Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of link-impurity on spin dynamics of one-dimensional quantum Ising model

YUAN Xiaojuan

Citation:

Effects of link-impurity on spin dynamics of one-dimensional quantum Ising model

YUAN Xiaojuan
cstr: 32037.14.aps.74.20241390
PDF
HTML
Get Citation
  • It is of considerable theoretical significance to study the effects of impurity on spin dynamics of quantum spin systems. In this paper, the dynamical properties of the one-dimensional quantum Ising model with symmetric and asymmetric link-impurity are investigated by the recursion method, respectively. The autocorrelation function $C\left( t \right) = \overline {\left\langle {\sigma _j^x\left( t \right)\sigma _j^x\left( 0 \right)} \right\rangle } $ and the associated spectral density $\varPhi \left( \omega \right) = \displaystyle\int_{ - \infty }^{ + \infty } {{\rm d}t{{\rm e}^{{\rm i}\omega t}}C\left( t \right)} $ are calculated. The Hamiltonian of the Ising model with link-impurity can be written as $\qquad\qquad\qquad\qquad\qquad H = - \displaystyle\frac{1}{2}({J_{j - 1}}\sigma _{j - 1}^x\sigma _j^x + {J_j}\sigma _j^x\sigma _{j + 1}^x) - \displaystyle\frac{1}{2}J\sum\limits_{i \ne j,j - 1}^N {\sigma _i^x\sigma _{i + 1}^x} - \frac{1}{2}B\sum\limits_i^N {\sigma _i^z} . $where $J$ is the nearest-neighbor exchange coupling of the main spin chain, $ B $ denotes the external transverse magnetic field, $\sigma _i^\alpha \left( {\alpha = x,y,z} \right)$ are Pauli matrices at site $ i $. The constant 1/2 is introduced for the convenience of theoretical deduction, and N is the number of spins. The so-called link-impurity $ {J_j} $ ($ {J_{j - 1}} $) is randomly introduced, which denotes the exchange coupling between the j th spin and the (j + 1)th spin (the (j – 1)th spin). The symmetric link-impurity and asymmetric link-impurity correspond to the case of $ {J_{j - 1}} = {J_j} $ and $ {J_{j - 1}} \ne {J_j} $, respectively. The periodic boundary conditions are assumed in the theoretical calculation.After introducing the link-impurity, the original competition between $ B $ and $J$ in the pure Ising model is broken. The dynamic behavior of the system depends on synergistic effect of multiple factors, such as the mean spin coupling $ \bar J $ between $J$ and the link-impurity, the asymmetry degree between $ {J_{j - 1}} $ and $ {J_j} $, and the strength of the external magnetic field. In calculation, the exchange couplings of the main spin chain are set to $J \equiv 1$ to fix the energy scale. We first consider the effects of symmetric link-impurity. The reference values can be set to $ {J_{j - 1}} = {J_j} \lt J $ (e.g. 0.4, 0.6 or 0.8) or $ {J_{j - 1}} = {J_j} \gt J $ (e.g. 1.2, 1.6, 2.0), which are called weak or strong impurity coupling. When the magnetic field $ B \geqslant J $ (e.g., $ B = 1 $, 1.5 or 2.0), it is found that the dynamic behavior of the system exhibits a crossover from a collective-mode behavior to a central-peak behavior as the impurity strength $ {J_{j - 1}} = {J_j} $ increases. Interestingly, for $ B \lt J $ (e.g. $ B = 0.4 $ or 0.7), there are two crossovers that are a collective-mode-like behavior to a double-peak behavior, then to a central-peak behavior as $ {J_{j - 1}} = {J_j} $ increases.For the case of asymmetric link-impurity, the impurity configuration is more complex. Using the cooperation between $ {J_{j - 1}} $ and $ {J_j} $, more freedoms of regulation can be provided and the dynamical properties are more abundant. For the case of $ B \leqslant J $ (e.g. $ B = 0.5 $, 1.0), the system tends to exhibit a collective-mode behavior when the mean spin coupling $ \bar J $ is weak, and a central-peak behavior when $ \bar J $ are strong. However, when the asymmetry between $ {J_{j - 1}} $ and $ {J_j} $ is obvious, the system tends to exhibit a double- or multi-peak behavior. For the case of $ B \gt J $ (e.g. $ B = 1.5 $, 2.0), when $ \bar J $ is weak or the asymmetry between $ {J_{j - 1}} $ and $ {J_j} $ is not obvious, the system tends to exhibit a collective-mode behavior. When $ \bar J $ is strong, it tends to show a central-peak behavior. However, when the asymmetry between $ {J_{j - 1}} $ and $ {J_j} $ is evident, the bispectral feature (two spectral peaks appear at $ {\omega _1} \ne 0 $ and $ {\omega _2} \ne 0 $) dominates the dynamics. Under the regulating effect of link-impurities, the crossover between different dynamic behaviors can be easily realized, and it is easier to stimulate new dynamic modes, such as the double-peak behavior, the collective-mode-like behavior or bispectral feature one. The results in this work indicate that using link-impurity to manipulate the dynamics of quantum spin systems may be a new try.
      Corresponding author: YUAN Xiaojuan, yuanxiaojuan@163.com
    • Funds: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2021MA073), the Higher Educational Science and Technology Program of Shandong Province, China (Grant No. J18KB104), and the Young Doctoral Support Program of Qilu Normal University, China (Grant No. QBJH19-0006).
    [1]

