Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental research on low-noise and high-gain balanced detectors in mHz−MHz band

LU Bo SHI Shaoping GAO Li WANG Xuan LIN Yisong TIAN Long LI Wei WANG Yajun ZHENG Yaohui

Citation:

Experimental research on low-noise and high-gain balanced detectors in mHz−MHz band

LU Bo, SHI Shaoping, GAO Li, WANG Xuan, LIN Yisong, TIAN Long, LI Wei, WANG Yajun, ZHENG Yaohui
cstr: 32037.14.aps.74.20250640
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Balanced detector is a fundamental component for the accurately measuring quantum state fluctuations, especially quantum noise, which is crucial for future quantum-enhanced interferometric gravitational wave detectors utilizing squeezed light. By using a transimpedance amplifier (TIA) model core for balanced detection, a detailed theoretical and practical analysis is conducted on the electronic factors that affect the performance of the detector in the target ultra-low-frequency range. The TIA stage is meticulously designed using a high-performance integrated operational amplifier characterized by low offset voltage drift. In order to ensure the critical gain stability for ultra-low-frequency operation, this design adopts low temperature-drift metal foil resistors. Subsequent voltage amplification is achieved using a noninverting amplifier configuration to attain the necessary high electrical gain, while strictly managing overall electronic noise. By recognizing the criticality of common-mode noise rejection for quantum noise measurements, the photodiode (PD) nonlinear response compensation mechanism is analyzed and optimized. This is achieved through the innovative implementation of a differential fine-tuning circuit (DFTC) coupled with an adjustable bias voltage (ABV) compensation scheme. Experimental validation confirms the effectiveness of the optimized design. The compensation scheme utilizing DFTC and ABV successfully achieves a high common mode rejection ratio (CMRR) exceeding 75 dB@500 Hz. Crucially, the detector achieves an electronic noise spectral density of 3.5 × 10–5 V/Hz1/2 within the 1 mHz–1 Hz band, exceeding the requirements for laser intensity noise (1 × 10–4 V/Hz1/2) in space-based gravitational wave detection. Furthermore, the detector demonstrates high gain capability and bandwidth: with an incident detection light power of 4 mW, the balanced detector achieves a gain of 20 dB maintained in a wide frequency range from 1 mHz to 1 MHz. This work presents the design, detailed analysis, and experimental realization of optimized balanced detectors specifically tailored for high-sensitivity measurements in the millihertz gravitational wave frequency band. The achieved low electronic noise base below 1 Hz and high CMRR meet the key requirements for future space-based gravitational wave detectors to detect squeezed states of light. This optimized balanced detector provides important components and technical support for the next-generation space-based gravitational wave detection and millihertz squeezed light characterization.
      Corresponding author: SHI Shaoping, ssp4208@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62035015, 62225504, 62027821, U22A6003, 12304399, 12174234, 12274275, 62375162), the Fundamental Research Program of Shanxi Province, China (Grant Nos. 202303021212003, 202303021224006), and the Key R&D Program of Shanxi Province, China (Grant No. 202302150101015).
    [1]

    Abbott R, Abbott T D, Abraham S, Acernese F, Ackley K, Adams A, Adams C, Adhikari R X, Adya V B, Affeldt C 2020 Phys. Rev. Lett. 125 101102Google Scholar

    [2]

    Vitale S 2021 Science 372 eabc7397Google Scholar

    [3]

    Abbott T D, Abraham S, Acernese F, et al. 2020 Astrophys. J. Lett. 896 L44Google Scholar

    [4]

    李庆回, 李卫, 孙瑜, 王雅君, 田龙, 陈力荣, 张鹏飞, 郑耀辉 2022 物理学报 71 164203Google Scholar

    Li Q H, Li W, Sun Y, Wang Y J, Tian L, Chen L R, Zhang P F, Zheng Y H 2022 Acta Phys. Sin. 71 164203Google Scholar

    [5]

    王在渊, 王洁浩, 李宇航, 柳强 2023 物理学报 72 054205Google Scholar

    Wang Z Y, Wang J H, Li Y H, Liu Q 2023 Acta Phys. Sin. 72 054205Google Scholar

    [6]

    Jia W X, Xu V, Kuns K, et al. 2024 Science 385 1318Google Scholar

    [7]

