Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics study on drag reduction mechanism of active gas layer at micro/nano fluid-solid interfaces

ZHANG Yanru GAO Xiang NING Hongyang ZHANG Fujian SONG Yunyun ZHANG Zhongqiang LIU Zhen

Citation:

Molecular dynamics study on drag reduction mechanism of active gas layer at micro/nano fluid-solid interfaces

ZHANG Yanru, GAO Xiang, NING Hongyang, ZHANG Fujian, SONG Yunyun, ZHANG Zhongqiang, LIU Zhen
cstr: 32037.14.aps.74.20250289
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Friction resistance is the primary factor influencing the energy consumption and speed of underwater vehicles. Active air layer drag reduction is an active boundary layer control technique that reduces wall friction drag by injecting gas into the solid-liquid boundary layer. Compared with other drag reduction methods, which are often difficult to scale due to high costs and potential environmental concerns, this technology utilizes a simple auxiliary device. By employing inexpensive and environmentally friendly compressed air or combustion exhaust gases, it effectively lowers fluid resistance. Therefore, active drag reduction technology plays a crucial role in minimizing friction and enhancing overall performance. In this study, molecular dynamics simulations are used to construct a Couette flow shear model, with gas injected at the boundaries of a nanochannel. The flow characteristics and boundary drag reduction of Couette flow in a nanochannel is investigated in this work. The influence of gas injection on these characteristics is examined, along with the effects of surface wettability, shear velocity, and gas injection rate on boundary slip velocity and drag reduction. The results indicate that the gas adsorption on the solid surface in the form of discrete bubbles hinders liquid flowing and slipping near the wall, leading to the increase of drag. However, increasing surface hydrophobicity, shear rate, and gas injection rate facilitates the transverse spreading of bubbles, reduces flow obstruction, and enhances slip. Additionally, these factors promote the formation of a continuous gas layer from discrete bubbles, further improving drag reduction. Once the gas layer forms, shear stress decreases significantly, and slip velocity varies with surface wettability, shear velocity, and gas injection rate. These findings provide a theoretical foundation for developing the active gas layer drag reduction technology and optimizing the surface structures in ships and underwater vehicles.
      Corresponding author: ZHANG Zhongqiang, zhangzq@ujs.edu.cn ; LIU Zhen, liuzhen@just.edu.cn
    • Funds: Project supported by the Key Development Program for Frontier Technologies of Jiangsu Province, China (Grant No. BF2024047) and the National Natural Science Foundation of China (Grant Nos. 12272151, 52005222, 92248301).
    [1]

    Sindagi S, Vijayakumar R 2021 Ships Offshore Struct. 16 968Google Scholar

    [2]

    Fu Y F, Yuan C Q, Bai X Q 2017 Biosurf. Biotribol. 3 11Google Scholar

    [3]

    Ceccio S L 2010 Annu. Rev. Fluid Mech. 42 183Google Scholar

    [4]

    康晓宣, 胡建新, 林昭武, 潘定一 2023 力学学报 55 1087Google Scholar

    Kang X X, Hu J X, Lin Z W, Pan D Y 2023 Chin. J. Theor. Appl. Mech. 55 1087Google Scholar

    [5]

    李芳, 赵刚, 刘维新, 张殊, 毕红时 2015 物理学报 64 034703Google Scholar

    Li F, Zhao G, Liu W X, Zhang S, Bi H S 2015 Acta Phys. Sin. 64 034703Google Scholar

    [6]

    张晨远, 张智嘉, 丛巍巍, 魏浩, 张松松 2023 化学通报 86 863Google Scholar

    Zhang C Y, Zhang Z J, Cong W W, Wei H, Zhang S S 2023 Chemistry 86 863Google Scholar

    [7]

    Pakzad H, Liravi M, Moosavi A, Nouri B A, Najafkhani H 2020 Appl. Sur. Sci. 513 145754Google Scholar

    [8]

    Yue P P, Zhang M, Zhao T, Liu P, Peng F, Yang L Q 2024 Ind. Crop. Prod. 214 118523Google Scholar

    [9]

    Makiharju S A, Perlin M, Ceccio S L 2012 Int. J. Nav. Arch. Ocean 4 412Google Scholar