    Young A P 1997 Phys. Rev. B 56 11691Google Scholar

    [2]

    Florencio J, Sá Barreto F C 1999 Phys. Rev. B 60 9555Google Scholar

    [3]

    Liu Z Q, Kong X M, Chen X S 2006 Phys. Rev. B 73 224412Google Scholar

    [4]

    Yuan X J, Kong X M, Xu Z B, Liu Z Q 2010 Physica A 389 242Google Scholar

    [5]

    Chen S X, Shen Y Y, Kong X M 2010 Phys. Rev. B 82 174404Google Scholar

    [6]

    Nunes M E S, Florencio J 2003 Phys. Rev. B 68 014406Google Scholar

    [7]

    Nunes M E S, Plascak J A, Florencio J 2004 Physica A 332 1Google Scholar

    [8]

    Xu Z B, Kong X M, Liu Z Q 2008 Phys. Rev. B 77 184414Google Scholar

    [9]

    Li Y F, Kong X M 2013 Chin. Phys. B 22 037502Google Scholar

    [10]

    Laflorencie N, Rieger H, Sandvik A W, Henelius P 2004 Phys. Rev. B 70 054430Google Scholar

    [11]

    李银芳, 申银阳, 孔祥木 2012 物理学报 61 107501Google Scholar

    Li Y F, Shen Y Y, Kong X M 2012 Acta Phys. Sin. 61 107501Google Scholar

    [12]

    Silva da Conceição C M S, Maia R N P 2017 Phys. Rev. E 96 032121Google Scholar

    [13]

    von Ohr S, Manssen M, Hartmann A K 2017 Phys. Rev. E 96 013315Google Scholar

    [14]

    Theodorakis P E, Georgiou I, Fytas N G 2013 Phys. Rev. E 87 032119Google Scholar

    [15]

    Crokidakis N, Nobre F D 2008 J. Phys. : Condens. Matter 20 145211Google Scholar

    [16]

    Liu Z Q, Jiang S R, Kong X M 2014 Chin. Phys. B 23 087505Google Scholar

    [17]

    Balcerzak T, Szałowski K, Jaščur M 2020 J. Magn. Magn. Mater. 507 166825Google Scholar

    [18]

    Silva R L, Guimarães P R C, Pereira A R 2005 Solid State Commun. 134 313Google Scholar

    [19]

    Sousa J M, Leite R V, Landim R R, Costa Filho R N 2014 Physica B 438 78Google Scholar

    [20]

    Huang X, Yang Z 2015 Solid State Commun. 204 28Google Scholar

    [21]

    Çağlar T, Nihat Berker A 2015 Phys. Rev. E 92 062131Google Scholar

    [22]