    McCuller L, Whittle C, Ganapathy D, Komori K, Tse K, Fernandez-Galiana A, Barsotti L, Fritschel P, MacInnis M, Matichard F, Mason K, Mavalvala N, Mittleman R, Yu H C, Zucker M E, Evans M 2020 Phys. Rev. Lett. 124 171102Google Scholar

    [8]

    Aasi J, Abadie J, Abbott B P, Abbott R, et al. 2013 Nat. Photonics 7 613Google Scholar

    [9]

    Acernese F, Agathos M, Aiello L, et al. 2019 Phys. Rev. Lett. 123 231108Google Scholar

    [10]

    Mikhail K, Ma Y Q, Chen Y B, Schnabel R 2019 Light: Sci. Appl. 8 118Google Scholar

    [11]

    Harry G M, LIGO Scientific Collaboration 2010 Classical Quantum Gravity 27 084006Google Scholar

    [12]

    Matichard F, Lantz B, Mittleman R, et al. 2015 Classical Quantum Gravity 32 185003Google Scholar

    [13]

    Thorne K S, Winstein C J 1999 Phys. Rev. D 60 082001Google Scholar

    [14]

    Acernese F, Agathos M, Agatsuma K, et al. 2014 Classical Quantum Gravity 32 024001Google Scholar

    [15]

    Luo J, Chen L S, Duan H Z, Gong Y G, Hu S C, Ji J H, Liu Q, Mei J W, Milyukov V, Sazhin M, Shao C G, Toth V T, Tu H B, Wang Y M, Wang Y, Yeh H C, Zhan M S, Zhang Y H, Zharov V, Zhou Z B 2016 Classical Quantum Gravity 33 035010Google Scholar

    [16]

    Jennrich O 2009 Classical Quantum Gravity 26 153001Google Scholar

    [17]

    Luo Z R, Wang Y, Wu Y L, Hu W R, Jin G 2021 Prog. Theor. Exp. Phys. 2021 05A108Google Scholar

    [18]

    Luo Z R, Guo Z K, Jin G, Wu Y L, Hu W R 2020 Results Phys. 16 102918Google Scholar

    [19]

    罗子人, 白姗, 边星, 陈葛瑞, 董鹏, 董玉辉, 高伟, 龚雪飞, 贺建武, 李洪银, 李向前, 李玉琼, 刘河山, 邵明学, 宋同消, 孙保三, 唐文林, 徐鹏, 徐生年, 杨然, 靳刚 2013 力学进展 43 415Google Scholar

    Luo Z R, Bai S, Bian X, Chen G R, Dong P, Dong Y H, Gao W, Gong X F, He J W, Li H Y, Li X Q, Li Y Q, Liu H S, Shao M X, Song T X, Sun B S, Tang W L, Xu P, Xu S N, Yang R, Jin G 2013 Adv. Mech. 43 415Google Scholar

    [20]

    Badaracco F, Rossi C D, Fiori I, Harms J, Miyo K, Paoletti F, Tanaka T, Washimi T, Yokozawa T 2021 Phys. Rev. D 104 042006Google Scholar

    [21]

    Stefszky M S, Mow-Lowry C M, Chua S S Y, Shaddock D A, Buchler B C, Vahlbruch H, Khalaidovski A, Schnabel R, Lam P K, McClelland D E 2012 Classical Quantum Gravity 29 145015Google Scholar

    [22]

    尚鑫, 李番, 马正磊, 黄天时, 党昊, 李卫, 尹王保, 田龙, 陈力荣, 郑耀辉 2025 物理学报 74 059501Google Scholar

    Shang X, LI F, Ma Z L, Huang T S, Dang H, LI W, Yin W B, Tian L, Cheng L R, Zheng Y H 2025 Acta Phys. Sin. 74 059501Google Scholar

    [23]

    McKenzie K, Gray M B, Lam P K, McClelland D E 2007 Appl. Opt. 46 3389Google Scholar

    [24]

    Schnabel R, Mavalvala N, McClelland D E, Lam P K 2010 Nat. Commun. 1 122Google Scholar

    [25]

    Vahlbruch H, Chelkowski S, Danzmann K, Schnabel R 2007 New J. Phys. 9 371Google Scholar

    [26]

    Wu M C, Schmittberger B L, Brewer N R, Speirs R W, Jones K M, Lett P D 2019 Opt. Express 27 4769Google Scholar

