Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of photovoltaic and thermoelectric properties of AgBiSCl2

WANG Sihang CHEN Menghan ZHANG Liping

Citation:

First-principles study of photovoltaic and thermoelectric properties of AgBiSCl2

WANG Sihang, CHEN Menghan, ZHANG Liping
cstr: 32037.14.aps.74.20250650
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • This work systematically investigates the potential of the hybrid anion semiconductor AgBiSCl2 for photovoltaic and thermoelectric applications, aiming to provide theoretical guidance for high-performance energy conversion devices. Structural analysis reveals favorable ductility and a relatively low Debye temperature (219 K). Electronic structure calculations show that AgBiSCl2 is a direct band gap semiconductor, with a gap of approximately 1.72 eV after including spin-orbit coupling effects. The conduction band is mainly derived from Bi 6p orbitals, while the valence band is dominated by contributions from Ag 4d, Cl 3p, and S 3p orbitals.Analysis of interatomic interactions indicates that Ag—S and Ag—Cl bonds are relatively weak, resulting in local structural softness and enhanced lattice anharmonicity. These weak bonds facilitate phonon scattering and give rise to low-frequency localized “rattling” vibrations primarily associated with Ag atoms, contributing to reduced lattice thermal conductivity. In contrast, Bi—S bonds exhibit stronger, more directional interactions, which help stabilize the overall structure. The coexistence of weak bonding and strong lattice coupling enables favorable modulation of thermal transport properties.Optically, AgBiSCl2 possesses a high static dielectric constant (ε1(0) = 5.60) and exhibits strong absorption in the ultraviolet region, with absorption coefficients rapidly exceeding 1 × 106 cm–1. A theoretical solar conversion efficiency of up to 28.06% is predicted for a 3 μm-thick absorber layer, highlighting its potential as a high-performance photovoltaic material.In terms of thermal transport, phonon spectra exhibit mode hardening with temperature increasing, while flat optical branches in the 30–70 cm–1 range enhance phonon scattering. The localized Ag vibrations intensify the anharmonicity, reducing phonon lifetimes and group velocities. As a result, at 300 K, the lattice thermal conductivities via the Peierls and coherent channels are calculated to be 0.246 W·m–1·K–1 and 0.132 W·m–1·K–1, respectively. For electronic transport, the p-type material maintains a higher Seebeck coefficient than the n-type, while the latter shows greater electrical conductivity. At 700 K, the thermoelectric figure of merit (ZT ) reaches 0.77 for p-type and 0.69 for n-type AgBiSCl2, indicating promising high-temperature thermoelectric performance.In summary, AgBiSCl2 exhibits excellent potential for dual photovoltaic and thermoelectric applications. Its unique bonding features and lattice response mechanisms offer valuable insights into designing multifunctional energy conversion materials.
      Corresponding author: ZHANG Liping, 3391@cumt.edu.cn
    • Funds: Project supported by the Industry-University-Research Collaborative Innovation Fund of the Jiangsu Provincial Department of Science and Technology, China(Grant No. BY2013019-07).
    [1]

    Kato D, Hongo K, Maezono R, Higashi M, Kunioku H, Yabuuchi M, Suzuki H, Okajima H, Zhong C, Nakano K, Abe R, Kageyama H 2017 J. Am. Chem. Soc. 139 18725Google Scholar

    [2]

    Luu S D N, Vaqueiro P 2016 J. Materiomics 2 131Google Scholar

    [3]

    Ghorpade U V, Suryawanshi M P, Green M A, Wu T, Hao X, Ryan K M 2023 Chem. Rev. 123 327Google Scholar

    [4]

    Kageyama H, Hayashi K, Maeda K, Attfield J P, Hiroi Z, Rondinelli J M, Poeppelmeier K R 2018 Nat. Commun. 9 772Google Scholar

    [5]

    Gibson Q D, Zhao T, Daniels L M, Walker H C, Daou R, Hébert S, Zanella M, Dyer M S, Claridge J B, Slater B, Gaultois M W, Corà F, Alaria J, Rosseinsky M J 2021 Science 373 1017Google Scholar

    [6]

    Majhi K, Pal K, Lohani H, Banerjee A, Mishra P, Yadav A K, Ganesan R, Sekhar B R, Waghmare U V, Anil Kumar P S 2017 Appl. Phys. Lett. 110 162102Google Scholar

    [7]

