Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation study on edge dislocation motion and its interaction with dislocation loop in pure V and TiVTa alloy

WANG Shumin HE Xinfu DOU Yankun

Citation:

Simulation study on edge dislocation motion and its interaction with dislocation loop in pure V and TiVTa alloy

WANG Shumin, HE Xinfu, DOU Yankun
cstr: 32037.14.aps.74.20241757
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The motion of edge dislocations and the interaction between edge dislocations and dislocation loops in pure V and TiVTa alloy are simulated in this work, with the aim to reveal the influences of the existence of $ \left\langle {111} \right\rangle $ dislocation loops, which are dominant in pure V, and $ \left\langle {100} \right\rangle $ dislocation loops, which are dominant in TiVTa alloy, on the irradiation properties of materials and the differences between the irradiation properties influenced by the two types of dislocation loops. The edge dislocations and $ \left\langle {100} \right\rangle $ loops and $ \left\langle {111} \right\rangle $ loops with different sizes are introduced into pure V and TiVTa alloy by using molecular dynamics simulation technology. The effects of loop type, loop size, and temperature on the interaction between edge dislocations and dislocation loops in pure V and TiVTa alloy are compared with each other and analyzed. The differences in interaction between dislocations and dislocation loops are summarized, and the reasons are revealed.The simulation results of edge dislocation motion reveal that the velocity of edge dislocations in the pure V decreases with temperature increasing, while the velocity of edge dislocations in the TiVTa alloy shows no significant relation to temperature. This is due to phonon-drag mechanism controlling the motion of edge dislocations in the pure V. In the TiVTa alloy, due to inevitable local chemical fluctuations, the phonon-drag mechanism and the nanoscale segment detrapping mechanism simultaneously control the motion of edge dislocations.The simulation results of the interaction between edge dislocations and dislocation loops show that there are two kinds of interaction mechanisms between dislocations and loops in pure V and TiVTa alloy: for small dislocation loops, dislocations tend to absorb the loops and continue to move; for large dislocation loops, dislocations tend to go through the loops and then move forward. With the size of dislocation loop increasing, the stress required for dislocations to detach from the dislocation loops also increases. With the increase of temperature, the stress required for dislocations to detach from the dislocation loops decreases. This is because the larger the size of the loops, the larger the contact area between dislocations and loops, and the greater the obstacle presented by the loops. With the increase in temperature, atomic vibrations are accelerated, and the hindrance of the loops is reduced.When comparing the interaction between $ \left\langle {100} \right\rangle $ loops and $ \left\langle {111} \right\rangle $ loops and dislocations, it is found that the hindrance of $ \left\langle {111} \right\rangle $ loops to dislocation movement is lower than that of $ \left\langle {100} \right\rangle $ loops, and the difference in the hindrance to dislocation between $ \left\langle {100} \right\rangle $ loops and $ \left\langle {111} \right\rangle $ loops is more significant in pure V than what is observed in TiVTa alloy. This is because the mobility of $ \left\langle {111} \right\rangle $ loops is higher than that of $ \left\langle {100} \right\rangle $ loops, the hindrance to dislocation motion of $ \left\langle {111} \right\rangle $ loops is lower than that of $ \left\langle {100} \right\rangle $ loops. However, in the TiVTa alloy, significant lattice distortion reduces the mobility of $ \left\langle {111} \right\rangle $ loops. Therefore, the hindrance of $ \left\langle {111} \right\rangle $ loops in the TiVTa alloy is lower than that of $ \left\langle {100} \right\rangle $ loops, but the difference between them is reduced compared with what is observed in pure V.
      Corresponding author: DOU Yankun, douyankun3@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12405324), the CNNC Science Fund for Talented Young Scholars, China (Grant No. FY020270624940), and the Dean’s Fund of China Institute of Atomic Energy (Grant No. 219256).
    [1]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [2]

    Senkov O N, Wilks G B, Scott J M, Miracle D B 2011 Intermetallics 19 698Google Scholar

