Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation study of physical sputtering behavior of different wall conditioning layers in fusion devices under deuterium particle bombardment

HUANG Xiangmei HU Yi CAO Chengzhi

Citation:

Simulation study of physical sputtering behavior of different wall conditioning layers in fusion devices under deuterium particle bombardment

HUANG Xiangmei, HU Yi, CAO Chengzhi
cstr: 32037.14.aps.74.20250805
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Wall conditioning coatings—lithium (Li), boron (B) and silicon (Si)—introduced by lithiumization, boronization, or siliconization, serve as a critical strategy for suppressing fuel recycling and reducing impurity fluxes from the wall of a tokamak. These techniques directly improve plasma initiation, reproducibility, energy confinement, and operational stability in fusion devices. However, these coatings undergo both physical and chemical sputtering by boundary plasma bombardment. This erosion behavior critically determines coating lifetime and, consequently, long-pulse plasma performance. To evaluate the influence of physical sputtering on coating durability and to compare material-specific differences, binary collision approximation (BCA) simulations are conducted to investigate the physical sputtering behaviors of Li, B, and Si coatings. Carbon (C) and tungsten (W) substrates are also modeled to assess interface effects. The results reveal the significant differences in sputtering yields between Li, B, and Si in incident angles and deuterium energies. Owing to its low surface binding energy, lithium exhibits the highest sputtering yield at large angles and low energies, while silicon, with the highest atomic number, presents the highest sputtering yield at small angles and high energies. Sputtering yields of carbon-based and tungsten-based coatings vary with angle and energy, driven by their differences of deuterium backscattering and substrate sputtering at the interface. Notably, for tungsten-based coatings, the sputtering yields increase dramatically at specific energies. This occurs because tungsten’s high surface binding energy causes incident deuterium atoms to reflect off the tungsten interface and then collide with coating elements. Consequently, when the energy transferred to the surface element is higher than its sputtering threshold, the sputtering yield increases. Additionally, increasing incident fluence modifies the target composition, leading to corresponding changes in the sputtering yields of coating materials. In summary, coating materials should be selected according to the expected angle distribution and energy distribution of the incident plasma particles. To suppress the abrupt yield increase observed in tungsten substrates at specific energies, the coatings must be sufficiently thick. These findings provide a theoretical basis for selecting conditioning materials and optimizing wall conditioning strategies in fusion devices.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2022YFE03020003), the Natural Science Foundation of Sichuan Province, China (Grant Nos. 2024NFSC0450, 2025ZNSFSC0383), and the China National Nuclear Corporation Basic Research Project (Grant No. CNNC-JCYJ-202323).
    [1]

    朱毓坤 2010 核真空科学技术(北京: 原子能出版社) 第160—177页

    Zhu Y K 2010 Vacuum Science and technology in Nuclear Engineering (Beijing: Atomic Energy Press) pp160–177

    [2]

    Pitts R A, Loarte A, Wauters T, Dubrov M, Gribov Y, Köchl F, Pshenov A, Zhang Y, Artola J, Bonnin X, Chen L, Lehnen M, Schmid K, Ding R, Frerichs H, Futtersack R, Gong X, Hagelaar G, Hodille E, Hobirk J, Krat S, Matveev D, Paschalidis K, Qian J, Ratynskaia S, Rizzi T, Rozhansky V, Tamain P, Tolias P, Zhang L, Zhang W 2025 Nucl. Mater. Energy 42 101854Google Scholar

    [3]

    Winter J 1996 Plasma Phys. Controlled Fusion 38 1503Google Scholar

    [4]

    Kaita R 2019 Plasma Phys. Controlled Fusion 61 113001Google Scholar

    [5]

    Skinner C H, Allain J P, Bell M G, Friesen F Q L, Heim B, Jaworski M A, Kugel H, Maingi R, Rais B, Taylor C N 2011 Phys. Scr. T145 014020Google Scholar

    [6]

    Sun Z, Maingi R, Hu J S, Xu W, Zuo G Z, Yu Y W, Wu C R, Huang M, Meng X C, Zhang L, Wang L, Mao S T, Ding F, Mansfield D K, Canik J, Lunsford R, Bortolon A, Gong X Z 2019 Nucl. Mater. Energy 19 124Google Scholar