    [10]

    McCormick M E, Bhattacharyya R 1973 Naval Engineers Journal 85 11Google Scholar

    [11]

    Kumagai I, Takahashi Y, Murai Y 2015 Ocean Eng. 95 183Google Scholar

    [12]

    Gao Q D, Lu J S, Zhang G L, Zhang J W, Wu W F, Deng J J 2023 Ocean Eng. 272 113804Google Scholar

    [13]

    Zhao X J, Zong Z 2022 Ocean Eng. 251 111032Google Scholar

    [14]

    Tanaka T, Oishi Y, Park H J, Tasaka Y, Murai Y, Kawakita C 2023 Ocean Eng. 272 113807Google Scholar

    [15]

    Samuel A, Jia W D, Ou M X, Wang P, Gong C 2019 Appl. Eng. Agric. 35 795Google Scholar

    [16]

    Dabbour M, He R H, Mintah B, Ma H L 2019 J. Food Process Eng. 42 e13084Google Scholar

    [17]

    Jiang Y, Li H, Hua L, Zhang D M 2020 Biosyst. Eng. 193 216Google Scholar

    [18]

    张鹏, 张彦如, 张福建, 刘珍, 张忠强 2024 物理学报 73 154701Google Scholar

    Zhang P, Zhang Y R, Zhang F J, Liu Z, Zhang Z Q 2024 Acta Phys. Sin. 73 154701Google Scholar

    [19]

    刘汉伦, 张忠强, 郝茂磊, 程广贵, 丁建宁 2018 气体物理 3 32Google Scholar

    Liu H L, Zhang Z Q, Hao M L, Cheng G G, Ding J N 2018 Phys. Gases 3 32Google Scholar

    [20]

    Killian B, Alizée D, Thierry C, Paul L, Laurent V, Jean-François M 2025 Comput. Phys. Commun. 307 109427Google Scholar

    [21]

    Weijs J H, Snoeijer J H, Lohse D 2012 Phys. Rev. Lett. 108 104501Google Scholar

    [22]

    Mustafa O, Sophia J, Ali B, Adam A W 2025 Int. Commun. Heat Mass 163 108658Google Scholar

    [23]

    Meng J Q, Wang J, Wang L J, Lyu C H, Lyu Y P, Nie B H 2024 Colloid. Surf. A 684 133126Google Scholar

    [24]

    Qiu H, Guo W L 2019 J. Phys. Chem. Lett. 10 6316.Google Scholar

    [25]

    Yang J H, Yuan Q Z, Zhao Y P 2019 Sci. China Phys. Mech. 62 124611Google Scholar

    [26]

    García-Magariño A, Lopez-Gavilan P, Sor S, Terroba F 2023 J. Mar. Sci. Eng. 11 1315Google Scholar

    [27]

    Kitagawa A, Denissenko P, Murai Y 2019 Exp. Therm. Fluid Sci. 104 141Google Scholar

    [28]

    Tang S, Zhu Y, Yuan S 2023 J. Bionic Eng. 20 2797Google Scholar

    [29]

    Hu H, Wang D, Ren F, Bao L, Priezjev N V, Wen J 2018 Int. J. Multiphase Flow 104 166Google Scholar

    [30]

    吕鹏宇, 薛 亚辉, 段慧玲 2016 力学进展 46 179Google Scholar

    Lyu P Y, Xue Y H, Duan H L 2016 Adv. Mech. 46 179Google Scholar

  • 图 1  (a) Couette流剪切流动及通气系统模型示意图; (b) 模型主要尺寸; (c) 不同边界条件下气体形态图

    Figure 1.  (a) Schematic diagram of Couette flow shear flow and ventilation system model; (b) main dimensions of the model; (c) gas morphology diagram under different boundary conditions.

    图 2  不同固-气耦合强度下, (a)气体形态图, 以及(b), (c)液体原子速度轮廓图, 其中(b)气泡, (c)气膜

    Figure 2.  (a) Gas morphology and (b), (c) liquid atomic velocity profiles under different solid-gas interaction strengths, where (b) represents bubbles and (c) represents the gas layer.