    [27]

    Meylahn F, Willke B, Vahlbruch H 2022 Phys. Rev. Lett. 129 121103Google Scholar

    [28]

    Gao L, Zheng L A., Lu B, Shi S P, Tian L, Zheng Y H 2024 Light: Sci. Appl. 13 294Google Scholar

    [29]

    Yang W H, Jin X L, Yu X D, Zheng Y H, Peng K C 2017 Opt. Express 25 24262Google Scholar

    [30]

    王炜杰, 李番, 李健博, 鞠明健, 郑立昂, 田宇航, 尹王保, 田龙, 郑耀辉 2022 红外与激光工程 51 20220300Google Scholar

    Wang W J, Li F, Li J B, Ju M J, Zheng L A, Tian Y H, Yin W B, Tian L, Zheng Y H 2022 Infrared Laser Eng. 51 20220300Google Scholar

    [31]

    Wu Y M, Tian L, Yao W X, Shi S P, Liu X, Lu B, Wang Y J, Zheng Y H 2024 Appl. Phys. Lett. 124 114002Google Scholar

    [32]

    Shi S P, Tian L, Wang Y J, Zheng Y H, Xie C D, Peng K C 2020 Phys. Rev. Lett. 125 070502Google Scholar

    [33]

    史少平, 武奕淼, 刘璇, 田龙, 郑耀辉 2024 量子光学学报 30 040102Google Scholar

    Shi S P, Wu Y M, Liu X, Tian L, Zheng Y H 2024 J. Quantum Opt. 30 040102Google Scholar

    [34]

    王鼎康, 武晋泽, 宋志刚, 李晋红 2024 量子光学学报 30 041001Google Scholar

    Wang D K, Wu J Z, Song Z G, Li J H 2024 J. Quantum Opt. 30 041001Google Scholar

    [35]

    Graeme J 1996 Photodiode amplifiers: op amp solutions (New York: McGraw-Hill) pp87–92

    [36]

    Lu Q, Shen Q, Cao Y, Liao S K, Peng C Z 2019 IEEE Trans. Nucl. Sci. 66 1048Google Scholar

    [37]

    AD797: Ultralow Distortion, Ultralow Noise Op Amp Data Sheet (Rev. K) https://www.analog.com/media/en/technical-documentation/data-sheets/AD797.pdf [2025-5-12]

    [38]

    AD8671/AD8672/AD8674: Precision, Very Low Noise, Low Input Bias Current Operational Amplifiers Data Sheet (Rev. F) https://www.analog.com/media/en/technical-documentation/data-sheets/AD8671_8672_8674.pdf [2025-5-12]

    [39]

    Jin X L, Su J, Zheng Y H, Chen C Y, Wang W Z, Peng K C 2015 Opt. Express 23 23859Google Scholar

    [40]

    李番, 王嘉伟, 高子超, 李健博, 安炳南, 李瑞鑫, 白禹, 尹王保, 田龙, 郑耀辉 2022 物理学报 71 209501Google Scholar

    Li F, Wang J W, Gao Z C, Li J B, An B N, Li R X, Bai Y, Yin W B, Tian L, Zheng Y H 2022 Acta Phys. Sin. 71 209501Google Scholar

  • 图 1  基于TIA的平衡光电探测器示意图(OPA1/2, 运算放大器1/2; PD, 光电二极管; Vbias, 偏置电压; VAC, 交流电压信号; VDC, 直流电压信号)

    Figure 1.  Schematic diagram of the balanced detector based on TIA. OPA1/2, operational amplifier 1/2; PD, photodiode; Vbias, bias voltage; VAC, AC voltage signal; VDC, DC voltage signal.

    图 2  光电二极管和TIA的等效电路模型

    Figure 2.  Noise response model of photodiode and TIA.

    图 3  平衡光电探测器电路原理图(FER, 磁珠; RP, 滑动变阻器)

    Figure 3.  Circuit layout of balanced detector. FER, ferrite bead; RP, variable resistor.

    图 4  基于LTspice软件的电路仿真图 (a) 时域参数扫描分析图; (b) 频域参数扫描分析图

    Figure 4.  Electronic circuit simulation based on LTspice software: (a) Time domain parameter scan analysis results; (b) frequency domain parameter scan analysis results.