    [7]

    Cheng Y X, Zhang L, Hu A L, Shigeru Morita S, Zhang W M, Zhou C X, Mitnik D, Zhang F L, Ma J Y, Li Z W, Cao Y M, Liu H Q 2024 Nucl. Mater. Energy 41 101744Google Scholar

    [8]

    Rohde V, Balden M, Krieger K, Neu R, ASDEX Upgrade Team 2025 Nucl. Mater. Energy 43 101923Google Scholar

    [9]

    Masuzaki S, Shoji M, Nespoli F, Lunsford R, Motojima G, Yajima M, Tokitani M, Oishi T, Kawate T, Goto M 2025 Nucl. Mater. Energy 42 101843Google Scholar

    [10]

    Samm U, Bogen P, Esser G, Hey J D, Hintz E, Huber A, Könen L, Lie Y T, Mertens P, Philipps V, Pospieszcyk A, Rusbüldt D, Seggern J, Schorn R P, Schweer B, Tokar′ M, Unterberg B, Vietzke E, Wienhold P, Winter J 1995 J. Nucl. Mater. 220-222 25Google Scholar

    [11]

    Duan X R, Cao Z, Cui C H, Cai X, Sun H H, Ding X T, Pan Y D, Wang M X, Yang Q W, Song X M, HL-2A Team 2007 J. Nucl. Mater. 363–365 1340Google Scholar

    [12]

    Effenberg F, Abe S, Sinclair G, Abrams T, Bortolon A, Wampler W R, Laggner F M, Rudakov D L, Bykov I, Lasnier C J, Mauzey D, Nagy A, Nazikian R, Scotti F, Wang H Q, Wilcox R S, the DIII-D Team 2023 Nucl. Fusion 63 106004Google Scholar

    [13]

    Xu W, Hu J, Sun Z, Maingi R, Zhang L, Yu Y W, Li C L, Zuo G Z, Qian Y Z, Huang M, Meng X C, Gao W, Duan Y M, Chen Y J, Wang K, Lin X D, Gao X 2020 Plasma Phys. Controlled Fusion 62 085012Google Scholar

    [14]

    Sereda S, Brezinsek S, Wang E, Barbui T, Brakel R, Buttenschön B, Goriaev A, Hergenhahn U, Höfel U, Jakubowski M, Knieps A, König R, Krychowiak M, Kwak S, Liang Y, Naujoks D, Pavone A, Rasinski M, Rudischhauser L, Ślęczka M, Svensson J, Viebke H, Wauters T, Wei Y, Winters V, Zhang D, the W7-X team 2020 Nucl. Fusion 60 086007Google Scholar

    [15]

    Dibon M, Rohde V, Stelzer F, Hegele K, Uhlmann M, ASDEX Upgrade Team 2021 Fusion Eng. Des. 165 112233

    [16]

    Tramontin L, Antoni V, Bagatin M, Boscarino D, Cattaruzza E, Rigato V, Zandolin S 1999 J. Nucl. Mater. 266-269 709

    [17]

    Miyagawa Y, Nakadate H, Djurabekova F, Miyagawa S 2002 Surf. Coat. Technol. 158-159 87

    [18]

    Miyagawa Y, Miyagawa S 1983 J. Appl. Phys. 54 7124.Google Scholar

    [19]

    Miyagawa Y, Ikeyama M, Saito K, Massouras G, Miyagawa S 1991 J. Appl. Phys. 70 7289Google Scholar

    [20]

    邵其鋆, 霍裕昆, 陈建新, 吴士明, 潘正瑛 1991 物理学报 40 659Google Scholar

    Shao Q Y, Huo Y K, Chen J X, Wu S M, Pan Z Y 1991 Acta Phys. Sin. 40 659Google Scholar

    [21]

    陆峰 2022 真空镀膜技术与应用 (北京: 化学工业出版社)第149—153页

    Lu F 2022 Technology and Application of Vacuum Coating (Beijing: Chemical Industry Press) pp149–153

    [22]

    邵其鋆, 潘正瑛 1995 物理学报 44 479Google Scholar

    Shao Q Y, Pan Z Y 1995 Acta Phys. Sin. 44 479Google Scholar

  • 图 1  溅射产额随粒子入射角度变化曲线 (a) 入射氘粒子能量500 eV; (b) 入射氘粒子能量1000 eV

    Figure 1.  Dependence of sputtering yield on injection angle: (a) Injection energy 500 eV; (b) injection energy 1000 eV.