    图 3  不同固-气耦合强度下, (a)边界滑移速度变化图和(b) 剪切应力变化图

    Figure 3.  Boundary slip velocity (a) and shear stress (b) under different solid-gas interaction strengths.

    图 4  不同固-气相互作用强度下的密度分布图 (a)无气体; (b)气泡; (c)气膜

    Figure 4.  Density distribution under different solid-gas interaction strengths: (a) Without gas; (b) with bubble; (c) with gas layer.

    图 5  不同剪切速度下, (a) 气体形态图, (b) 边界滑移速度和剪切应力图, 以及(c) 液体原子密度分布图

    Figure 5.  (a) Gas morphology, (b) boundary slip velocity and shear stress, and (c) liquid atomic density distribution in the bubbles state under different shear velocities.

    图 6  形成气膜后不同剪切速度下, (a) 气体形态图和(b) 液体原子速度轮廓图(其中半透明的线条为对照的无气体通入时的液体原子速度)

    Figure 6.  (a) Gas morphology and (b) liquid atomic velocity profile under different shear velocities after the formation of gas layer. In panel (b), the translucent lines represent the liquid atomic velocity without gas injection for comparison.

    图 7  不同剪切速度下, (a) 边界滑移速度图、(b) 剪切应力图和(c) 液体原子速度轮廓图(气膜)

    Figure 7.  (a) Boundary slip velocity, (b) shear stress, and (c) liquid atomic velocity profile in the gas layer state under different shear velocities.

    图 8  通入不同气体原子数量时, (a) 气体形态图、(b) 液体原子速度轮廓、(c) 边界滑移速度及剪切应力图和(d) 液体原子密度分布图

    Figure 8.  (a) Gas morphology, (b) liquid atomic velocity profile, (c) boundary slip velocity and shear stress, and (d) liquid atomic density distribution in the bubbles state under different numbers of injected gas atoms.

    图 9  通入不同气体原子数量时, (a)气体形态图、(b)液体原子速度轮廓、(c)边界滑移速度及剪切应力图和(d) 液体原子密度分布图(气膜)

    Figure 9.  (a) Gas morphology, (b) liquid atomic velocity profile, (c) boundary slip velocity and shear stress, and (d) liquid atomic density distribution in the gas layer state under different numbers of injected gas atoms.

    表 1  三相相互作用势能参数

    Table 1.  Potential energy parameter of three-phase interaction.

    两相类型 ε/(kBT )/(kcal·mol–1) σ
    固-固 1.2 3.4
    液-液 1.2 3.4
    气-气 0.4 5.0
    固-液 0.7 3.4
    固-气 1.0 4.2
    液-气 0.4 4.488
    DownLoad: CSV
  • [1]

    Sindagi S, Vijayakumar R 2021 Ships Offshore Struct. 16 968Google Scholar

    [2]

    Fu Y F, Yuan C Q, Bai X Q 2017 Biosurf. Biotribol. 3 11Google Scholar

    [3]

    Ceccio S L 2010 Annu. Rev. Fluid Mech. 42 183Google Scholar

    [4]

    康晓宣, 胡建新, 林昭武, 潘定一 2023 力学学报 55 1087Google Scholar

    Kang X X, Hu J X, Lin Z W, Pan D Y 2023 Chin. J. Theor. Appl. Mech. 55 1087Google Scholar

    [5]

    李芳, 赵刚, 刘维新, 张殊, 毕红时 2015 物理学报 64 034703Google Scholar

    Li F, Zhao G, Liu W X, Zhang S, Bi H S 2015 Acta Phys. Sin. 64 034703Google Scholar

    [6]

    张晨远, 张智嘉, 丛巍巍, 魏浩, 张松松 2023 化学通报 86 863Google Scholar

    Zhang C Y, Zhang Z J, Cong W W, Wei H, Zhang S S 2023 Chemistry 86 863Google Scholar

    [7]

    Pakzad H, Liravi M, Moosavi A, Nouri B A, Najafkhani H 2020 Appl. Sur. Sci. 513 145754Google Scholar

    [8]

    Yue P P, Zhang M, Zhao T, Liu P, Peng F, Yang L Q 2024 Ind. Crop. Prod. 214 118523Google Scholar

    [9]