    图 5  平衡光电探测器性能测试评估装置图(ISO, 光学隔离器; HWP, 半波片; PBS, 偏振分束器; EOAM, 电光振幅调制器; SG, 信号发生器; BHD, 平衡光电探测器; SA, 频谱分析仪; OSC, 示波器; Meter, 高精度数字万用表)

    Figure 5.  Balanced detector performance test and evaluation device. ISO, isolator; HWP, half-wave plate; PBS, polarization beam splitter; EOAM, electro-optic amplitude modulator; SG, signal generator; BHD, balanced homodyne detector; SA, spectrum analyzer; OSC, oscilloscope; Meter, high-precision digital multimeter.

    图 6  平衡光电探测器CMRR测试图

    Figure 6.  CMRR of the balanced detector.

    图 7  平衡光电探测器线性度测试噪声谱表征 (a) 1 kHz—1.5 MHz频段性能的测量结果; (b) 1 mHz—1 Hz频段性能的测量结果

    Figure 7.  Balanced detector linearity test noise spectral characterization: (a) Measured noise spectra from 1 kHz to 1.5 MHz; (b) noise power spectrum from 1 Hz downwards to 1 mHz.

  • [1]

    Abbott R, Abbott T D, Abraham S, Acernese F, Ackley K, Adams A, Adams C, Adhikari R X, Adya V B, Affeldt C 2020 Phys. Rev. Lett. 125 101102Google Scholar

    [2]

    Vitale S 2021 Science 372 eabc7397Google Scholar

    [3]

    Abbott T D, Abraham S, Acernese F, et al. 2020 Astrophys. J. Lett. 896 L44Google Scholar

    [4]

    李庆回, 李卫, 孙瑜, 王雅君, 田龙, 陈力荣, 张鹏飞, 郑耀辉 2022 物理学报 71 164203Google Scholar

    Li Q H, Li W, Sun Y, Wang Y J, Tian L, Chen L R, Zhang P F, Zheng Y H 2022 Acta Phys. Sin. 71 164203Google Scholar

    [5]

    王在渊, 王洁浩, 李宇航, 柳强 2023 物理学报 72 054205Google Scholar

    Wang Z Y, Wang J H, Li Y H, Liu Q 2023 Acta Phys. Sin. 72 054205Google Scholar

    [6]

    Jia W X, Xu V, Kuns K, et al. 2024 Science 385 1318Google Scholar

    [7]

    McCuller L, Whittle C, Ganapathy D, Komori K, Tse K, Fernandez-Galiana A, Barsotti L, Fritschel P, MacInnis M, Matichard F, Mason K, Mavalvala N, Mittleman R, Yu H C, Zucker M E, Evans M 2020 Phys. Rev. Lett. 124 171102Google Scholar

    [8]

    Aasi J, Abadie J, Abbott B P, Abbott R, et al. 2013 Nat. Photonics 7 613Google Scholar

    [9]

    Acernese F, Agathos M, Aiello L, et al. 2019 Phys. Rev. Lett. 123 231108Google Scholar

    [10]

    Mikhail K, Ma Y Q, Chen Y B, Schnabel R 2019 Light: Sci. Appl. 8 118Google Scholar

    [11]

    Harry G M, LIGO Scientific Collaboration 2010 Classical Quantum Gravity 27 084006Google Scholar

    [12]

    Matichard F, Lantz B, Mittleman R, et al. 2015 Classical Quantum Gravity 32 185003Google Scholar

    [13]

    Thorne K S, Winstein C J 1999 Phys. Rev. D 60 082001Google Scholar

    [14]

    Acernese F, Agathos M, Agatsuma K, et al. 2014 Classical Quantum Gravity 32 024001Google Scholar

    [15]

    Luo J, Chen L S, Duan H Z, Gong Y G, Hu S C, Ji J H, Liu Q, Mei J W, Milyukov V, Sazhin M, Shao C G, Toth V T, Tu H B, Wang Y M, Wang Y, Yeh H C, Zhan M S, Zhang Y H, Zharov V, Zhou Z B 2016 Classical Quantum Gravity 33 035010Google Scholar

    [16]

    Jennrich O 2009 Classical Quantum Gravity 26 153001Google Scholar

    [17]