    Mazzitello K I, Candia J, Albano E V, 2015 Phys. Rev. E 91 042118Google Scholar

    [23]

    Hadjiagapiou I A, Velonakis I N 2018 Physica A 505 965Google Scholar

    [24]

    Hadjiagapiou I A, Velonakis I N 2021 Physica A 578 126112Google Scholar

    [25]

    袁晓娟 2023 物理学报 72 087501Google Scholar

    Yuan X J 2023 Acta Phys. Sin. 72 087501Google Scholar

    [26]

    Boechat B, Cordeiro C, Florencio J, Sá Barreto F C, de Alcantara Bonfim O F 2000 Phys. Rev. B 61 14327Google Scholar

    [27]

    De Souza W L, de Mello Silva É, Martins P H L 2020 Phys. Rev. E 101 042104Google Scholar

    [28]

    Nunes M E S, de Mello Silva É, Martins P H L, Plascak J A, Florencio J 2018 Phys. Rev. E 98 042124Google Scholar

    [29]

    Guimarães P R C, Plascak J A, De Alcantara Bonfim O F, Florencio J 2015 Phys. Rev. E 92 042115Google Scholar

    [30]

    Hu F M, Ma T, Lin H Q, Gubernatis J E 2011 Phys. Rev. B 84 075414Google Scholar

    [31]

    Liu Q, Liu C X, Xu C, Qi X L, Zhang S C 2009 Phys. Rev. Lett. 102 156603Google Scholar

    [32]

    Cirillo A, Mancini M, Giuliano D, Sodano P 2011 Nuclear Phys. B 852 235Google Scholar

    [33]

    Sindona A, Goold J, Lo Gullo N, Lorenzo S, Plastina F 2013 Phys. Rev. Lett. 111 165303Google Scholar

    [34]

    Li J, Wang Y P 2009 Europhys. Lett. 88 17009Google Scholar

    [35]

    Apollaro T J G, Francica G, Giuliano D, Falcone G, Palma G M, Plastina F 2017 Phys. Rev. B 96 155145Google Scholar

    [36]

    Giuliano D, Campagnano G, Tagliacozzo A 2016 Eur. Phys. J. B 89 251Google Scholar

    [37]

    Rommer S, Eggert S 2000 Phys. Rev. B 62 4370Google Scholar

    [38]

    Yuan X J, Zhao J F, Wang H, Bu H X, Yuan H M, Zhao B Y, Kong X M 2021 Physica A 583 126279Google Scholar

    [39]

    Eggert S, Affleck I 1992 Phys. Rev. B 46 10866Google Scholar

    [40]

    Schuster C, Eckern U 2002 Ann. Phys. 514 901Google Scholar

    [41]

    Huang X, Yang Z 2015 J. Magn. Magn. Mater. 381 372Google Scholar

    [42]

    Viswanath V S, Müller G 1994 The Recursion Method—Application to Many-body Dynamics (Berlin: Springe-Verlag

    [43]

    Lee M H 1982 Phys. Rev. Lett. 49 1072Google Scholar

    [44]

    Lee M H 1982 Phys. Rev. B 26 2547Google Scholar

    [45]

    Lee M H 2000 Phys. Rev. E 62 1769Google Scholar

    [46]

    Yuan X J, Wang C Y, Kong X M, Zhao J F, Wang H, Bu H X 2023 J. Magn. Magn. Mater. 572 170632Google Scholar

    [47]

    Nunes M E S, Plascak J A 2024 Phys. Rev. E 109 014134Google Scholar

    [48]

    Florencio J, de Alcantara Bonfim O F 2020 Front. Phys. 8 557277Google Scholar

    [49]

    Florencio J, Lee M H 1987 Phys. Rev. B 35 1835Google Scholar

  • 图 1  对称型链接杂质在不同杂质耦合强度下的连分式系数$ {\varDelta _\nu } $, 其中横向磁场$ B = J \equiv 1 $, 杂质耦合强度取值为$ {J_{j - 1}} = {J_j} = 0.4 $, 0.6, 0.8, 1.0, 1.2, 1.4和1.6

    Figure 1.  Recurrants $ {\varDelta _\nu } $ for the symmetric type of link-impurity. The transverse magnetic field $ B = J \equiv 1 $, and the impurity coupling strength $ {J_{j - 1}} = {J_j} = 0.4 $, 0.6, 0.8, 1.0, 1.2, 1.4 and 1.6.