    [3]

    Couzinié J P, Dirras G 2019 Mater. Charact. 147 533Google Scholar

    [4]

    Fu A, Guo W M, Liu B, Cao Y K, Xu L Y, Fang Q H, Yang H, Liu Y 2020 J. Alloys Compd. 815 152466Google Scholar

    [5]

    Yang C, Aoyagi K, Bian H K, Chiba A 2019 Mater. Lett. 254 46Google Scholar

    [6]

    Sadeghilaridjani M, Ayyagari A, Muskeri S, Hasannaeimi V, Salloom R, Chen W Y, Mukherjee S 2020 J. Nucl. Mater. 529 151955Google Scholar

    [7]

    Kareer A, Waite J C, Li B, Couet A, Armstrong D E J, Wilkinson A J 2019 J. Nucl. Mater. 526 151744Google Scholar

    [8]

    El-Atwani O, Alvarado A, Unal K, Fensin S, Hinks J A, Greaves G, Baldwin J K S, Maloy S A, Martinez E 2021 Mater. Today Energy 19 100599Google Scholar

    [9]

    Lu Y P, Huang H F, Gao X Z, Ren C L, Gao J, Zhang H Z, Zheng S J, Jin Q Q, Zhao Y H, Lu C Y, Wang T M, Li T J 2019 J. Mater. Sci. Technol. 35 369Google Scholar

    [10]

    Mei L, Zhang Q, Dou Y, Fu E G, Li L, Chen S, Dong Y, Guo X, He X, Yang W, Xue Y, Jin K 2023 Scr. Mater. 223 115070Google Scholar

    [11]

    George E P, Raabe D, Ritchie R O 2019 Nat. Rev. Mater. 4 515Google Scholar

    [12]

    Chen B, Li S Z, Zong H X, Ding X D, Sun J, Ma E 2020 Proc. Natl. Acad. Sci. U. S. A. 117 16199Google Scholar

    [13]

    Lee C, Maresca F, Feng R, Chou Y, Ungar T, Widom M, An K, Poplawsky J D, Chou Y C, Liaw P K, Curtin W A 2021 Nat. Commun. 12 5474Google Scholar

    [14]

    Yin X, Dou Y K, He X F, Jin K, Wang C L, Dong Y G, Wang C Y, Xue Y F, Yang W 2023 Acta Metall. Sin. (Engl. Lett. ) 36 405Google Scholar

    [15]

    Bacon D J, Osetsky Y N, Rong Z 2006 Philos. Mag. 86 3921Google Scholar

    [16]

    Marian J, Wirth B D, Schäublin R, Odette G R, Perlado J M 2003 J. Nucl. Mater. 323 181Google Scholar

    [17]

    Rong Z, Osetsky Y N, Bacon D J 2005 Philos. Mag. 85 1473Google Scholar

    [18]

    Nomoto A, Soneda N, Takahashi A, Ishino S 2005 Mater. Trans. 46 463Google Scholar

    [19]

    林盼栋, 聂君锋, 刘美丹 2022 清华大学学报 (自然科学版) 62 2029Google Scholar

    Lin P D, Nie J F, Liu M D 2022 J. Tsinghua Univ. (Sci. Technol. ) 62 2029Google Scholar

    [20]

    王瑾, 贺新福, 曹晗, 王东杰, 豆艳坤, 杨文 2021 原子能科学技术 55 1210Google Scholar

    Wang J, He X F, Cao H, Wang D J, Dou Y K, Yang W 2021 At. Energy Sci. Technol. 55 1210Google Scholar

    [21]

    王瑾, 贺新福, 曹晗, 贾丽霞, 豆艳坤, 杨文 2021 物理学报 70 068701Google Scholar

    Wang J, He X F, Cao H, Jia L X, Dou Y K, Yang W 2021 Acta Phys. Sin. 70 068701Google Scholar

    [22]