    Luo Z R, Wang Y, Wu Y L, Hu W R, Jin G 2021 Prog. Theor. Exp. Phys. 2021 05A108Google Scholar

    [18]

    Luo Z R, Guo Z K, Jin G, Wu Y L, Hu W R 2020 Results Phys. 16 102918Google Scholar

    [19]

    罗子人, 白姗, 边星, 陈葛瑞, 董鹏, 董玉辉, 高伟, 龚雪飞, 贺建武, 李洪银, 李向前, 李玉琼, 刘河山, 邵明学, 宋同消, 孙保三, 唐文林, 徐鹏, 徐生年, 杨然, 靳刚 2013 力学进展 43 415Google Scholar

    Luo Z R, Bai S, Bian X, Chen G R, Dong P, Dong Y H, Gao W, Gong X F, He J W, Li H Y, Li X Q, Li Y Q, Liu H S, Shao M X, Song T X, Sun B S, Tang W L, Xu P, Xu S N, Yang R, Jin G 2013 Adv. Mech. 43 415Google Scholar

    [20]

    Badaracco F, Rossi C D, Fiori I, Harms J, Miyo K, Paoletti F, Tanaka T, Washimi T, Yokozawa T 2021 Phys. Rev. D 104 042006Google Scholar

    [21]

    Stefszky M S, Mow-Lowry C M, Chua S S Y, Shaddock D A, Buchler B C, Vahlbruch H, Khalaidovski A, Schnabel R, Lam P K, McClelland D E 2012 Classical Quantum Gravity 29 145015Google Scholar

    [22]

    尚鑫, 李番, 马正磊, 黄天时, 党昊, 李卫, 尹王保, 田龙, 陈力荣, 郑耀辉 2025 物理学报 74 059501Google Scholar

    Shang X, LI F, Ma Z L, Huang T S, Dang H, LI W, Yin W B, Tian L, Cheng L R, Zheng Y H 2025 Acta Phys. Sin. 74 059501Google Scholar

    [23]

    McKenzie K, Gray M B, Lam P K, McClelland D E 2007 Appl. Opt. 46 3389Google Scholar

    [24]

    Schnabel R, Mavalvala N, McClelland D E, Lam P K 2010 Nat. Commun. 1 122Google Scholar

    [25]

    Vahlbruch H, Chelkowski S, Danzmann K, Schnabel R 2007 New J. Phys. 9 371Google Scholar

    [26]

    Wu M C, Schmittberger B L, Brewer N R, Speirs R W, Jones K M, Lett P D 2019 Opt. Express 27 4769Google Scholar

    [27]

    Meylahn F, Willke B, Vahlbruch H 2022 Phys. Rev. Lett. 129 121103Google Scholar

    [28]

    Gao L, Zheng L A., Lu B, Shi S P, Tian L, Zheng Y H 2024 Light: Sci. Appl. 13 294Google Scholar

    [29]

    Yang W H, Jin X L, Yu X D, Zheng Y H, Peng K C 2017 Opt. Express 25 24262Google Scholar

    [30]

    王炜杰, 李番, 李健博, 鞠明健, 郑立昂, 田宇航, 尹王保, 田龙, 郑耀辉 2022 红外与激光工程 51 20220300Google Scholar

    Wang W J, Li F, Li J B, Ju M J, Zheng L A, Tian Y H, Yin W B, Tian L, Zheng Y H 2022 Infrared Laser Eng. 51 20220300Google Scholar

    [31]

    Wu Y M, Tian L, Yao W X, Shi S P, Liu X, Lu B, Wang Y J, Zheng Y H 2024 Appl. Phys. Lett. 124 114002Google Scholar

    [32]

    Shi S P, Tian L, Wang Y J, Zheng Y H, Xie C D, Peng K C 2020 Phys. Rev. Lett. 125 070502Google Scholar

    [33]

    史少平, 武奕淼, 刘璇, 田龙, 郑耀辉 2024 量子光学学报 30 040102Google Scholar

    Shi S P, Wu Y M, Liu X, Tian L, Zheng Y H 2024 J. Quantum Opt. 30 040102Google Scholar

    [34]

    王鼎康, 武晋泽, 宋志刚, 李晋红 2024 量子光学学报 30 041001Google Scholar

    Wang D K, Wu J Z, Song Z G, Li J H 2024 J. Quantum Opt. 30 041001Google Scholar

    [35]