    图 2  对称型链接杂质在不同杂质耦合强度下的自旋关联函数$C\left( t \right)$(a)及谱密度$\varPhi \left( \omega \right)$(b), 其中横向磁场$ B = J \equiv 1 $, 杂质耦合强度$ {J_{j - 1}} = {J_j} = 0.4 $, 0.6, 0.8, 1.0和1.2

    Figure 2.  Spin autocorrelation function $C\left( t \right)$ (a) and spectral density $\varPhi \left( \omega \right)$ (b) for the symmetric type of link-impurity under different impurity coupling strengths. The transverse magnetic field $ B = J \equiv 1 $, and the impurity coupling strength $ {J_{j - 1}} = {J_j} = 0.4 $, 0.6, 0.8, 1.0 and 1.2.

    图 3  对称型链接杂质在不同杂质耦合强度下的谱密度$\varPhi \left( \omega \right)$, 图(a)—(d)中横向磁场的取值分别为$ B = 0.4 $, 0.7, 1.5和2.0, 主体格点自旋耦合$ J \equiv 1 $

    Figure 3.  Spectral densities $\varPhi \left( \omega \right)$ for symmetric type of link-impurity under different impurity coupling strength. Without loss of generality, the parameter $ J \equiv 1 $, and the transverse magnetic field $ B = 0.4 $, 0.7, 1.5 and 2.0 in panel (a)–(d).

    图 4  固定横场$ B = J \equiv 1 $, 非对称型链接杂质在不同杂质耦合强度下的谱密度$\varPhi \left( \omega \right)$, 其中固定$ {J_{j - 1}} = J' $, 图(a)—(d)中$ {J_{j - 1}} $分别取值为0.2, 0.5, 1.0和1.4; $ {J_j} = J'' $的取值从0.2变化到1.8

    Figure 4.  Spectral densities for non-symmetric type of link-impurity under different impurity coupling strength. The transverse magnetic field $ B = J \equiv 1 $, and the impurity coupling strength $ J_{j-1}=J'=0.2 $, 0.5, 1.0 and 1.4 are set in panels (a)–(d), respectively. The other impurity coupling strength $ {J_j} ({J_j} = J'')$ changes from 0.2 to 1.8.

    图 5  固定横场$ B = 0.5 = J/2 $, 非对称型链接杂质在不同杂质耦合强度下的谱密度, 其中固定$ {J_{j - 1}} = J' $, 图(a)—(f)中$ {J_{j - 1}} $分别取值为0.2, 0.5, 0.8, 1.2, 1.6和2.0, $ {J_j} = J'' $的取值从0.2变化到1.8

    Figure 5.  Spectral densities for non-symmetric type of link-impurity under different impurity coupling strength. The transverse magnetic field $ B = 0.5 = J/2 $, and the impurity coupling strength $ {J_{j - 1}} =J'= 0.2 $, 0.5, 0.8, 1.2, 1.6 and 2.0 are set in panels (a)–(f), respectively. The other impurity coupling strength $ {J_j} ({J_j} = J'')$ changes from 0.2 to 1.8.

    图 6  固定横场$ B = 1.5 = 1.5 J $, 给出非对称型链接杂质在不同杂质耦合强度下的谱密度, 固定$ {J_{j - 1}} = J' $, 图(a)—(d)中的$ {J_{j - 1}} $分别取值为0.4, 0.8, 1.2和1.6; $ {J_j} = J'' $的取值从0.2变化到1.8

    Figure 6.  Spectral densities for non-symmetric type of link-impurity under different impurity coupling strength. The transverse magnetic field $ B = 1.5 = 1.5 J $, and the impurity coupling strength $ J_{j-1}=J'=0.4 $, 0.8, 1.2和1.6 are set in panels (a)–(d), respectively. The other impurity coupling strength $ {J_j} ({J_j} = J'')$ changes from 0.2 to 1.8.