    Qiu W J, Xi L L, Wei P, Ke X Z, Yang J H, Zhang W Q 2014 PNAS 111 15031Google Scholar

    [8]

    Xie L, Feng J H, Li R, He J Q 2020 Phys. Rev. Lett. 125 245901Google Scholar

    [9]

    Ruck M, Poudeu Poudeu P F, Söhnel T 2004 Z. Anorg. Allg. Chem. 630 63Google Scholar

    [10]

    Quarta D, Toso S, Fieramosca A, Dominici L, Caliandro R, Moliterni A, Tobaldi D M, Saleh G, Gushchina I, Brescia R, Prato M, Infante I, Cola A, Giannini C, Manna L, Gigli G, Giansante C 2023 Chem. Mater. 35 9900Google Scholar

    [11]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [12]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [13]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [14]

    Heyd J, Peralta J E, Scuseria G E, Martin R L 2005 J. Chem. Phys. 123 174101Google Scholar

    [15]

    Saha S, Sinha T P, Mookerjee A 2000 J. Phys. Condens. Matter 12 3325Google Scholar

    [16]

    Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

    [17]

    Ganose A M, Park J, Faghaninia A, Woods-Robinson R, Persson K A, Jain A 2021 Nat. Commun. 12 2222Google Scholar

    [18]

    Ramawat S, Kukreti S, Dixit A 2023 Phys. Rev. Materials 7 085403Google Scholar

    [19]

    Natarajan A R, Gupta M K, Mittal R, Kanchana V 2023 Mater. Today Commun. 34 105309Google Scholar

    [20]

    Rode D L 1975 Semiconductors and Semimetals (Elsevier) pp1–89

    [21]

    Tadano T, Tsuneyuki S 2015 Phys. Rev. B 92 054301Google Scholar

    [22]

    Tadano T, Gohda Y, Tsuneyuki S 2014 J. Phys.: Condens. Matter. 26 225402Google Scholar

    [23]

    Zhou F, Sadigh B, Åberg D, Xia Y, Ozoliņš V 2019 Phys. Rev. B 100 184309Google Scholar

    [24]

    Ju Z, Ma D K, Chang Z 2025 Phys. Rev. B 111 134302Google Scholar

    [25]

    Zheng J Z, Lin C P, Lin C J, Hautier G, Guo R Q, Huang B L 2024 npj Comput. Mater. 10 30Google Scholar

    [26]

    Xie Q Y, Xiao F, Zhang K W, Wang B T 2024 Phys. Rev. B 110 045203Google Scholar

    [27]

    Xiao F, Xie Q Y, Ming X, Li H, Zhang J R, Wang B T 2024 Phys. Rev. B 109 245202Google Scholar

    [28]

    Xie Q Y, Ma J J, Liu Q Y, Liu P F, Zhang P, Zhang K W, Wang B T 2022 Phys. Chem. Chem. Phys. 24 7303Google Scholar

    [29]

    Simoncelli M, Marzari N, Mauri F 2019 Nat. Phys. 15 809Google Scholar

    [30]

    Simoncelli M, Marzari N, Mauri F 2022 Phys. Rev. X 12 041011Google Scholar

    [31]

    Slack G A 1973 J. Phys. Chem. Solids 34 321Google Scholar

    [32]

    Hao Y Z, Che J W, Wang X Y, Li X J, Lookman T, Sun J, Ding X D, Gao Z B 2025 Phys. Rev. B 111 195207Google Scholar

    [33]

    Cutler M, Leavy J F, Fitzpatrick R L 1964 Phys. Rev. 133 A1143Google Scholar

    [34]

    Yu L, Zunger A 2012 Phys. Rev. Lett. 108 068701Google Scholar

    [35]

    Zhu C, Liu Y, Wang D, Zhu Z, Zhou P, Tu Y, Yang G, Chen H, Zang Y, Du J, Yan W 2024 Cell Rep. Phys. Sci. 5 102321Google Scholar

    [36]

    Basera P, Bhattacharya S 2022 J. Phys. Chem. Lett. 13 6439Google Scholar

    [37]

    Xia Y, Ozoliņš V, Wolverton C 2020 Phys. Rev. Lett. 125 085901Google Scholar

    [38]

    Tadano T, Saidi W A 2022 Phys. Rev. Lett. 129 185901Google Scholar

    [39]

