Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Piezoelectric properties of PVDF-EtP nanofiber membrane and its application in pressure sensors

CHENG Aodi YU Huiyang WANG Chentao FAN Ziyang ZHANG Jiaqi WU Keying HUANG Jianqiu

Citation:

Piezoelectric properties of PVDF-EtP nanofiber membrane and its application in pressure sensors

CHENG Aodi, YU Huiyang, WANG Chentao, FAN Ziyang, ZHANG Jiaqi, WU Keying, HUANG Jianqiu
cstr: 32037.14.aps.74.20241680
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In recent years, polyvinylidene fluoride (PVDF)-based nanofiber membranes, as key materials for applications in sensors, energy harvesters, and flexible electronics, have received significant attention due to their excellent piezoelectric properties. However, the research on the piezoelectric performance of PVDF membranes is still limited because of their intrinsic structure and material characteristics. Therefore, in this work, the effects of filler doping on the properties of PVDF nanofiber membranes are investigated to enhance their piezoelectric performance and stability. Using electrospinning technology, electret particles are incorporated into PVDF nanofiber membranes at different concentrations (e.g. 1%, 1.5%, and 2%). Characterization tests of the composite nanofiber membranes, such as scanning electron microscopy (SEM) and X-ray diffraction (XRD), reveal that the doping of electret particles can increase the average fiber diameter and enhance the β-phase content. In the piezoelectric performance tests, the piezoelectric sensors made of nanofiber membranes doped with electric particles show significant improvement in electrical output at a test pressure of 20 N. Furthermore, increasing the membrane area and using higher pressure can further enhance the electrical output. These results show that the piezoelectric properties of PVDF membranes can be effectively improved by appropriately doping electric particles. Stability tests carried out three months after sensor was fabricated shows that the electrical output stability of the piezoelectric sensors containing electric particles has been significantly improved. Additionally, an efficient signal processing method is proposed, with an FIR digital low-pass filter used to remove high-frequency noise. This method is not only a smoothing prior method to eliminate baseline drift, but also an improved AMPD algorithm to accurately detect the peak position and features of the piezoelectric signal. This method can significantly enhance the stability and accuracy of signal feature extraction. All in all, this study presents a simple and effective approach to improving the piezoelectric performance and electrical output stability of PVDF nanofiber membranes through the combination of filler doping and electrospinning technology. This method not only optimizes the performance of PVDF-based composites but also provides new insights into and technical support for their broad applications in energy collection, smart sensors, flexible electronic devices, and other fields.
      Corresponding author: HUANG Jianqiu, hjq@seu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62271144, 62104105) and the National Students’ Platform for Innovation and Entrepreneurship Training Program, China (Grant Nos. 2025DC1090, 2025DC1096).
    [1]

    Rasoolzadeh M, Sherafat Z, Vahedi M, Bagherzadeh E 2022 J. Alloys Compd. 917 165505Google Scholar

    [2]

    Zhang D D, Zhang X L, Li X J, Wang H P, Sang X D, Zhu G D, Yeung Y H 2022 Eur. Polym. J 166 0014Google Scholar

    [3]

    Fu G M, Shi Q S, Liang Y R, He Y Q, Xue R, He S F, Chen Y J 2022 Polyme 254 125087Google Scholar

    [4]

    Liang H, Zhang L, Wu T, Song H, Tang C 2022 Nanomaterials 13 102Google Scholar

    [5]

    Mirjalali S, Mahdavi A, Abrishami S, Bagherzadeh R, Asadnia M, Huang S 2023 Macromol. Mater. Eng. 308 2200442Google Scholar

    [6]

    Zhang M H, Hu K, Meng Q Y, Lan Z Y, Shi S T, Sun Q F, Zhou L, Shen X P 2023 Mater. Opt. Electron 11 4766Google Scholar

    [7]

    Leung C M, Chen X, Wang T, Tang Y, Duan Z, Zhao X, Zhou H, Wang F 2022 Mater. 15 1769Google Scholar

    [8]

    Tiwari S, Dubey D K, Prakash O, Das S, Maiti P 2023 Energy 275 127492Google Scholar

    [9]

    Chen G, Chen G, Pan L, Chen D 2022 Diam. Relat. Mater 129 109358Google Scholar

    [10]

    Chen L, Xiao W Q, Yan L, Wu T, Qiu Y S, Lin H L, Bian J, Lu Y 2018 J. Funct. Mater. 49 6064Google Scholar

    [11]