    Yu M S, Wang Z Q, Wang F, Setyawan W, Long X H, Liu Y, Dong L M, Gao N, Gao F, Wang X L 2023 Acta Mater. 245 118651Google Scholar

    [23]

    Li J, Chen H T, Fang Q H, Jiang C, Liu Y, Liaw P K 2020 Int. J. Plast. 133 102819Google Scholar

    [24]

    Dou Y K, Cao H, He X F, Gao J, Cao J L, Yang W 2021 J. Alloys Compd. 857 157556Google Scholar

    [25]

    Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, in't Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C, Plimpton S J 2022 Comput. Phys. Commun. 271 108171Google Scholar

    [26]

    Daw M S, Foiles S M, Baskes M I 1993 Mater. Sci. Rep. 9 251Google Scholar

    [27]

    Stukowski A 2009 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [28]

    Qiu R Y, Chen Y C, Liao X C, He X F, Yang W, Hu W Y, Deng H Q 2021 J. Nucl. Mater. 557 153231Google Scholar

    [29]

    Chen B, Li S Z, Ding J, Ding X D, Sun J, Ma E 2023 Scr. Mater. 222 115048Google Scholar

    [30]

    Ma E 2020 Scr. Mater. 181 127Google Scholar

    [31]

    Wang F L, Balbus G H, Xu S Z, Su Y Q, Shin J, Rottmann P F, Knipling K E, Stinville J C, Mills L H, Senkov O N, Beyerlein I J, Pollock T M, Gianola D S 2020 Science 370 95Google Scholar

    [32]

    Kubilay R E, Ghafarollahi A, Maresca F, Curtin W A 2021 npj Comput. Mater. 7 112Google Scholar

    [33]

    Bu Y Q, Wu Y, Lei Z F, Yuan X Y, Wu H H, Feng X B, Liu J B, Ding J, Lu Y, Wang H T, Lu Z P, Yang W 2021 Mater. Today 46 28Google Scholar

  • 图 1  位错与位错环相互作用模型示意图

    Figure 1.  Simulation model of the interaction between dislocation and dislocation loop.

    图 2  刃位错运动的时间位移曲线 (a)纯V; (b) TiVTa合金

    Figure 2.  Time-displacement curves of edge dislocation: (a) Pure V; (b) TiVTa alloy.

    图 3  位错运动速度随温度和应力的变化 (a)纯V; (b) TiVTa合金

    Figure 3.  Dislocation velocity with temperature and stress: (a) Pure V; (b) TiVTa alloy.

    图 4  纯V和TiVTa合金中的刃位错线

    Figure 4.  Edge dislocation lines in pure V and TiVTa alloy.

    图 5  纯V中位错与间隙数为60的$ \left\langle {100} \right\rangle $环在150 MPa下相互作用的可视化图像 (a) t = 0 ps; (b) t = 20 ps; (c) t = 24 ps; (d) t = 28 ps; (e) t = 36 ps

    Figure 5.  Interaction between dislocation and $ \left\langle {100} \right\rangle $ loop with 60 self interstitial atoms at 150 MPa in pure V: (a) t = 0 ps; (b) t = 20 ps; (c) t = 24 ps; (d) t = 28 ps; (e) t = 36 ps.

    图 6  纯V中位错与间隙数为144的$ \left\langle {100} \right\rangle $环的相互作用(a) t = 0 ps; (b) t = 22 ps; (c) t = 160 ps

    Figure 6.  Interaction between dislocation and $ \left\langle {100} \right\rangle $ loop with 144 self interstitial atoms in pure V: (a) t = 0 ps; (b) t = 22 ps; (c) t = 160 ps.

    图 7  纯V中位错与间隙数为64的$ \left\langle {111} \right\rangle $环的相互作用(a) t = 16 ps; (b) t = 20 ps; (c) t = 24 ps

    Figure 7.  Interaction between dislocation and $ \left\langle {111} \right\rangle $ loop with 64 self interstitial atoms in pure V: (a) t = 16 ps; (b) t = 20 ps; (c) t = 24 ps.