    Li W, Mingo N 2014 Phys. Rev. B 89 184304Google Scholar

    [40]

    Christensen M, Abrahamsen A B, Christensen N B, Juranyi F, Andersen N H, Lefmann K, Andreasson J, Bahl C R H, Iversen B B 2008 Nature Mater 7 811Google Scholar

    [41]

    Allen P B, Feldman J L 1989 Phys. Rev. Lett. 62 645Google Scholar

    [42]

    Zheng J Z, Shi D L, Yang Y W, Lin C J, Huang H, Guo R Q, Huang B L 2022 Phys. Rev. B 105 224303Google Scholar

    [43]

    郑建军, 张丽萍 2023 物理学报 72 086301Google Scholar

    Zheng J J, Zhang L P 2023 Acta Phys. Sin. 72 086301Google Scholar

    [44]

    Chen X K, Zhu J, Qi M, Jia P Z, Xie Z X 2025 Phys. Rev. Appl. 23 034085Google Scholar

  • 图 1  (a) AgBiSCl2的晶体结构; (b)电子局域函数; (c)最近邻原子对的COHP分析; (d)能带结构(考虑HSE06); (e)能带结构(考虑HSE06+SOC); (f)态密度

    Figure 1.  (a) Crystal structure of AgBiSCl2; (b) electron localization function; (c) COHP analysis of nearest-neighbor atom pairs; (d) band structure (HSE06); (e) band structure (HSE06 + SOC); (f) density of states.

    图 2  (a) 介电函数实部; (b) 介电函数虚部; (c) 光吸收系数; (d) 反射率; (e) 折射率; (f) SLME

    Figure 2.  (a) Real part of the dielectric function; (b) imaginary part of the dielectric function; (c) optical absorption coefficient; (d) reflectivity; (e) refractive index; (f) SLME.

    图 3  (a) AgBiSCl2不同温度下的声子谱; (b) 温度为0 K时的声学支和低频光学支; (c) 温度300 K, 500 K和700 K时的声子态密度; (d) 不同温度下均方位移

    Figure 3.  (a) Phonon dispersion of AgBiSCl2 at different temperatures; (b) acoustic branches and low-frequency optical branches at 0 K; (c) density of states at 300 K, 500 K, and 700 K; (d) root-mean-square displacement at different temperatures.

    图 4  (a) AgBiSCl2温度依赖的晶格热导率; (b) 温度为300 K时热导率和累积热导率随频率的变化

    Figure 4.  (a) Temperature-dependent lattice thermal conductivity of AgBiSCl2; (b) variation of thermal conductivity and cumulative thermal conductivity with frequency at 300 K.

    图 5  (a) 群速度; (b) Grüneisen常数; (c) 声子寿命(黑色表示Wigner极限, 紫色表示Ioffe-Regel极限); (d) 三声子散射相空间

    Figure 5.  (a) Group velocity; (b) Grüneisen parameter; (c) phonon lifetime (black denotes the Wigner limit, purple denotes the Ioffe–Regel limit); (d) three-phonon scattering phase space.

    图 6  在300 K时(a)—(c) a, bc方向相干热导率模式特定贡献的三维可视化

    Figure 6.  Three-dimensional visualization of mode-specific contributions to coherent thermal conductivity along (a)−(c) the a, b, and c directions at 300 K.

    图 7  AgBiSCl2的电输运参数与载流子浓度关系 (a), (d) 塞贝克系数; (b), (e) 电导率; (c), (f) 功率因子

    Figure 7.  Electrical transport parameters of AgBiSCl2 as a function of carrier concentration: (a), (d) Seebeck coefficient; (b), (e) electrical conductivity; (c), (f) power factor.

    图 8  AgBiSCl2在(a) p型掺杂和(b) n型掺杂下的ZT

    Figure 8.  ZT of AgBiSCl2 at different temperatures: (a) p-type doping; (b) n-type doping.

    表 1  AgBiSCl2空穴和电子的有效质量(m0 = 9.1 × 10–31 kg)

    Table 1.  Effective masses of holes and electrons of AgBiSCl2 (m0 = 9.1 × 10–31 kg).

    Carrier typemx/m0my/m0mz/m0
    h0.8730.8730.666
    e0.2740.2740.537
    DownLoad: CSV

    表 2  零频率下 AgBiSCl2 的介电常数、反射率与折射率

    Table 2.  Calculated zero-frequency dielectric constant, reflectivity, and refractive index of AgBiSCl2.