    Revathi S, Kennedy L J, Basha S K, Padmanabhan R 2018 J. Nanosci. Nanotechnol. 18 4953Google Scholar

    [12]

    Xu J, Yu T, Han D, Guan X L, Lei X P 2019 J. Wuhan Univ. Technol. Mater. Sci. Ed. 34 1279Google Scholar

    [13]

    Gregorio Jr R 2006 J. Appl. Polym. Sci. 100 3272Google Scholar

    [14]

    Tashiro K 1995 Plast. Eng. 28 63

    [15]

    Mahanty B, Ghosh S K, Lee D W 2023 Nano 24 100421Google Scholar

    [16]

    Furukawa T 1989 Phase Transit. 18 143Google Scholar

    [17]

    Ramasundaram S, Yoon S, Kim K J, Lee J S 2008 Macromol. Chem. Phys. 209 2516Google Scholar

    [18]

    Constantino C J L, Job A E, Simoes R D, Giacometti J A, Zucolotto V, Oliveira O N, Gozzi G, Chinaglia D L 2005 Appl Spectrosc. 59 275Google Scholar

    [19]

    He S, Xin B J, Chen Z M, Liu Y 2018 Cellulose 25 3691Google Scholar

    [20]

    Gao Q, Cao C, Ao J P, Bi J L, Yao L Y, Guo J J, Sun G Z, Liu W, Zhang Y, Liu F F, Li W 2021 Appl. Surf. Sci. 578 152063Google Scholar

    [21]

    Nunes J S, Sencadas V, Wu A, Kholkin A L, Vilarinho P M, Lanceros-Méndez S 2006 MRS Online proc. Libr. 949 0949Google Scholar

    [22]

    Chen X, Han M, Chen H, Cheng X, Song Y, Su Z, Jiang Y, Zhang H 2017 Nanoscale 9 1263Google Scholar

    [23]

    Kim Y, Wu X, Lee C, Oh J H 2021 ACS Appl. Mater. Interfaces 13 36967Google Scholar

    [24]

    郭欣格 2018 硕士学位论文 (南京: 东南大学)

    Guo X G 2018 M. S. Thesis (Nanjing: Southeast University

    [25]

    Wang X Y, Zuo J L, Jiang T L, Xiao J X, Tong J, Huang S Q, Zhang W H 2024 Engergies. 17 3886Google Scholar

    [26]

    Kulkarni N D, Kumari P 2023 Mater. Res. Bull. 157 112039Google Scholar

    [27]

    Kwon H, Yoo Y W, Park Y, Nam U H, Byon E 2023 J. Asian Ceram. Soc. 11 282Google Scholar

    [28]

    Kim M S, Lee D S, Park E C, Jeong S J, Song J S 2007 J. Eur. Ceram. Soc. 27 13Google Scholar

    [29]

    Haily E, Bih L, Bouari A E, Lahmar A, Elmarssi M, Manoun B 2020 Mater. Chem. Phys. 241 122434Google Scholar

    [30]

    Song G L, Chen L, Xing L Y, Zhang K, Wu Z Y, Yang H G, Zhang N 2021 Physica B 621 413308Google Scholar

    [31]

    Wang Q P, Jiang S L, Zhang Y Y, Zhang G Z, Xiong L Y 2011 J. Mater. Sci-Mater. El. 22 849Google Scholar

  • 图 1  (a) 正压电效应; (b) 逆压电效应

    Figure 1.  (a) Positive piezoelectric effect; (b) converse piezoelectric effect.

    图 2  压电传感器在不同状态下的工作原理 (a) 未施加压力; (b) 施加压力

    Figure 2.  Working principle of piezoelectric sensors in different states: (a) No pressure applied; (b) with pressure applied.

    图 3  (a)—(f) 压电传感器的制备过程; (g) 制备的压电膜的照片; (h) 压电膜的显微镜照片

    Figure 3.  (a)–(f) Fabrication process of the piezoelectric sensors; (g) picture of fabricated piezoelectric membrane; (h) microscope picture of the piezoelectric membrane.

    图 4  (a)—(d) 不同浓度纳米复合薄膜的SEM图像及纳米纤维直径分布图; (e) PVDF和掺杂EtP的纳米复合薄膜的XRD谱图

    Figure 4.  (a)–(d) SEM images and nanofiber diameter distribution maps of nanocomposite films with different concentrations; (e) XRD spectra of PVDF and EtP doped nanocomposite films.