    图 8  纯V中位错与间隙数为144的$ \left\langle {111} \right\rangle $环的相互作用(a) t = 0 ps; (b) t = 20 ps; (c) t = 22 ps; (d) t = 76 ps; (e) t = 118 ps; (f) t = 124 ps

    Figure 8.  Interaction between dislocation and $ \left\langle {111} \right\rangle $ loop with 144 self interstitial atoms in pure V: (a) t = 0 ps; (b) t = 20 ps; (c) t = 22 ps; (d) t = 76 ps; (e) t = 118 ps; (f) t = 124 ps.

    图 9  TiVTa合金中刃位错与$ \left\langle {111} \right\rangle $环的可视化图像

    Figure 9.  Edge dislocation and $ \left\langle {111} \right\rangle $ loop in TiVTa alloy.

    图 10  TiVTa合金中位错与间隙数为60的$ \left\langle {100} \right\rangle $环的相互作用 (a) t = 0 ps; (b) t = 132 ps; (c) t = 144 ps

    Figure 10.  Interaction between dislocation and $ \left\langle {100} \right\rangle $ loop with 60 self interstitial atoms in TiVTa alloy: (a) t = 0 ps; (b) t = 132 ps; (c) t = 144 ps.

    图 11  TiVTa合金中位错与间隙数为64的$ \left\langle {111} \right\rangle $环的相互作用 (a) t = 0 ps; (b) t = 160 ps; (c) t = 212 ps

    Figure 11.  Interaction between dislocation and $ \left\langle {111} \right\rangle $ loop with 64 self interstitial atoms in TiVTa alloy: (a) t = 0 ps; (b) t = 160 ps; (c) t = 212 ps.

    图 12  550 MPa下TiVTa合金中位错与间隙数为400的$ \left\langle {111} \right\rangle $环的相互作用 (a) t = 0 ps; (b) t = 32 ps; (c) t = 36 ps; (d) t = 52 ps; (e) t = 60 ps

    Figure 12.  Interaction between dislocation and $ \left\langle {111} \right\rangle $ loop with 400 self interstitial atoms in TiVTa alloy at 550 MPa: (a) t = 0 ps; (b) t = 32 ps; (c) t = 36 ps; (d) t = 52 ps; (e) t = 60 ps.

    图 13  550 MPa下TiVTa合金中位错与间隙数为416的$ \left\langle {100} \right\rangle $环的相互作用 (a) t = 0 ps; (b) t = 28 ps; (c) t = 60 ps; (d) t = 68 ps

    Figure 13.  Interaction between dislocation and $ \left\langle {100} \right\rangle $ loop with 416 self interstitial atoms in TiVTa alloy at 550 MPa: (a) t = 0 ps; (b) t = 28 ps; (c) t = 60 ps; (d) t = 68 ps.

    图 14  700 K下纯V中位错与间隙数为144的$ \left\langle {100} \right\rangle $环的相互作用 (a) t = 0 ps; (b) t = 24 ps; (c) t = 28 ps; (d) t = 40 ps; (e) t = 48 ps

    Figure 14.  Interaction between dislocation and $ \left\langle {100} \right\rangle $ loop with 144 self interstitial atoms at 700 K in pure V: (a) t = 0 ps; (b) t = 24 ps; (c) t = 28 ps; (d) t = 40 ps; (e) t = 48 ps.