    图 2  溅射产额随入射能量的变化曲线 (a)氘粒子入射角度0°; (b)氘粒子入射角度40°; (c)氘粒子入射角度80°

    Figure 2.  Dependence of sputtering yield on injection energy: (a) Injection angle 0°; (b) injection angle 40°; (c) injection angle 80°.

    图 3  溅射产额(a)和靶厚(b)随入射通量的变化

    Figure 3.  Dependence of (a) sputtering yield and (b) target thickness on injection fluence.

    图 4  溅射产额随粒子入射角度变化曲线 (a)入射氘粒子能量500 eV; (b)入射氘粒子能量1000 eV

    Figure 4.  Dependence of sputtering yield on injection angle: (a) Injection energy 500 eV; (b) injection energy 1000 eV.

    图 5  溅射产额随入射能量的变化曲线 (a)氘粒子入射角度0°, 涂层厚度20 nm; (b)氘粒子入射角度40°, 涂层厚度20 nm; (c)氘粒子入射角度80°, 涂层厚度20 nm; (d)氘粒子入射角度0°, 涂层厚度100 nm; (e)氘粒子入射角度40°, 涂层厚度100 nm; (f)氘粒子入射角度80°, 涂层厚度100 nm

    Figure 5.  Dependence of sputtering yield on injection energy: (a) Injection angle 0°, coating thickness 20 nm; (b) injection angle 40°, coating thickness 20 nm; (c) injection angle 80°, coating thickness 100 nm; (d) injection angle 0°, coating thickness 100 nm; (e) injection angle 40°, coating thickness 100 nm; (f) injection angle 80°, coating thickness 100 nm.

    图 6  溅射产额及靶材厚度随入射通量的变化情况 (a)碳基靶溅射产额变化; (b)钨基靶溅射产额变化; (c)碳基靶厚度变化; (d)钨基靶厚度变化

    Figure 6.  Dependence of sputtering yield and target thickness on injection fluence: (a) Sputtering yield of carbon substrates; (b) sputtering yield of tungsten substrates; (c) thickness of carbon substrates; (d) thickness of tungsten substrates.

    表 1  模拟分析涉及的材料相关参数

    Table 1.  Related material parameters input for simulation.

    材料 原子
    序数Z
    表面结合
    Es/eV
    移位能
    Ed/eV
    密度/
    (kg·m–3)
    原子数密度
    /(atom·cm–3)
    锂 Li 3 1.67 20 0.534 4.633×1022
    硼 B 5 5.73 20 2.350 1.309×1023
    石墨C 6 7.41 25 2.253 1.130×1023
    硅 Si 14 4.70 13 2.321 4.977×1022
    钨 W 74 8.68 38 19.350 6.338×1022
    氘D 1 4.270×1022
    DownLoad: CSV
  • [1]

    朱毓坤 2010 核真空科学技术(北京: 原子能出版社) 第160—177页

    Zhu Y K 2010 Vacuum Science and technology in Nuclear Engineering (Beijing: Atomic Energy Press) pp160–177

    [2]

    Pitts R A, Loarte A, Wauters T, Dubrov M, Gribov Y, Köchl F, Pshenov A, Zhang Y, Artola J, Bonnin X, Chen L, Lehnen M, Schmid K, Ding R, Frerichs H, Futtersack R, Gong X, Hagelaar G, Hodille E, Hobirk J, Krat S, Matveev D, Paschalidis K, Qian J, Ratynskaia S, Rizzi T, Rozhansky V, Tamain P, Tolias P, Zhang L, Zhang W 2025 Nucl. Mater. Energy 42 101854Google Scholar