    ParametersabcAverage
    ε1(0)5.845.085.275.40
    R(0)0.170.150.150.16
    n(0)2.422.252.32.32
    DownLoad: CSV
  • [1]

    Kato D, Hongo K, Maezono R, Higashi M, Kunioku H, Yabuuchi M, Suzuki H, Okajima H, Zhong C, Nakano K, Abe R, Kageyama H 2017 J. Am. Chem. Soc. 139 18725Google Scholar

    [2]

    Luu S D N, Vaqueiro P 2016 J. Materiomics 2 131Google Scholar

    [3]

    Ghorpade U V, Suryawanshi M P, Green M A, Wu T, Hao X, Ryan K M 2023 Chem. Rev. 123 327Google Scholar

    [4]

    Kageyama H, Hayashi K, Maeda K, Attfield J P, Hiroi Z, Rondinelli J M, Poeppelmeier K R 2018 Nat. Commun. 9 772Google Scholar

    [5]

    Gibson Q D, Zhao T, Daniels L M, Walker H C, Daou R, Hébert S, Zanella M, Dyer M S, Claridge J B, Slater B, Gaultois M W, Corà F, Alaria J, Rosseinsky M J 2021 Science 373 1017Google Scholar

    [6]

    Majhi K, Pal K, Lohani H, Banerjee A, Mishra P, Yadav A K, Ganesan R, Sekhar B R, Waghmare U V, Anil Kumar P S 2017 Appl. Phys. Lett. 110 162102Google Scholar

    [7]

    Qiu W J, Xi L L, Wei P, Ke X Z, Yang J H, Zhang W Q 2014 PNAS 111 15031Google Scholar

    [8]

    Xie L, Feng J H, Li R, He J Q 2020 Phys. Rev. Lett. 125 245901Google Scholar

    [9]

    Ruck M, Poudeu Poudeu P F, Söhnel T 2004 Z. Anorg. Allg. Chem. 630 63Google Scholar

    [10]

    Quarta D, Toso S, Fieramosca A, Dominici L, Caliandro R, Moliterni A, Tobaldi D M, Saleh G, Gushchina I, Brescia R, Prato M, Infante I, Cola A, Giannini C, Manna L, Gigli G, Giansante C 2023 Chem. Mater. 35 9900Google Scholar

    [11]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [12]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [13]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [14]

    Heyd J, Peralta J E, Scuseria G E, Martin R L 2005 J. Chem. Phys. 123 174101Google Scholar

    [15]

    Saha S, Sinha T P, Mookerjee A 2000 J. Phys. Condens. Matter 12 3325Google Scholar

    [16]

    Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

    [17]

    Ganose A M, Park J, Faghaninia A, Woods-Robinson R, Persson K A, Jain A 2021 Nat. Commun. 12 2222Google Scholar

    [18]

    Ramawat S, Kukreti S, Dixit A 2023 Phys. Rev. Materials 7 085403Google Scholar

    [19]

    Natarajan A R, Gupta M K, Mittal R, Kanchana V 2023 Mater. Today Commun. 34 105309Google Scholar

    [20]

    Rode D L 1975 Semiconductors and Semimetals (Elsevier) pp1–89

    [21]

    Tadano T, Tsuneyuki S 2015 Phys. Rev. B 92 054301Google Scholar

    [22]

    Tadano T, Gohda Y, Tsuneyuki S 2014 J. Phys.: Condens. Matter. 26 225402Google Scholar

    [23]

    Zhou F, Sadigh B, Åberg D, Xia Y, Ozoliņš V 2019 Phys. Rev. B 100 184309Google Scholar

    [24]

    Ju Z, Ma D K, Chang Z 2025 Phys. Rev. B 111 134302Google Scholar

    [25]

    Zheng J Z, Lin C P, Lin C J, Hautier G, Guo R Q, Huang B L 2024 npj Comput. Mater. 10 30Google Scholar

    [26]

    Xie Q Y, Xiao F, Zhang K W, Wang B T 2024 Phys. Rev. B 110 045203Google Scholar

    [27]

    Xiao F, Xie Q Y, Ming X, Li H, Zhang J R, Wang B T 2024 Phys. Rev. B 109 245202Google Scholar

    [28]