  • [1]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [2]

    Senkov O N, Wilks G B, Scott J M, Miracle D B 2011 Intermetallics 19 698Google Scholar

    [3]

    Couzinié J P, Dirras G 2019 Mater. Charact. 147 533Google Scholar

    [4]

    Fu A, Guo W M, Liu B, Cao Y K, Xu L Y, Fang Q H, Yang H, Liu Y 2020 J. Alloys Compd. 815 152466Google Scholar

    [5]

    Yang C, Aoyagi K, Bian H K, Chiba A 2019 Mater. Lett. 254 46Google Scholar

    [6]

    Sadeghilaridjani M, Ayyagari A, Muskeri S, Hasannaeimi V, Salloom R, Chen W Y, Mukherjee S 2020 J. Nucl. Mater. 529 151955Google Scholar

    [7]

    Kareer A, Waite J C, Li B, Couet A, Armstrong D E J, Wilkinson A J 2019 J. Nucl. Mater. 526 151744Google Scholar

    [8]

    El-Atwani O, Alvarado A, Unal K, Fensin S, Hinks J A, Greaves G, Baldwin J K S, Maloy S A, Martinez E 2021 Mater. Today Energy 19 100599Google Scholar

    [9]

    Lu Y P, Huang H F, Gao X Z, Ren C L, Gao J, Zhang H Z, Zheng S J, Jin Q Q, Zhao Y H, Lu C Y, Wang T M, Li T J 2019 J. Mater. Sci. Technol. 35 369Google Scholar

    [10]

    Mei L, Zhang Q, Dou Y, Fu E G, Li L, Chen S, Dong Y, Guo X, He X, Yang W, Xue Y, Jin K 2023 Scr. Mater. 223 115070Google Scholar

    [11]

    George E P, Raabe D, Ritchie R O 2019 Nat. Rev. Mater. 4 515Google Scholar

    [12]

    Chen B, Li S Z, Zong H X, Ding X D, Sun J, Ma E 2020 Proc. Natl. Acad. Sci. U. S. A. 117 16199Google Scholar

    [13]

    Lee C, Maresca F, Feng R, Chou Y, Ungar T, Widom M, An K, Poplawsky J D, Chou Y C, Liaw P K, Curtin W A 2021 Nat. Commun. 12 5474Google Scholar

    [14]

    Yin X, Dou Y K, He X F, Jin K, Wang C L, Dong Y G, Wang C Y, Xue Y F, Yang W 2023 Acta Metall. Sin. (Engl. Lett. ) 36 405Google Scholar

    [15]

    Bacon D J, Osetsky Y N, Rong Z 2006 Philos. Mag. 86 3921Google Scholar

    [16]

    Marian J, Wirth B D, Schäublin R, Odette G R, Perlado J M 2003 J. Nucl. Mater. 323 181Google Scholar

    [17]

    Rong Z, Osetsky Y N, Bacon D J 2005 Philos. Mag. 85 1473Google Scholar

    [18]

    Nomoto A, Soneda N, Takahashi A, Ishino S 2005 Mater. Trans. 46 463Google Scholar

    [19]

    林盼栋, 聂君锋, 刘美丹 2022 清华大学学报 (自然科学版) 62 2029Google Scholar

    Lin P D, Nie J F, Liu M D 2022 J. Tsinghua Univ. (Sci. Technol. ) 62 2029Google Scholar

    [20]

    王瑾, 贺新福, 曹晗, 王东杰, 豆艳坤, 杨文 2021 原子能科学技术 55 1210Google Scholar

    Wang J, He X F, Cao H, Wang D J, Dou Y K, Yang W 2021 At. Energy Sci. Technol. 55 1210Google Scholar

    [21]

    王瑾, 贺新福, 曹晗, 贾丽霞, 豆艳坤, 杨文 2021 物理学报 70 068701Google Scholar

    Wang J, He X F, Cao H, Jia L X, Dou Y K, Yang W 2021 Acta Phys. Sin. 70 068701Google Scholar

    [22]

    Yu M S, Wang Z Q, Wang F, Setyawan W, Long X H, Liu Y, Dong L M, Gao N, Gao F, Wang X L 2023 Acta Mater. 245 118651Google Scholar

    [23]

    Li J, Chen H T, Fang Q H, Jiang C, Liu Y, Liaw P K 2020 Int. J. Plast. 133 102819Google Scholar

    [24]

    Dou Y K, Cao H, He X F, Gao J, Cao J L, Yang W 2021 J. Alloys Compd. 857 157556Google Scholar