    Graeme J 1996 Photodiode amplifiers: op amp solutions (New York: McGraw-Hill) pp87–92

    [36]

    Lu Q, Shen Q, Cao Y, Liao S K, Peng C Z 2019 IEEE Trans. Nucl. Sci. 66 1048Google Scholar

    [37]

    AD797: Ultralow Distortion, Ultralow Noise Op Amp Data Sheet (Rev. K) https://www.analog.com/media/en/technical-documentation/data-sheets/AD797.pdf [2025-5-12]

    [38]

    AD8671/AD8672/AD8674: Precision, Very Low Noise, Low Input Bias Current Operational Amplifiers Data Sheet (Rev. F) https://www.analog.com/media/en/technical-documentation/data-sheets/AD8671_8672_8674.pdf [2025-5-12]

    [39]

    Jin X L, Su J, Zheng Y H, Chen C Y, Wang W Z, Peng K C 2015 Opt. Express 23 23859Google Scholar

    [40]

    李番, 王嘉伟, 高子超, 李健博, 安炳南, 李瑞鑫, 白禹, 尹王保, 田龙, 郑耀辉 2022 物理学报 71 209501Google Scholar

    Li F, Wang J W, Gao Z C, Li J B, An B N, Li R X, Bai Y, Yin W B, Tian L, Zheng Y H 2022 Acta Phys. Sin. 71 209501Google Scholar