  • [1]

    Young A P 1997 Phys. Rev. B 56 11691Google Scholar

    [2]

    Florencio J, Sá Barreto F C 1999 Phys. Rev. B 60 9555Google Scholar

    [3]

    Liu Z Q, Kong X M, Chen X S 2006 Phys. Rev. B 73 224412Google Scholar

    [4]

    Yuan X J, Kong X M, Xu Z B, Liu Z Q 2010 Physica A 389 242Google Scholar

    [5]

    Chen S X, Shen Y Y, Kong X M 2010 Phys. Rev. B 82 174404Google Scholar

    [6]

    Nunes M E S, Florencio J 2003 Phys. Rev. B 68 014406Google Scholar

    [7]

    Nunes M E S, Plascak J A, Florencio J 2004 Physica A 332 1Google Scholar

    [8]

    Xu Z B, Kong X M, Liu Z Q 2008 Phys. Rev. B 77 184414Google Scholar

    [9]

    Li Y F, Kong X M 2013 Chin. Phys. B 22 037502Google Scholar

    [10]

    Laflorencie N, Rieger H, Sandvik A W, Henelius P 2004 Phys. Rev. B 70 054430Google Scholar

    [11]

    李银芳, 申银阳, 孔祥木 2012 物理学报 61 107501Google Scholar

    Li Y F, Shen Y Y, Kong X M 2012 Acta Phys. Sin. 61 107501Google Scholar

    [12]

    Silva da Conceição C M S, Maia R N P 2017 Phys. Rev. E 96 032121Google Scholar

    [13]

    von Ohr S, Manssen M, Hartmann A K 2017 Phys. Rev. E 96 013315Google Scholar

    [14]

    Theodorakis P E, Georgiou I, Fytas N G 2013 Phys. Rev. E 87 032119Google Scholar

    [15]

    Crokidakis N, Nobre F D 2008 J. Phys. : Condens. Matter 20 145211Google Scholar

    [16]

    Liu Z Q, Jiang S R, Kong X M 2014 Chin. Phys. B 23 087505Google Scholar

    [17]

    Balcerzak T, Szałowski K, Jaščur M 2020 J. Magn. Magn. Mater. 507 166825Google Scholar

    [18]

    Silva R L, Guimarães P R C, Pereira A R 2005 Solid State Commun. 134 313Google Scholar

    [19]

    Sousa J M, Leite R V, Landim R R, Costa Filho R N 2014 Physica B 438 78Google Scholar

    [20]

    Huang X, Yang Z 2015 Solid State Commun. 204 28Google Scholar

    [21]

    Çağlar T, Nihat Berker A 2015 Phys. Rev. E 92 062131Google Scholar

    [22]

    Mazzitello K I, Candia J, Albano E V, 2015 Phys. Rev. E 91 042118Google Scholar

    [23]

    Hadjiagapiou I A, Velonakis I N 2018 Physica A 505 965Google Scholar

    [24]

    Hadjiagapiou I A, Velonakis I N 2021 Physica A 578 126112Google Scholar

    [25]

    袁晓娟 2023 物理学报 72 087501Google Scholar

    Yuan X J 2023 Acta Phys. Sin. 72 087501Google Scholar

    [26]

    Boechat B, Cordeiro C, Florencio J, Sá Barreto F C, de Alcantara Bonfim O F 2000 Phys. Rev. B 61 14327Google Scholar

    [27]

    De Souza W L, de Mello Silva É, Martins P H L 2020 Phys. Rev. E 101 042104Google Scholar

    [28]

    Nunes M E S, de Mello Silva É, Martins P H L, Plascak J A, Florencio J 2018 Phys. Rev. E 98 042124Google Scholar

    [29]

    Guimarães P R C, Plascak J A, De Alcantara Bonfim O F, Florencio J 2015 Phys. Rev. E 92 042115Google Scholar

    [30]

    Hu F M, Ma T, Lin H Q, Gubernatis J E 2011 Phys. Rev. B 84 075414Google Scholar

    [31]