    [25]

    Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, in't Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C, Plimpton S J 2022 Comput. Phys. Commun. 271 108171Google Scholar

    [26]

    Daw M S, Foiles S M, Baskes M I 1993 Mater. Sci. Rep. 9 251Google Scholar

    [27]

    Stukowski A 2009 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [28]

    Qiu R Y, Chen Y C, Liao X C, He X F, Yang W, Hu W Y, Deng H Q 2021 J. Nucl. Mater. 557 153231Google Scholar

    [29]

    Chen B, Li S Z, Ding J, Ding X D, Sun J, Ma E 2023 Scr. Mater. 222 115048Google Scholar

    [30]

    Ma E 2020 Scr. Mater. 181 127Google Scholar

    [31]

    Wang F L, Balbus G H, Xu S Z, Su Y Q, Shin J, Rottmann P F, Knipling K E, Stinville J C, Mills L H, Senkov O N, Beyerlein I J, Pollock T M, Gianola D S 2020 Science 370 95Google Scholar

    [32]

    Kubilay R E, Ghafarollahi A, Maresca F, Curtin W A 2021 npj Comput. Mater. 7 112Google Scholar

    [33]

    Bu Y Q, Wu Y, Lei Z F, Yuan X Y, Wu H H, Feng X B, Liu J B, Ding J, Lu Y, Wang H T, Lu Z P, Yang W 2021 Mater. Today 46 28Google Scholar