    Makiharju S A, Perlin M, Ceccio S L 2012 Int. J. Nav. Arch. Ocean 4 412Google Scholar

    [10]

    McCormick M E, Bhattacharyya R 1973 Naval Engineers Journal 85 11Google Scholar

    [11]

    Kumagai I, Takahashi Y, Murai Y 2015 Ocean Eng. 95 183Google Scholar

    [12]

    Gao Q D, Lu J S, Zhang G L, Zhang J W, Wu W F, Deng J J 2023 Ocean Eng. 272 113804Google Scholar

    [13]

    Zhao X J, Zong Z 2022 Ocean Eng. 251 111032Google Scholar

    [14]

    Tanaka T, Oishi Y, Park H J, Tasaka Y, Murai Y, Kawakita C 2023 Ocean Eng. 272 113807Google Scholar

    [15]

    Samuel A, Jia W D, Ou M X, Wang P, Gong C 2019 Appl. Eng. Agric. 35 795Google Scholar

    [16]

    Dabbour M, He R H, Mintah B, Ma H L 2019 J. Food Process Eng. 42 e13084Google Scholar

    [17]

    Jiang Y, Li H, Hua L, Zhang D M 2020 Biosyst. Eng. 193 216Google Scholar

    [18]

    张鹏, 张彦如, 张福建, 刘珍, 张忠强 2024 物理学报 73 154701Google Scholar

    Zhang P, Zhang Y R, Zhang F J, Liu Z, Zhang Z Q 2024 Acta Phys. Sin. 73 154701Google Scholar

    [19]

    刘汉伦, 张忠强, 郝茂磊, 程广贵, 丁建宁 2018 气体物理 3 32Google Scholar

    Liu H L, Zhang Z Q, Hao M L, Cheng G G, Ding J N 2018 Phys. Gases 3 32Google Scholar

    [20]

    Killian B, Alizée D, Thierry C, Paul L, Laurent V, Jean-François M 2025 Comput. Phys. Commun. 307 109427Google Scholar

    [21]

    Weijs J H, Snoeijer J H, Lohse D 2012 Phys. Rev. Lett. 108 104501Google Scholar

    [22]

    Mustafa O, Sophia J, Ali B, Adam A W 2025 Int. Commun. Heat Mass 163 108658Google Scholar

    [23]

    Meng J Q, Wang J, Wang L J, Lyu C H, Lyu Y P, Nie B H 2024 Colloid. Surf. A 684 133126Google Scholar

    [24]

    Qiu H, Guo W L 2019 J. Phys. Chem. Lett. 10 6316.Google Scholar

    [25]

    Yang J H, Yuan Q Z, Zhao Y P 2019 Sci. China Phys. Mech. 62 124611Google Scholar

    [26]

    García-Magariño A, Lopez-Gavilan P, Sor S, Terroba F 2023 J. Mar. Sci. Eng. 11 1315Google Scholar

    [27]

    Kitagawa A, Denissenko P, Murai Y 2019 Exp. Therm. Fluid Sci. 104 141Google Scholar

    [28]

    Tang S, Zhu Y, Yuan S 2023 J. Bionic Eng. 20 2797Google Scholar

    [29]

    Hu H, Wang D, Ren F, Bao L, Priezjev N V, Wen J 2018 Int. J. Multiphase Flow 104 166Google Scholar

    [30]