    Liu Q, Liu C X, Xu C, Qi X L, Zhang S C 2009 Phys. Rev. Lett. 102 156603Google Scholar

    [32]

    Cirillo A, Mancini M, Giuliano D, Sodano P 2011 Nuclear Phys. B 852 235Google Scholar

    [33]

    Sindona A, Goold J, Lo Gullo N, Lorenzo S, Plastina F 2013 Phys. Rev. Lett. 111 165303Google Scholar

    [34]

    Li J, Wang Y P 2009 Europhys. Lett. 88 17009Google Scholar

    [35]

    Apollaro T J G, Francica G, Giuliano D, Falcone G, Palma G M, Plastina F 2017 Phys. Rev. B 96 155145Google Scholar

    [36]

    Giuliano D, Campagnano G, Tagliacozzo A 2016 Eur. Phys. J. B 89 251Google Scholar

    [37]

    Rommer S, Eggert S 2000 Phys. Rev. B 62 4370Google Scholar

    [38]

    Yuan X J, Zhao J F, Wang H, Bu H X, Yuan H M, Zhao B Y, Kong X M 2021 Physica A 583 126279Google Scholar

    [39]

    Eggert S, Affleck I 1992 Phys. Rev. B 46 10866Google Scholar

    [40]

    Schuster C, Eckern U 2002 Ann. Phys. 514 901Google Scholar

    [41]

    Huang X, Yang Z 2015 J. Magn. Magn. Mater. 381 372Google Scholar

    [42]

    Viswanath V S, Müller G 1994 The Recursion Method—Application to Many-body Dynamics (Berlin: Springe-Verlag

    [43]

    Lee M H 1982 Phys. Rev. Lett. 49 1072Google Scholar

    [44]

    Lee M H 1982 Phys. Rev. B 26 2547Google Scholar

    [45]

    Lee M H 2000 Phys. Rev. E 62 1769Google Scholar

    [46]

    Yuan X J, Wang C Y, Kong X M, Zhao J F, Wang H, Bu H X 2023 J. Magn. Magn. Mater. 572 170632Google Scholar

    [47]

    Nunes M E S, Plascak J A 2024 Phys. Rev. E 109 014134Google Scholar

    [48]

    Florencio J, de Alcantara Bonfim O F 2020 Front. Phys. 8 557277Google Scholar

    [49]