    Xie Q Y, Ma J J, Liu Q Y, Liu P F, Zhang P, Zhang K W, Wang B T 2022 Phys. Chem. Chem. Phys. 24 7303Google Scholar

    [29]

    Simoncelli M, Marzari N, Mauri F 2019 Nat. Phys. 15 809Google Scholar

    [30]

    Simoncelli M, Marzari N, Mauri F 2022 Phys. Rev. X 12 041011Google Scholar

    [31]

    Slack G A 1973 J. Phys. Chem. Solids 34 321Google Scholar

    [32]

    Hao Y Z, Che J W, Wang X Y, Li X J, Lookman T, Sun J, Ding X D, Gao Z B 2025 Phys. Rev. B 111 195207Google Scholar

    [33]

    Cutler M, Leavy J F, Fitzpatrick R L 1964 Phys. Rev. 133 A1143Google Scholar

    [34]

    Yu L, Zunger A 2012 Phys. Rev. Lett. 108 068701Google Scholar

    [35]

    Zhu C, Liu Y, Wang D, Zhu Z, Zhou P, Tu Y, Yang G, Chen H, Zang Y, Du J, Yan W 2024 Cell Rep. Phys. Sci. 5 102321Google Scholar

    [36]

    Basera P, Bhattacharya S 2022 J. Phys. Chem. Lett. 13 6439Google Scholar

    [37]

    Xia Y, Ozoliņš V, Wolverton C 2020 Phys. Rev. Lett. 125 085901Google Scholar

    [38]

    Tadano T, Saidi W A 2022 Phys. Rev. Lett. 129 185901Google Scholar

    [39]

    Li W, Mingo N 2014 Phys. Rev. B 89 184304Google Scholar

    [40]

    Christensen M, Abrahamsen A B, Christensen N B, Juranyi F, Andersen N H, Lefmann K, Andreasson J, Bahl C R H, Iversen B B 2008 Nature Mater 7 811Google Scholar

    [41]

    Allen P B, Feldman J L 1989 Phys. Rev. Lett. 62 645Google Scholar

    [42]

    Zheng J Z, Shi D L, Yang Y W, Lin C J, Huang H, Guo R Q, Huang B L 2022 Phys. Rev. B 105 224303Google Scholar

    [43]

    郑建军, 张丽萍 2023 物理学报 72 086301Google Scholar

    Zheng J J, Zhang L P 2023 Acta Phys. Sin. 72 086301Google Scholar

    [44]

    Chen X K, Zhu J, Qi M, Jia P Z, Xie Z X 2025 Phys. Rev. Appl. 23 034085Google Scholar