    图 5  (a) 压电传感器的测试系统和传感器样品; (b) 不同PVDF/EtP浓度传感器的输出电压测试; (c) 输出电压与传感器尺寸之间的关系; (d) 输出电压与施加力之间的关系; (e) 制备传感器在不同施加力下的平均输出电压幅度; (f)压电系数测试

    Figure 5.  (a) Testing system of the piezoelectric sensors and a sensor sample; (b) the output voltage testing of the sensors with various PVDF/EtP concentration; (c) relationship between the output voltage and the sensor size; (d) relationship between the output voltage and the applied force; (e) the average output voltage magnitude of fabricated sensors under different force; (f) piezoelectric coefficient test.

    图 6  传感器在20000次振动循环下的长期稳定性, 插图显示了不同循环周期下的信号, 新制备传感器的重复性测试 (a) 1% PVDF/EtP; (b) 10% PVDF. 制备3个月后传感器的重复性测试 (c) 1% PVDF/EtP; (d) 10% PVDF

    Figure 6.  The long-term stability of the sensor under 20000 vibration cycles is shown in the illustration, which displays the signals at different cycle periods, repeatability testing of newly fabricated sensors: (a) 1% PVDF/EtP; (b) 10% PVDF. Repeatability testing of sensors fabricated three months before: (a) 1% PVDF/EtP; (b) 10% PVDF.

    图 7  (a) 基于PVDF/EtP纳米纤维压电传感器的系统工作流程; (b) 硬件系统照片; (c) 基于PVDF/EtP纳米纤维的压电传感器用于检测, 其中(I)为手指按压; (II)为肘部弯曲

    Figure 7.  (a) System workflow based on PVDF/EtP nanofiber piezoelectric sensor; (b) hardware system photos; (c) a piezoelectric sensor based on PVDF/EtP nanofibers is used for detecting, where (I) represents finger pressure; (II) represents bend the elbow.

  • [1]

    Rasoolzadeh M, Sherafat Z, Vahedi M, Bagherzadeh E 2022 J. Alloys Compd. 917 165505Google Scholar

    [2]

    Zhang D D, Zhang X L, Li X J, Wang H P, Sang X D, Zhu G D, Yeung Y H 2022 Eur. Polym. J 166 0014Google Scholar

    [3]

    Fu G M, Shi Q S, Liang Y R, He Y Q, Xue R, He S F, Chen Y J 2022 Polyme 254 125087Google Scholar

    [4]

    Liang H, Zhang L, Wu T, Song H, Tang C 2022 Nanomaterials 13 102Google Scholar

    [5]

    Mirjalali S, Mahdavi A, Abrishami S, Bagherzadeh R, Asadnia M, Huang S 2023 Macromol. Mater. Eng. 308 2200442Google Scholar

    [6]

    Zhang M H, Hu K, Meng Q Y, Lan Z Y, Shi S T, Sun Q F, Zhou L, Shen X P 2023 Mater. Opt. Electron 11 4766Google Scholar

    [7]

    Leung C M, Chen X, Wang T, Tang Y, Duan Z, Zhao X, Zhou H, Wang F 2022 Mater. 15 1769Google Scholar

    [8]

    Tiwari S, Dubey D K, Prakash O, Das S, Maiti P 2023 Energy 275 127492Google Scholar

    [9]

    Chen G, Chen G, Pan L, Chen D 2022 Diam. Relat. Mater 129 109358Google Scholar

    [10]

    Chen L, Xiao W Q, Yan L, Wu T, Qiu Y S, Lin H L, Bian J, Lu Y 2018 J. Funct. Mater. 49 6064Google Scholar

    [11]

    Revathi S, Kennedy L J, Basha S K, Padmanabhan R 2018 J. Nanosci. Nanotechnol. 18 4953Google Scholar

    [12]

    Xu J, Yu T, Han D, Guan X L, Lei X P 2019 J. Wuhan Univ. Technol. Mater. Sci. Ed. 34 1279Google Scholar

    [13]

    Gregorio Jr R 2006 J. Appl. Polym. Sci. 100 3272Google Scholar

    [14]

    Tashiro K 1995 Plast. Eng. 28 63

    [15]

    Mahanty B, Ghosh S K, Lee D W 2023 Nano 24 100421Google Scholar

    [16]

    Furukawa T 1989 Phase Transit. 18 143Google Scholar

    [17]

    Ramasundaram S, Yoon S, Kim K J, Lee J S 2008 Macromol. Chem. Phys. 209 2516Google Scholar

    [18]