  • [1] Zhao Yong-Peng, Dou Yan-Kun, He Xin-Fu, Yang Wen. Cascade overlap simulation of formation of dislocation loops in Ti-V-Ta multi-principal element alloy. Acta Physica Sinica, 2024, 73(22): 226102. doi: 10.7498/aps.73.20241074
    [2] Wen Peng,  Tao Gang. Molecular dynamics study of the effect of temperature on the shock response and plastic deformation mechanism of CoCrFeMnNi high-entropy alloys. Acta Physica Sinica, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221621
    [3] Ding Ye-Zhang, Ye Yin, Li Duo-Sheng, Xu Feng, Lang Wen-Chang, Liu Jun-Hong, Wen Xin. Molecular dynamics simulation of graphene deposition and growth on WC-Co cemented carbides. Acta Physica Sinica, 2023, 72(6): 068703. doi: 10.7498/aps.72.20221332
    [4] Xu Chi, Wan Fa-Rong. Analysis of dislocation characteristics and inside-outside contrasts in irradiated and annealed tungsten as a fusion reactor material. Acta Physica Sinica, 2023, 72(5): 056801. doi: 10.7498/aps.72.20222124
    [5] Qin Meng-Fei, Wang Ying-Min, Zhang Hong-Yu, Sun Ji-Zhong. Molecular dynamics simulation of dynamic migration of $\boldsymbol {\langle 100\rangle} $ interstitial dislocation loops under (010) surfaces of pure W and W containing helium impurity. Acta Physica Sinica, 2023, 72(24): 245204. doi: 10.7498/aps.72.20230651
    [6] Wen Peng, Tao Gang. Molecular dynamics study of temperature effects on shock response and plastic deformation mechanism of CoCrFeMnNi high-entropy alloys. Acta Physica Sinica, 2022, 71(24): 246101. doi: 10.7498/aps.71.20221621
    [7] Li Ran-Ran, Zhang Yi-Fan, Yin Yu-Peng, Watanabe Hideo, Han Wen-Tuo, Yi Xiao-Ou, Liu Ping-Ping, Zhang Gao-Wei, Zhan Qian, Wan Fa-Rong. In-situ study of one-dimensional motion of interstitial-type dislocation loops in hydrogen-ion-implanted aluminum. Acta Physica Sinica, 2022, 71(1): 016102. doi: 10.7498/aps.71.20211229
    [8] Zhou Ming-Jin, Hou Qing, Pan Rong-Jian, Wu Lu, Fu Bao-Qin. Molecular dynamics study of special quasirandom structure of Zr-Nb alloys. Acta Physica Sinica, 2021, 70(3): 033103. doi: 10.7498/aps.70.20201407
    [9] An in-situ study of one-dimensional motion of interstitial-type dislocation loops in hydrogen-ion-implanted aluminum. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211229
    [10] Wang Jin, He Xin-Fu, Cao Han, Jia Li-Xia, Dou Yan-Kun, Yang Wen. Screw dislocation slip and its interaction with ½[${{11}}\bar {{1}}$] dislocation loop in bcc-Fe at different temperatures. Acta Physica Sinica, 2021, 70(6): 068701. doi: 10.7498/aps.70.20201659
    [11] Zhu Qi, Wang Sheng-Tao, Zhao Fu-Qi, Pan Hao. Effect of stacking fault tetrahedron on spallation of irradiated Cu via molecular dynamics study. Acta Physica Sinica, 2020, 69(3): 036201. doi: 10.7498/aps.69.20191425
    [12] Liang Jin-Jie, Gao Ning, Li Yu-Hong. Surface effect on ${\langle 100 \rangle }$ interstitial dislocation loop in iron. Acta Physica Sinica, 2020, 69(3): 036101. doi: 10.7498/aps.69.20191379
    [13] Liang Jin-Jie, Gao Ning, Li Yu-Hong. Effect of interstitial ${\left\langle {100} \right\rangle }$ dislocation loop on expansion of micro-crack in body centered cubic iron investigated by molecular dynamics method. Acta Physica Sinica, 2020, 69(11): 116102. doi: 10.7498/aps.69.20200317
    [14] Cui Li-Juan, Gao Jin, Du Yu-Feng, Zhang Gao-Wei, Zhang Lei, Long Yi, Yang Shan-Wu, Zhan Qian, Wan Fa-Rong. Characterization of dislocation loops in hydrogen-ion irradiated vanadium. Acta Physica Sinica, 2016, 65(6): 066102. doi: 10.7498/aps.65.066102
    [15] Wu Wen-Ping, Guo Ya-Fang, Wang Yue-Sheng, Xu Shuang. Evolution of interphase misfit dislocation networks in Ni-based single crystal superalloy under shear loading. Acta Physica Sinica, 2011, 60(5): 056802. doi: 10.7498/aps.60.056802
    [16] Zhu Tao, Wang Chong-Yu, Gan Yong. Evolution of interphase misfit dislocation networks in Ni-based single-crystal superalloy. Acta Physica Sinica, 2009, 58(13): 156-S160. doi: 10.7498/aps.58.156
    [17] Lu Guo, Fang Bu-Qing, Zhang Guang-Cai, Xu Ai-Guo. Separating of dislocation ring at finite temperature. Acta Physica Sinica, 2009, 58(11): 7934-7946. doi: 10.7498/aps.58.7934
    [18] Zhou Nai-Gen, Zhou Lang. Prevention of misfit dislocations by using nano pillar crystal array substrates. Acta Physica Sinica, 2008, 57(5): 3064-3070. doi: 10.7498/aps.57.3064
    [19] Zhang Chao, Wang Yong-Liang, Yan Chao, Zhang Qing-Yu. Numerical simulation of the influence of substitutional impurity on the interaction between low-energy Pt atoms and Pt(111) surface. Acta Physica Sinica, 2006, 55(6): 2882-2891. doi: 10.7498/aps.55.2882
    [20] Zhou Nai-Gen, Zhou Lang. Conditions for formation of misfit dislocation in epitaxial films — a molecular dynamics study. Acta Physica Sinica, 2005, 54(7): 3278-3283. doi: 10.7498/aps.54.3278
Metrics
  • Abstract views:  450
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Received Date:  23 December 2024
  • Accepted Date:  16 January 2025
  • Available Online:  17 February 2025
  • Published Online:  05 April 2025

/

返回文章
返回