    [3]

    Winter J 1996 Plasma Phys. Controlled Fusion 38 1503Google Scholar

    [4]

    Kaita R 2019 Plasma Phys. Controlled Fusion 61 113001Google Scholar

    [5]

    Skinner C H, Allain J P, Bell M G, Friesen F Q L, Heim B, Jaworski M A, Kugel H, Maingi R, Rais B, Taylor C N 2011 Phys. Scr. T145 014020Google Scholar

    [6]

    Sun Z, Maingi R, Hu J S, Xu W, Zuo G Z, Yu Y W, Wu C R, Huang M, Meng X C, Zhang L, Wang L, Mao S T, Ding F, Mansfield D K, Canik J, Lunsford R, Bortolon A, Gong X Z 2019 Nucl. Mater. Energy 19 124Google Scholar

    [7]

    Cheng Y X, Zhang L, Hu A L, Shigeru Morita S, Zhang W M, Zhou C X, Mitnik D, Zhang F L, Ma J Y, Li Z W, Cao Y M, Liu H Q 2024 Nucl. Mater. Energy 41 101744Google Scholar

    [8]

    Rohde V, Balden M, Krieger K, Neu R, ASDEX Upgrade Team 2025 Nucl. Mater. Energy 43 101923Google Scholar

    [9]

    Masuzaki S, Shoji M, Nespoli F, Lunsford R, Motojima G, Yajima M, Tokitani M, Oishi T, Kawate T, Goto M 2025 Nucl. Mater. Energy 42 101843Google Scholar

    [10]

    Samm U, Bogen P, Esser G, Hey J D, Hintz E, Huber A, Könen L, Lie Y T, Mertens P, Philipps V, Pospieszcyk A, Rusbüldt D, Seggern J, Schorn R P, Schweer B, Tokar′ M, Unterberg B, Vietzke E, Wienhold P, Winter J 1995 J. Nucl. Mater. 220-222 25Google Scholar

    [11]

    Duan X R, Cao Z, Cui C H, Cai X, Sun H H, Ding X T, Pan Y D, Wang M X, Yang Q W, Song X M, HL-2A Team 2007 J. Nucl. Mater. 363–365 1340Google Scholar

    [12]

    Effenberg F, Abe S, Sinclair G, Abrams T, Bortolon A, Wampler W R, Laggner F M, Rudakov D L, Bykov I, Lasnier C J, Mauzey D, Nagy A, Nazikian R, Scotti F, Wang H Q, Wilcox R S, the DIII-D Team 2023 Nucl. Fusion 63 106004Google Scholar

    [13]

    Xu W, Hu J, Sun Z, Maingi R, Zhang L, Yu Y W, Li C L, Zuo G Z, Qian Y Z, Huang M, Meng X C, Gao W, Duan Y M, Chen Y J, Wang K, Lin X D, Gao X 2020 Plasma Phys. Controlled Fusion 62 085012Google Scholar

    [14]

    Sereda S, Brezinsek S, Wang E, Barbui T, Brakel R, Buttenschön B, Goriaev A, Hergenhahn U, Höfel U, Jakubowski M, Knieps A, König R, Krychowiak M, Kwak S, Liang Y, Naujoks D, Pavone A, Rasinski M, Rudischhauser L, Ślęczka M, Svensson J, Viebke H, Wauters T, Wei Y, Winters V, Zhang D, the W7-X team 2020 Nucl. Fusion 60 086007Google Scholar

    [15]

    Dibon M, Rohde V, Stelzer F, Hegele K, Uhlmann M, ASDEX Upgrade Team 2021 Fusion Eng. Des. 165 112233

    [16]

    Tramontin L, Antoni V, Bagatin M, Boscarino D, Cattaruzza E, Rigato V, Zandolin S 1999 J. Nucl. Mater. 266-269 709

    [17]

    Miyagawa Y, Nakadate H, Djurabekova F, Miyagawa S 2002 Surf. Coat. Technol. 158-159 87

    [18]