    Constantino C J L, Job A E, Simoes R D, Giacometti J A, Zucolotto V, Oliveira O N, Gozzi G, Chinaglia D L 2005 Appl Spectrosc. 59 275Google Scholar

    [19]

    He S, Xin B J, Chen Z M, Liu Y 2018 Cellulose 25 3691Google Scholar

    [20]

    Gao Q, Cao C, Ao J P, Bi J L, Yao L Y, Guo J J, Sun G Z, Liu W, Zhang Y, Liu F F, Li W 2021 Appl. Surf. Sci. 578 152063Google Scholar

    [21]

    Nunes J S, Sencadas V, Wu A, Kholkin A L, Vilarinho P M, Lanceros-Méndez S 2006 MRS Online proc. Libr. 949 0949Google Scholar

    [22]

    Chen X, Han M, Chen H, Cheng X, Song Y, Su Z, Jiang Y, Zhang H 2017 Nanoscale 9 1263Google Scholar

    [23]

    Kim Y, Wu X, Lee C, Oh J H 2021 ACS Appl. Mater. Interfaces 13 36967Google Scholar

    [24]

    郭欣格 2018 硕士学位论文 (南京: 东南大学)

    Guo X G 2018 M. S. Thesis (Nanjing: Southeast University

    [25]

    Wang X Y, Zuo J L, Jiang T L, Xiao J X, Tong J, Huang S Q, Zhang W H 2024 Engergies. 17 3886Google Scholar

    [26]

    Kulkarni N D, Kumari P 2023 Mater. Res. Bull. 157 112039Google Scholar

    [27]

    Kwon H, Yoo Y W, Park Y, Nam U H, Byon E 2023 J. Asian Ceram. Soc. 11 282Google Scholar

    [28]

    Kim M S, Lee D S, Park E C, Jeong S J, Song J S 2007 J. Eur. Ceram. Soc. 27 13Google Scholar

    [29]

    Haily E, Bih L, Bouari A E, Lahmar A, Elmarssi M, Manoun B 2020 Mater. Chem. Phys. 241 122434Google Scholar

    [30]

    Song G L, Chen L, Xing L Y, Zhang K, Wu Z Y, Yang H G, Zhang N 2021 Physica B 621 413308Google Scholar

    [31]

    Wang Q P, Jiang S L, Zhang Y Y, Zhang G Z, Xiong L Y 2011 J. Mater. Sci-Mater. El. 22 849Google Scholar