  • [1] SHANG Xin, LI Fan, MA Zhenglei, HUANG Tianshi, DANG Hao, LI Wei, YIN Wangbao, TIAN Long, CHEN Lirong, ZHENG Yaohui. Experimental study of ultra-low noise photodetectors in 0.1 mHz–1 Hz frequency band. Acta Physica Sinica, 2025, 74(5): 059501. doi: 10.7498/aps.74.20241635
    [2] Chen Zhi-Gang, Zhang Wei-Jun, Zhang Xing-Yu, Wang Yu-Ze, Xiong Jia-Min, Hong Yi-Yu, Yuan Pu-Sheng, Wu Ling, Wang Zhen, You Li-Xing. Cryogenic DC-coupled readout electronics for high-speed superconducting nanowire single-photon detectors based on a commercial operational amplifier. Acta Physica Sinica, 2024, 73(13): 138501. doi: 10.7498/aps.73.20240398
    [3] Zhao Wei, Fu Shi-Jie, Sheng Quan, Xue Kai, Shi Wei, Yao Jian-Quan. Suppression effect of auxiliary laser on stimulated Raman scattering effect of high-power Yb-doped fiber laser amplifier. Acta Physica Sinica, 2024, 73(20): 204201. doi: 10.7498/aps.73.20240895
    [4] Guo Zhong-Kai, Li Yong-Gang, Yu Bo-Cheng, Zhou Shi-Chao, Meng Qing-Yu, Lu Xin-Xin, Huang Yi-Fan, Liu Gui-Peng, Lu Jun. Research progress of lock-in amplifiers. Acta Physica Sinica, 2023, 72(22): 224206. doi: 10.7498/aps.72.20230579
    [5] Wang Zai-Yuan, Wang Jie-Hao, Li Yu-Hang, Liu Qiang. Millihertz band low-intensity-noise single-frequency laser for space gravitational wave detection. Acta Physica Sinica, 2023, 72(5): 054205. doi: 10.7498/aps.72.20222127
    [6] Sheng Quan, Wang Meng, Shi Chao-Du, Tian Hao, Zhang Jun-Xiang, Liu Jun-Jie, Shi Wei, Yao Jian-Quan. High-power narrow-linewidth single-frequency pulsed fiber amplifier based on self-phase modulation suppression via sawtooth-shaped pulses. Acta Physica Sinica, 2021, 70(21): 214202. doi: 10.7498/aps.70.20210496
    [7] Tang Yong-Hui, Zheng Zhu, Xie Shi-Meng, Huang Lin, Jiang Hua-Bei. Thermoacoustic imaging based on noise suppression of multi-channel amplifier and additive circuit. Acta Physica Sinica, 2020, 69(24): 240701. doi: 10.7498/aps.69.20201036
    [8] Xue Jia, Qin Ji-Liang, Zhang Yu-Chi, Li Gang, Zhang Peng-Fei, Zhang Tian-Cai, Peng Kun-Chi. Measurement of standard vacuum noise at low frequencies. Acta Physica Sinica, 2016, 65(4): 044211. doi: 10.7498/aps.65.044211
    [9] Qi Xiao-Meng, Peng Wen-Bo, Zhao Xiao-Long, He Yong-Ning. Photoconductive UV detector based on high-resistance ZnO thin film. Acta Physica Sinica, 2015, 64(19): 198501. doi: 10.7498/aps.64.198501
    [10] Hong Qing-Hui, Li Zhi-Jun, Zeng Jin-Fang, Zeng Yi-Cheng. Design and simulation of a memristor chaotic circuit based on current feedback op amp. Acta Physica Sinica, 2014, 63(18): 180502. doi: 10.7498/aps.63.180502
    [11] Chen Zhao-Fu, Huang Hua, Chang An-Bi, Xu Zhou, He Hu, Lei Lu-Rong, Hu Jin-Guang, Yuan Huan, Liu Zhen-Bang. Investigation and suppression of pulse shortening problem caused by non-working mode self-excitation in an S-band long pulse relativistic klystron amplifier. Acta Physica Sinica, 2014, 63(23): 238402. doi: 10.7498/aps.63.238402
    [12] Chen Yong-Dong, Jin Xiao, Li Zheng-Hong, Huang Hua, Wu Yang. Investigation of suppression of non-working mode oscillation in a high gain relativistic klystron amplifier. Acta Physica Sinica, 2012, 61(22): 228501. doi: 10.7498/aps.61.228501
    [13] Zhang Rong, Guo Xu-Guang, Cao Jun-Cheng. Simulation and optimization of grating optical coupling of terahertz quantum well photodetector. Acta Physica Sinica, 2011, 60(5): 050705. doi: 10.7498/aps.60.050705
    [14] Yang Ruo-Fu, Yang Ping, Shen Feng. Experimental research on phase detection and correction of two fiber amplifier based on active segmented mirrors. Acta Physica Sinica, 2009, 58(12): 8297-8301. doi: 10.7498/aps.58.8297
    [15] Wang Chun-Can, Zhang Fan, Tong Zhi, Ning Ti-Gang, Jian Shui-Sheng. Study on the suppression of the stimulated Brillouin scattering in high-power single-frequency multicore fiber amplifier. Acta Physica Sinica, 2008, 57(8): 5035-5044. doi: 10.7498/aps.57.5035
    [16] Zhang Chun-Fu, Hao Yue, You Hai-Long, Zhang Jin-Feng, Zhou Xiao-Wei. Influence of interface dipoles on the UV/solar rejection ratios of GaN/AlGaN/GaN photodetectors. Acta Physica Sinica, 2005, 54(8): 3810-3814. doi: 10.7498/aps.54.3810
    [17] ZHAO HONG-ZHI, DONG TAI-QIAN. A NEW TYPE OF QUANTUM MECHANICAL AMPLIFIER ——TRANSITION BEAT AMPLIFIEP. Acta Physica Sinica, 1987, 36(11): 1526-1528. doi: 10.7498/aps.36.1526
    [18] WANG CHIH-CHIANG. THE RUBY OPTICAL MASER. Acta Physica Sinica, 1964, 20(1): 63-71. doi: 10.7498/aps.20.63
    [19] CHENG CHUNG-CHIH, HWA JUNG-JENG. ANALYSIS OF PHASE AND GAIN CHARACTERISTICS OF TRAVELLING-WAVE TYPE NEGATIVE-RESISTANCE AMPLIFIERS. Acta Physica Sinica, 1963, 19(7): 425-441. doi: 10.7498/aps.19.425
    [20] CHUO CHI-TSANG, SHIUH GEN-TWEN. ON CURRENT AMPLIFICATION IN POINT CONTACT TRANSISTORS. Acta Physica Sinica, 1958, 14(4): 317-334. doi: 10.7498/aps.14.317
Metrics
  • Abstract views:  722
  • PDF Downloads:  25
  • Cited By: 0
Publishing process
  • Received Date:  15 May 2025
  • Accepted Date:  23 June 2025
  • Available Online:  19 July 2025
  • Published Online:  20 September 2025
  • /

    返回文章
    返回