    吕鹏宇, 薛 亚辉, 段慧玲 2016 力学进展 46 179Google Scholar

    Lyu P Y, Xue Y H, Duan H L 2016 Adv. Mech. 46 179Google Scholar

  • [1] YANG Huan, ZHENG Yujun. Geometric Phase in Molecular Dynamics. Acta Physica Sinica, 2025, 74(15): . doi: 10.7498/aps.74.20250388
    [2] Chen Jing-Jing, Zhao Hong-Po, Wang Kui, Zhan Hui-Min, Luo Ze-Yu. Molecular dynamics simulation of mechanical strengthening properties of SiC substrate covered with multilayer graphene. Acta Physica Sinica, 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [3] Zhang Peng, Zhang Yan-Ru, Zhang Fu-Jian, Liu Zhen, Zhang Zhong-Qiang. Mechanism of boundary bubble drag reduction of Couette flow in nano-confined domain. Acta Physica Sinica, 2024, 73(15): 154701. doi: 10.7498/aps.73.20240474
    [4] Zhang Yu-Hang, Li Xiao-Bao, Zhan Chun-Xiao, Wang Mei-Qin, Pu Yu-Xue. Molecular dynamics simulation study on mechanical properties of Janus MoSSe monolayer. Acta Physica Sinica, 2023, 72(4): 046201. doi: 10.7498/aps.72.20221815
    [5] Diwu Min-Jie, Hu Xiao-Mian. Molecular dynamics simulation of shock-induced isostructural phase transition in single crystal Ce. Acta Physica Sinica, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [6] Mei Tao, Chen Zhan-Xiu, Yang Li, Zhu Hong-Man, Miao Rui-Can. Molecular dynamics study of interface thermal resistance in asymmetric nanochannel. Acta Physica Sinica, 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [7] Li Jie-Jie, Lu Bin-Bin, Xian Yue-Hui, Hu Guo-Ming, Xia Re. Characterization of nanoporous silver mechanical properties by molecular dynamics simulation. Acta Physica Sinica, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [8] Dong Qi-Qi, Hu Hai-Bao, Chen Shao-Qiang, He Qiang, Bao Lu-Yao. Molecular dynamics simulation of freezing process of water droplets impinging on cold surface. Acta Physica Sinica, 2018, 67(5): 054702. doi: 10.7498/aps.67.20172174
    [9] Zhang Bao-Ling, Song Xiao-Yong, Hou Qing, Wang Jun. Molecular dynamics study on the phase transition of high density helium. Acta Physica Sinica, 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [10] Wang Cheng-Long, Wang Qing-Yu, Zhang Yue, Li Zhong-Yu, Hong Bing, Su Zhe, Dong Liang. Molecular dynamics study of cascade damage at SiC/C interface. Acta Physica Sinica, 2014, 63(15): 153402. doi: 10.7498/aps.63.153402
    [11] Chang Xu. Ripples of multilayer graphenes:a molecular dynamics study. Acta Physica Sinica, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [12] Zhou Hua-Guang, Lin Xin, Wang Meng, Huang Wei-Dong. Calculation of crystal-melt interfacial free energy of Cu by molecular dynamics simulation. Acta Physica Sinica, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [13] Wei Qi, E Wen-Ji. Thermodynamic analyses of dewetting instability in thin films. Acta Physica Sinica, 2012, 61(16): 160508. doi: 10.7498/aps.61.160508
    [14] Ma Ying. Variable charge molecular dynamics simulation of vitreous silica. Acta Physica Sinica, 2011, 60(2): 026101. doi: 10.7498/aps.60.026101
    [15] Zhang Liang, Fu Wei-Ji, Zhang Li-Feng, Wu Hai-Yan, Huang Hong. On the evolution of Couette flow energy. Acta Physica Sinica, 2010, 59(3): 1437-1448. doi: 10.7498/aps.59.1437
    [16] Shao Jian-Li, Wang Pei, Qin Cheng-Sen, Zhou Hong-Qiang. Shock-induced phase transformations of iron studied with molecular dynamics. Acta Physica Sinica, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [17] Luo Jin, Zhu Wen-Jun, Lin Li-Bin, He Hong-Liang, Jing Fu-Qian. Molecular dynamics simulation of void growth in single crystal copper under uniaxial impacting. Acta Physica Sinica, 2005, 54(6): 2791-2798. doi: 10.7498/aps.54.2791
    [18] Wang Hai-Long, Wang Xiu-Xi, Liang Hai-Yi. Molecular dynamics simulation of strain effects on surface melting for metal Cu. Acta Physica Sinica, 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
    [19] Liang Hai-Ge, Wang Xiu-Xi, Wu Heng-An, Wang Yu and. . Acta Physica Sinica, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [20] Wu Heng-An, Ni Xiang-Gui, Wang Yu, Wang Xiu-Xi. . Acta Physica Sinica, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
Metrics
  • Abstract views:  381
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Received Date:  06 March 2025
  • Accepted Date:  23 March 2025
  • Available Online:  24 April 2025
  • Published Online:  20 June 2025

/

返回文章
返回