    Florencio J, Lee M H 1987 Phys. Rev. B 35 1835Google Scholar

  • [1] Yin Xiang-Guo, Yu Hai-Ru, Hao Ya-Jiang, Zhang Yun-Bo. Properties of ground state and quench dynamics of one-dimensional contact repulsive single-spin flipped Fermi gases. Acta Physica Sinica, 2024, 73(2): 020302. doi: 10.7498/aps.73.20231425
    [2] Yuan Xiao-Juan. Effects of trimodal random magnetic field on spin dynamics of quantum Ising chain. Acta Physica Sinica, 2023, 72(8): 087501. doi: 10.7498/aps.72.20230046
    [3] Zhang Ren-Qiang, Jiang Xiang-Yu, Yu Jiong-Chi, Zeng Chong, Gong Ming, Xu Shun. Calculation and optimization of correlation function in distillation method of lattice quantum chromodynamcis. Acta Physica Sinica, 2021, 70(16): 161201. doi: 10.7498/aps.70.20210030
    [4] Yuan Xiao-Juan, Wang Hui, Zhao Bang-Yu, Zhao Jing-Fen, Ming Jing, Geng Yan-Lei, Zhang Kai-Yu. Effects of random longitudinal magnetic field on dynamics of one-dimensional quantum Ising model. Acta Physica Sinica, 2021, 70(19): 197501. doi: 10.7498/aps.70.20210631
    [5] Liu Xiao-Hang, Wang Yi-Ning, Qu Zi-Min, Di Zeng-Ru. Opinion formation model with co-evolution of individual behavior and social environment. Acta Physica Sinica, 2019, 68(11): 118902. doi: 10.7498/aps.68.20182254
    [6] Yang Bo, Fan Min, Liu Wen-Qi, Chen Xiao-Song. Phase transition properties for the spatial public goods game with self-questioning mechanism. Acta Physica Sinica, 2017, 66(19): 196401. doi: 10.7498/aps.66.196401
    [7] Liu Yan, Bao Jing-Dong. Generation and application of non-ergodic noise. Acta Physica Sinica, 2014, 63(24): 240503. doi: 10.7498/aps.63.240503
    [8] Jiang Jian-Jun, Yang Cui-Hong, Liu Yong-Jun. A kind of ferromagnetic-antiferromagnetic alternating spin chain equivalent to the mixed spin Heisenberg chain. Acta Physica Sinica, 2012, 61(6): 067502. doi: 10.7498/aps.61.067502
    [9] Luo Zhi, Yang Guan-Qiong, Di Zeng-Ru. Opinion formation on the social networks with geographic structure. Acta Physica Sinica, 2012, 61(19): 190509. doi: 10.7498/aps.61.190509
    [10] Li Yin-Fang, Shen Yin-Yang, Kong Xiang-Mu. Effects of random external fields on the dynamics of the one-dimensional Blume-Capel model. Acta Physica Sinica, 2012, 61(10): 107501. doi: 10.7498/aps.61.107501
    [11] Yuan Xiao-Juan, Zhao Bang-Yu, Chen Shu-Xia, Kong Xiang-Mu. Effects of next-nearest-neighbor interactions on the dynamics of random quantum Ising model. Acta Physica Sinica, 2010, 59(3): 1499-1506. doi: 10.7498/aps.59.1499
    [12] Zhou Jian-Huai, Deng Min-Yi, Tang Guo-Ning, Kong Ling-Jiang, Liu Mu-Ren. Controll of spatiotemporal chaos by applying feedback method based on the flocking algorithms. Acta Physica Sinica, 2009, 58(10): 6828-6832. doi: 10.7498/aps.58.6828
    [13] Wang Huai-Yu, Xia Qing. The total energy of Heisenberg ferromagnetic systems. Acta Physica Sinica, 2007, 56(9): 5466-5470. doi: 10.7498/aps.56.5466
    [14] Guo Yuan-Yuan, Chen Xiao-Song. Investigation of phase instability in the binary Gaussian core model. Acta Physica Sinica, 2005, 54(12): 5755-5762. doi: 10.7498/aps.54.5755
    [15] Sun Chun-Feng. The partition function and correlation functions of the Ising model on a diamond fractal lattices. Acta Physica Sinica, 2005, 54(8): 3768-3773. doi: 10.7498/aps.54.3768
    [16] Wang Yan-Shen. Boundary correlation functions of the six-vertex model with open boundary. Acta Physica Sinica, 2003, 52(11): 2700-2705. doi: 10.7498/aps.52.2700
    [17] Wang Yan-Shen. . Acta Physica Sinica, 2002, 51(7): 1458-1466. doi: 10.7498/aps.51.1458
    [18] Zhang Hai-Yan, GNgele, Ma Hong-Ru. . Acta Physica Sinica, 2002, 51(8): 1892-1896. doi: 10.7498/aps.51.1892
    [19] SHAO YUAN-ZHI, LAN TU, LIN GUANG-MING. DYNAMICAL TRANSITION AND TRICRITICAL POINTS OF 3D KINETIC ISING SPIN SYSTEM . Acta Physica Sinica, 2001, 50(5): 942-947. doi: 10.7498/aps.50.942
    [20] XU JING, CHEN HONG, ZHANG YU-MEI, FENG WEI-GUO. THEORETICAL STUDY OF LOW-ENERGY ELEMENTARY EXCITATIONS IN SPIN-PEIERLS SYSTEM. Acta Physica Sinica, 2000, 49(8): 1550-1555. doi: 10.7498/aps.49.1550
Metrics
  • Abstract views:  250
  • PDF Downloads:  13
  • Cited By: 0
Publishing process
  • Received Date:  03 October 2024
  • Accepted Date:  10 November 2024
  • Available Online:  11 December 2024
  • Published Online:  05 February 2025

/

返回文章
返回