  • [1] Wang Tian-Ci, Xia Qian-Shan, Huang Xin-Zuo, Wang Yong-Zheng, Liu Bin, Zhang Jin-Tong, Li Tao. Preparation and properties of single-walled carbon nanotube/polyetherimide electromagnetic shielding film. Acta Physica Sinica, 2024, 73(17): 178101. doi: 10.7498/aps.73.20240822
    [2] Xu Zi-Fei, Yue Min-Nan, Li Chun. Application of the proposed optimized recursive variational mode decomposition in nonlinear decomposition. Acta Physica Sinica, 2019, 68(23): 238401. doi: 10.7498/aps.68.20191005
    [3] Tang Zhi-Ling, Yu Li-Juan, Li Si-Min. Virtual antenna array theory based on high speed mobile communications. Acta Physica Sinica, 2016, 65(7): 070701. doi: 10.7498/aps.65.070701
    [4] Sun Zhi-Gang, Pang Yu-Yu, Hu Jing-Hua, He Xiong, Li Yue-Chou. Electronic transportation properties and magnetoresistance effects on single TiO2 nanowire under ultraviolet irradiation. Acta Physica Sinica, 2016, 65(9): 097301. doi: 10.7498/aps.65.097301
    [5] Tang Hai-Tong, Ao Yu-Hui, Wang Cong, Zhao Rui-Xue, Gao Zhong-Min, Meng Fan-Ling. Nanopore change law and mechanism of polyacrylonitrile based carbon fiber precursor in spinning process. Acta Physica Sinica, 2015, 64(4): 046101. doi: 10.7498/aps.64.046101
    [6] Zhang Xin-Wu, Zhang Xiao-Qing. Piezoelectric and acoustic behavior of polypropylene piezoelectret films. Acta Physica Sinica, 2013, 62(16): 167702. doi: 10.7498/aps.62.167702
    [7] Ouyang Yu-Hua, Yuan Ping, Jia Xiang-Dong, Wang Xiao-Yun, Xue Si-Min. Thunder acoustic spectrum obtained by using digital signal processing and propagation effects. Acta Physica Sinica, 2013, 62(8): 084303. doi: 10.7498/aps.62.084303
    [8] Zhang Ming-Qi, Wang Yu-Hua, Dong Peng-Yu, Zhang Jia. Magnetic properties of Bi2Fe4O9 synthesized by electrospinning. Acta Physica Sinica, 2012, 61(23): 238102. doi: 10.7498/aps.61.238102
    [9] Xiang Jun, Song Fu-Zhan, Shen Xiang-Qian, Chu Yan-Qiu. Preparation of one-dimensional Ni0.5Zn0.5Fe2O4/SiO2 composite nanostructures and their magnetic properties. Acta Physica Sinica, 2010, 59(7): 4794-4801. doi: 10.7498/aps.59.4794
    [10] Jiang Jian-Jun, Yuan Lin, Deng Lian-Wen, He Hua-Hui. Micromagnetics study of the magnetic nano-granular films. Acta Physica Sinica, 2006, 55(6): 3043-3048. doi: 10.7498/aps.55.3043
    [11] Qiu Xun-Lin, Xia Zhong-Fu, Wang Fei-Peng. Influence of heat treatment temperature after the pressure expansion on the electromechanical properties of cellular polypropylene electret. Acta Physica Sinica, 2006, 55(5): 2578-2583. doi: 10.7498/aps.55.2578
    [12] An Zhen-Lian, Tang Min-Min, Xia Zhong-Fu, Sheng Xiao-Chen, Zhang Xiao-Qing. Chemical surface treatment and charge stability of polypropylene cellular electret film. Acta Physica Sinica, 2006, 55(2): 803-810. doi: 10.7498/aps.55.803
    [13] Wang Fei-Peng, Xia Zhong-Fu, Qiu Xiao-Min, Lü Hang, Qiu Xun-Lin, Shen Jun. Influence of pressure expanding treatment on electret properties of positively corona charged cellular PP films. Acta Physica Sinica, 2005, 54(9): 4400-4405. doi: 10.7498/aps.54.4400
    [14] Qiu Xun-Lin, Xia Zhong-Fu, An Zhen-Lian, Wu Xian-Yong. The piezoelectricity of heat-expanded PP cellular electret. Acta Physica Sinica, 2005, 54(1): 402-406. doi: 10.7498/aps.54.402
    [15] Shao Jie, Gao Xiao-Ming, Yuan Yi-Qian, Yang Yong, Cao Zhen-Song, Pei Shi-Xin, Zhang Wei-Jun. Experimental research on the sensitivity of wavelength modulation by signal processing. Acta Physica Sinica, 2005, 54(10): 4638-4642. doi: 10.7498/aps.54.4638
    [16] Deng Lian-Wen, Jiang Jian-Jun, Feng Ze-Kun, Zhang Xiu-Cheng, He Hua-Hui. Microwave electromagnetic characteristics of FeCoBSiO2 nano-granular magnetic films. Acta Physica Sinica, 2004, 53(12): 4359-4363. doi: 10.7498/aps.53.4359
    [17] Li Hong-Guang, Meng Guang. Harmonic signal extraction from chaotic interference based on empirical mode decomposition. Acta Physica Sinica, 2004, 53(7): 2069-2073. doi: 10.7498/aps.53.2069
    [18] Wang Fu-Peng, Wang Zan-Ji, Guo Jing-Bo. . Acta Physica Sinica, 2002, 51(3): 474-481. doi: 10.7498/aps.51.474
    [19] WANG FU-PING, GUO JING-BO, WANG ZAN-JI, XIAO DA-CHUAN, LI MAO-TANG. HARMONIC SIGNAL EXTRACTION FROM STRONG CHAOTIC INTERFERENCE. Acta Physica Sinica, 2001, 50(6): 1019-1023. doi: 10.7498/aps.50.1019
    [20] FANG ZHI-LIANG, ZHOU CHUN-YAN, XU XIN, MU GUO-GUANG. A STUDY OF THE AMPLITUDE FILM-GRAIN NOISE IN WHITE-LIGHT OPTICAL PROCESSING. Acta Physica Sinica, 1990, 39(5): 741-748. doi: 10.7498/aps.39.741
Metrics
  • Abstract views:  747
  • PDF Downloads:  20
  • Cited By: 0
Publishing process
  • Received Date:  04 December 2024
  • Accepted Date:  16 January 2025
  • Available Online:  17 February 2025
  • Published Online:  05 April 2025

/

返回文章
返回