    Miyagawa Y, Miyagawa S 1983 J. Appl. Phys. 54 7124.Google Scholar

    [19]

    Miyagawa Y, Ikeyama M, Saito K, Massouras G, Miyagawa S 1991 J. Appl. Phys. 70 7289Google Scholar

    [20]

    邵其鋆, 霍裕昆, 陈建新, 吴士明, 潘正瑛 1991 物理学报 40 659Google Scholar

    Shao Q Y, Huo Y K, Chen J X, Wu S M, Pan Z Y 1991 Acta Phys. Sin. 40 659Google Scholar

    [21]

    陆峰 2022 真空镀膜技术与应用 (北京: 化学工业出版社)第149—153页

    Lu F 2022 Technology and Application of Vacuum Coating (Beijing: Chemical Industry Press) pp149–153

    [22]

    邵其鋆, 潘正瑛 1995 物理学报 44 479Google Scholar

    Shao Q Y, Pan Z Y 1995 Acta Phys. Sin. 44 479Google Scholar

  • [1] Xi Jian-Feng, Li Bao-He, Liu Dan, Li Xiong, Geng Ai-Cong, Li Xiao. Enhanced photovoltaic effect in LaAlO3/SrTiO3 interface. Acta Physica Sinica, 2021, 70(8): 086802. doi: 10.7498/aps.70.20201330
    [2] Chen Dong, Yu Ben-Hai. Dual control of magnetism in LaMnO3/BaTiO3 superlattice by epitaxial strain and ferroelectric polarization. Acta Physica Sinica, 2020, 69(22): 226301. doi: 10.7498/aps.69.20200839
    [3] Zhang Long-Yan,  Xu Jin-Liang,  Lei Jun-Peng. Molecular dynamics study of bubble nucleation on a nanoscale. Acta Physica Sinica, 2018, 67(23): 234702. doi: 10.7498/aps.67.20180993
    [4] Liu En-Hua, Chen Zhao, Wen Xiao-Li, Chen Chang-Le. Influence of paramagnetic La2/3Sr1/3MnO3 layer on the multiferroic property of Bi0.8Ba0.2FeO3 film. Acta Physica Sinica, 2016, 65(11): 117701. doi: 10.7498/aps.65.117701
    [5] Han Ya-Wei, Qiang Hong-Fu, Zhao Jiu-Ling, Gao Wei-Ran. A new repulsive model for solid boundary condition in smoothed particle hydrodynamics. Acta Physica Sinica, 2013, 62(4): 044702. doi: 10.7498/aps.62.044702
    [6] Huang Xiu-Feng, Pan Li-Qing, Li Chen-Xi, Wang Qiang, Sun Gang, Lu Kun-Quan. Vibrational dynamics of water confined in mesoporous silica under low temperature. Acta Physica Sinica, 2012, 61(13): 136801. doi: 10.7498/aps.61.136801
    [7] Jia Lin-Nan, Huang An-Ping, Zheng Xiao-Hu, Xiao Zhi-Song, Wang Mei. Progress of memristor modulated by interfacial effect. Acta Physica Sinica, 2012, 61(21): 217306. doi: 10.7498/aps.61.217306
    [8] Xu Yong, Cai Jian-Wang. Effects of interfacial Ru, Pd, Ag, and Au insertion layers on the anisotropic magnetoresistance in Ta/NiFe/Ta trilayers. Acta Physica Sinica, 2011, 60(11): 117308. doi: 10.7498/aps.60.117308
    [9] Wang Jian-Guo, Xu Zhong-Feng, Zhao Yong-Tao, Wang Yu-Yu, Li De-Hui, Zhao Di, Xiao Guo-Qing. Slow highly charged ions induced electron emission from clean Si surfaces. Acta Physica Sinica, 2010, 59(11): 7803-7807. doi: 10.7498/aps.59.7803