  • [1] ZHANG Cuiping, ZHU Jinfeng, SHEN Xiaoling, SHU Mingfang, REN Qingyong, MA Jie. Application of neutron scattering to studying low lattice thermal conductivity of Zintl phase compounds. Acta Physica Sinica, 2025, 74(1): 017301. doi: 10.7498/aps.74.20241163
    [2] Yu Ze-Hao, Zhang Li-Fa, Wu Jing, Zhao Yun-Shan. Recent progress of 2-dimensional layered thermoelectric materials. Acta Physica Sinica, 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [3] Huang Shen-Yang, Zhang Guo-Wei, Wang Fan-Jie, Lei Yu-Chen, Yan Hu-Gen. Optical properties of two-dimensional black phosphorus. Acta Physica Sinica, 2021, 70(2): 027802. doi: 10.7498/aps.70.20201497
    [4] Wang Yan, Chen Nan-Di, Yang Chen, Zeng Zhao-Yi, Hu Cui-E, Chen Xiang-Rong. Thermoelectric transport properties of two-dimensional materials XTe2 (X = Pd, Pt) via first-principles calculations. Acta Physica Sinica, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [5] Wei Jiang-Tao, Yang Liang-Liang, Qin Yuan-Hao, Song Pei-Shuai, Zhang Ming-Liang, Yang Fu-Hua, Wang Xiao-Dong. Methodology of teasting thermoelectric properties of low-dimensional nanomaterials. Acta Physica Sinica, 2021, 70(4): 047301. doi: 10.7498/aps.70.20201175
    [6] Li Miao-Cong, Tao Qian, Xu Zhu-An. The transport properties of iron-based superconductors. Acta Physica Sinica, 2021, 70(1): 017404. doi: 10.7498/aps.70.20201836
    [7] Lü Chang-Wei, Wang Chen-Ju, Gu Jian-Bing. First-principles study of structural, elastic, thermodynamic, electronic and optical properties of cubic boron nitride and hexagonal boron nitride at high temperature and high pressure. Acta Physica Sinica, 2019, 68(7): 077102. doi: 10.7498/aps.68.20182030
    [8] Sun Zhi-Zheng, Xun Wei, Zhang Jia-Yong, Liu Chuan-Yang, Zhong Jia-Lin, Wu Yin-Zhong. Optical properties of BaTiO3 and its volume effects. Acta Physica Sinica, 2019, 68(8): 087801. doi: 10.7498/aps.68.20182087
    [9] Jin Qin, Dong Hai-Ming, Han Kui, Wang Xue-Feng. Ultrafast dynamic optical properties of graphene. Acta Physica Sinica, 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [10] Wu Hai-Na, Sun Xue, Gong Wei-Jiang, Yi Guang-Yu. Influences of electron-phonon interaction on the thermoelectric effect in a parallel double quantum dot system. Acta Physica Sinica, 2015, 64(7): 077301. doi: 10.7498/aps.64.077301
    [11] Wu Qiong, Liu Jun, Dong Qian-Min, Liu Yang, Liang Pei, Shu Hai-Bo. Quantum confinement effect on electronic and optical properties of SnS. Acta Physica Sinica, 2014, 63(6): 067101. doi: 10.7498/aps.63.067101
    [12] Chen Jia-Luo, Di Guo-Qing. Influence of magnetic anisotropy thermoelectric effect on spin-dependent devices. Acta Physica Sinica, 2012, 61(20): 207201. doi: 10.7498/aps.61.207201
    [13] Feng Xian-Yang, Lu Yao, Jiang Lei, Zhang Guo-Lian, Zhang Chang-Wen, Wang Pei-Ji. Study of the optical properties of superlattices ZnO doped with indium. Acta Physica Sinica, 2012, 61(5): 057101. doi: 10.7498/aps.61.057101
    [14] Wang Hong-Yan, Zhang Zhi-Dong, Zhang Zhong-Yue, Sun Zhong-Hua. Optical properties of gold nanoring structures. Acta Physica Sinica, 2011, 60(4): 047808. doi: 10.7498/aps.60.047808
    [15] Jiao Zhao-Yong, Yang Ji-Fei, Zhang Xian-Zhou, Ma Shu-Hong, Guo Yong-Liang. Theoretical investigation of elastic, electronic, and optical properties of zinc-blende structure GaN under high pressure. Acta Physica Sinica, 2011, 60(11): 117103. doi: 10.7498/aps.60.117103
    [16] Li Pei-Juan, Zhou Wei-Wei, Tang Yuan-Hao, Zhang Hua, Shi Si-Qi. Electronic structure,optical and lattice dynamical properties of CeO2:A first-principles study. Acta Physica Sinica, 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [17] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Chen Qing-Yun, Hu Zhi-Gang, Dong Cheng-Jun. Electronic structure and optical properties of ZnO doped with carbon. Acta Physica Sinica, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [18] Xing Hai-Ying, Fan Guang-Han, Zhao De-Gang, He Miao, Zhang Yong, Zhou Tian-Ming. Electronic structure and optical properties of GaN with Mn-doping. Acta Physica Sinica, 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [19] Guan Li, Liu Bao-Ting, Li Xu, Zhao Qing-Xun, Wang Ying-Long, Guo Jian-Xin, Wang Shu-Biao. Electronic structure and optical properties of fluorite-structure TiO2. Acta Physica Sinica, 2008, 57(1): 482-487. doi: 10.7498/aps.57.482
    [20] San Hai-Sheng, Li Bin, Feng Bo-Xue, He Yu-Yang, Chen Chong. Effect on optical band-gap of transparent and conductive CdIn2O4 thin film due to defects-induced burstein-moss and band-gap narrowing characteristics. Acta Physica Sinica, 2005, 54(2): 842-847. doi: 10.7498/aps.54.842
  • supplement 186303-20250650suppl.pdf supplement
Metrics
  • Abstract views:  744
  • PDF Downloads:  17
  • Cited By: 0
Publishing process
  • Received Date:  18 May 2025
  • Accepted Date:  17 July 2025
  • Available Online:  08 August 2025
  • Published Online:  20 September 2025
  • /

    返回文章
    返回