801
    [12] Geng Jun-Jie, Zhang Jun, Zhang Yi, Ding Jian-Jun, Sun Song, Luo Zhen-Lin, Bao Jun, Gao Chen. Simulation and optimization of the cascaded luminescent solar concentrator photovoltaic system. Acta Physica Sinica, 2012, 61(3): 034201. doi: 10.7498/aps.61.034201
    [13] Wang Jian-Bo, Lu Jun. Double screen frequency selective surface structure optimized by genetic algorithm. Acta Physica Sinica, 2011, 60(5): 057304. doi: 10.7498/aps.60.057304
    [14] Zhang Chun-Tao, Ma Qian-Li, Peng Hong. Chaotic time series prediction based on information entropy optimized parameters of phase space reconstruction. Acta Physica Sinica, 2010, 59(11): 7623-7629. doi: 10.7498/aps.59.7623
    [15] Huang Yang, Dai Song-Yuan, Chen Shuang-Hong, Hu Lin-Hua, Kong Fan-Tai, Kou Dong-Xing, Jiang Nian-Quan. Model for series resistance photovoltaic performance of large-scale dye-sensitized solar cells. Acta Physica Sinica, 2010, 59(1): 643-648. doi: 10.7498/aps.59.643
    [16] Dai Cun-Li, Liu Shu-E, Tian Liang, Shi Da-Ning. Optimizing the synchronizability of generalized deactivation networks. Acta Physica Sinica, 2008, 57(8): 4800-4804. doi: 10.7498/aps.57.4800
    [17] Dai Song-Yuan, Kong Fan-Tai, Hu Lin-Hua, Shi Cheng-Wu, Fang Xia-Qin, Pan Xu, Wang Kong-Jia. Investigation on the dye-sensitized solar cell. Acta Physica Sinica, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [18] Yan Sen-Lin, Chi Ze-Ying, Chen Wen-Jian, Wang Ze-Nong. Synchronization and decoding of chaotic lasers and their optimization. Acta Physica Sinica, 2004, 53(6): 1704-1709. doi: 10.7498/aps.53.1704
    [19] LU MING-ZHU, WAN MING-XI, SHI YU. STUDY ON THE OPTIMAL FIELD PATTERN CONTROL TO THE FIELD CONJUGATE DIRECT SYNTHESIS OF PHASED-ARRAY ULTRASOUND HYPERTHERMIA. Acta Physica Sinica, 2001, 50(2): 347-353. doi: 10.7498/aps.50.347
    [20] CHENG CHENG, HE SAI-LING. OPTIMIZATION AND ELIMINATION OF “BLACK CENTER” OF A LARGE-BORE COPPER VAPOR LA SER. Acta Physica Sinica, 2000, 49(7): 1267-1272. doi: 10.7498/aps.49.1267
Metrics
  • Abstract views:  291
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Received Date:  26 September 2024
  • Accepted Date:  04 December 2024
  • Available Online:  12 December 2024
  • Published Online:  05 February 2025

/

返回文章
返回