    [10] Zhang Yong-Kang, Kong De-Jun, Feng Ai-Xin, Lu Jin-Zhong, Zhang Lei-Hong, Ge Tao. Study on the determination of interfacial binding strength of coatings (Ⅰ): theorctical analysis of stress in thin film binding interface. Acta Physica Sinica, 2006, 55(6): 2897-2900. doi: 10.7498/aps.55.2897
    [11] Zhang Yong-Kang, Kong De-Jun, Feng Ai-Xin, Lu Jin-Zhong, Ge Tao. Study on the detection of interfacial bonding strength of coatings (Ⅱ): detecting system of bonding strength. Acta Physica Sinica, 2006, 55(11): 6008-6012. doi: 10.7498/aps.55.6008
    [12] Miao Zhi-Wu, Ding Jian-Wen, Yan Xiao-Hong, Tang Na-Si. Effect of distortion on hopping conductivity:ThueMorse nanostructured model. Acta Physica Sinica, 2003, 52(5): 1213-1217. doi: 10.7498/aps.52.1213
    [13] TONG LIU-NIU, HE XIAN-MEI, LU MU. EFFECT OF ANNEALING ON THE MAGNETIC PROPERTIES OF Ni80Co20 THIN FILMS WITH IMPURITY LAYERS. Acta Physica Sinica, 2000, 49(11): 2290-2295. doi: 10.7498/aps.49.2290
    [14] SHAO QI-YUN, HUO YU-KUN, CHEN JIAN-XIN, WU SHI-MING, PAN ZHENG-YING. INFLUENCE OF THE INCIDENCE ANGLE OF THE ION-BOMBARDMENT ON THE SPUTTERING PARAMETERS. Acta Physica Sinica, 1991, 40(4): 659-666. doi: 10.7498/aps.40.659
    [15] SHAO QI-YUN, CHEN JIAN-XIN, WU SHI-MING, PAN ZHENG-YING, HUO YU-KUN, GAO XING-HUA. MONTE-CARLO STUDIES OF RADIATION DAMAGE INDUCED BY FUSION (II)——SPUTTERING. Acta Physica Sinica, 1991, 40(8): 1244-1252. doi: 10.7498/aps.40.1244
    [16] WANG ZHEN-XIA, ZHANG JI-PING, PAN JI-SHENG, TAO ZHEN-LAN, ZHANG HUI-MING, ZHANG WEI-PING, LU ZHAO-LUN. EFFECT OF ADDITION OF BORON ON SPUTTERING YIELD OF NICKEL. Acta Physica Sinica, 1991, 40(10): 1723-1728. doi: 10.7498/aps.40.1723
    [17] HUO YU-KUN, WU XUAN-HONG, SHAO QI-YUN, CHEN JIAN-XIN, WU SHI-MING, PAN ZHENG-YING, GAO XING-HUA. MONTE-CARLO STUDIES OF RADIATION DAMAGE INDUCED BY FUSION(I)——α-PARTICLES AT THE FIRST-WALL. Acta Physica Sinica, 1991, 40(8): 1236-1243. doi: 10.7498/aps.40.1236
    [18] PAN JI-SHENG, WANG ZHEN-XIA, TAO ZHEN-LAN, ZHANG JI-PING, ZHANG HUI-MING, ZHAO LIE. INFLUENCE OF SURFACE TOPOGRAPHY ON THE SPUTTE RING YIELDS OF SILVER. Acta Physica Sinica, 1991, 40(12): 2018-2023. doi: 10.7498/aps.40.2018
    [19] YOU GUANG-JIAN, YU MEI, LUO HUI-LIN. THE HALL EFFECT IN RF-SPUTTERED IRON OXIDE THIN FILMS. Acta Physica Sinica, 1988, 37(10): 1613-1618. doi: 10.7498/aps.37.1613
    [20] XU JIN-KUI. THE TOTAL YIELD AND ENERGY SPECTRA OF THE SECON-DARY PARTICLES OF THERMONUCLEAR REACTION. Acta Physica Sinica, 1980, 29(9): 1151-1157. doi: 10.7498/aps.29.1151
Metrics
  • Abstract views:  492
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Received Date:  20 June 2025
  • Accepted Date:  15 July 2025
  • Available Online:  12 August 2025
  • Published Online:  05 October 2025
  • /

    返回文章
    返回