Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The influence of surface-adhered water droplets on the discharge characteristics and chemical species distribution in an atmospheric-pressure helium dielectric barrier discharge system

CAI Jiahe DAI Dong PAN Yongquan

Citation:

The influence of surface-adhered water droplets on the discharge characteristics and chemical species distribution in an atmospheric-pressure helium dielectric barrier discharge system

CAI Jiahe, DAI Dong, PAN Yongquan
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Dielectric barrier discharge technology enables the generation of cold plasma at atmospheric pressure, which contains abundant active particles and shows great potential for fresh produce sterilization applications. However, water droplets frequently adhere to the surfaces of fruits and vegetables, which alters key parameters including the gas gap width, dielectric distribution, and gas-phase composition, consequently affecting the effectiveness of plasma applications. Currently, research on plasmadroplet interactions using contact angle as a variable remains unexplored, and the underlying mechanisms through which adhering droplets affect the electrochemical characteristics of dielectric barrier discharge await further investigation. In this work, we developed an atmospheric-pressure helium dielectric barrier discharge simulation model with a He-O2-N2-H2O reaction system. This model was used to study how water droplets (with contact angles of 45°, 90°, and 135°) adhering to the surface of the specimens affect both the steady-state discharge structure and active particle distribution, along with their underlying mechanisms. The results show that the steadystate discharge intensity is significantly weakened both at the droplet surface and in the region above it, with the maximum weakening observed at a contact angle of 135°. During the main positive breakdown phase, the polarized electric field at the droplet surface significantly enhances both electron impact ionization and secondary electron emission, thereby promoting gas-phase breakdown in the region above the water droplet; During the main negative breakdown phase, this polarized electric field accelerates electron migration toward the liquid surface, which intensifies plasma ambipolar diffusion and consequently leads to the formation of an annular discharge suppression zone around the water droplet; During the secondary positive discharge phase, while the water droplet becomes polarized, a radially inward electric field is generated near the liquid surface, the resulting seed electron scavenging effect suppresses discharge in the region above the water droplet. Due to the stronger polarized electric fields generated at the surfaces of water droplets with larger contact angles, both the discharge enhancement and suppression effects become more pronounced with increasing contact angle. Regarding the chemical species distribution, active particles and electrons exhibit a synergistic distribution relationship. On the surface of the specimens, He⁺ undergo electric fielddriven migration, resulting in a highly non-uniform spatial distribution; The evaporation of water droplets provides more reactant sources for OH generation, thereby increasing its total deposition quantity; Due to the lower bond energy of O2 versus N2, O demonstrates more uniform distribution and greater total deposition quantity than N. On the surface of water droplets, the active particles exhibit a gradually decreasing distribution from the center to the edge. Notably, the total deposition quantity of He⁺ continuously increases with larger contact angles due to the aggregation effect of the polarized electric field. This study systematically elucidates the influence mechanisms of adhering water droplets on the electrochemical processes in dielectric barrier discharge, providing theoretical guidance for relevant applications of plasma-droplet systems.
  • [1]

    Zhang S, Oehrlein G S 2021 J. Phys. D: Appl. Phys. 54 213001

    [2]

    Chen Z T, Chen G J, Obenchain R, Zhang R, Bai F, Fang T X, Wang H W, Lu Y J, Wirz R E, Gu Z 2022 Mater. Today 54 153

    [3]

    Poggemann H-F, Schüttler S, Schöne A L, Jeß E, Schücke L, Jacob T, Gibson A R, Golda J, Jung C 2025 J. Phys. D: Appl. Phys. 58 135208

    [4]

    Zhou B S, Zhao H G, Yang X, Cheng J-H 2024 Food Res. Int. 196 115117

    [5]

    Woedtke T, Laroussi M, Gherardi M 2022 Plasma Sources Sci. Technol. 31 054002

    [6]

    Moldgy A, Nayak G, Aboubakr H A, Goyal S M, Bruggeman P J 2020 J. Phys. D: Appl. Phys. 53 434004

    [7]

    Konchekov E M, Gusein-zade N, Burmistrov D E, Kolik L V, Dorokhov A S, Izmailov A Y, Shokri B, Gudkov S V 2023 Int. J. Mol. Sci. 24 15093

    [8]

    Hamdan A, Diamond J, Herrmann A 2021 J. Phys. Commun. 5 035005

    [9]

    Srivastava T, Simeni Simeni M, Nayak G, Bruggeman P J 2022 Plasma Sources Sci. Technol. 31 085010

    [10]

    Ling Y, Dai D, Chang J X, Wang B A 2024 Plasma Sci. Technol. 26 094002

    [11]

    Kovačević V V, Sretenović G B, Obradović B M, Kuraica M M 2022 J. Phys. D: Appl. Phys. 55 473002

    [12]

    Toth J R, Abuyazid N H, Lacks D J, Renner J N, Sankaran R M 2020 ACS Sustainable Chem. Eng. 8 14845

    [13]

    Zhao Z G, Liu D P, Xia Y, Li G F, Niu C J, Qi Z H, Wang X, Zhao Z L 2022 Phys. Plasmas 29 043507

    [14]

    Wang X P, Zhao D M, Tan X M, Chen Y X, Chen Z H, Xiao H 2017 Chem. Eng. J. 328 708

    [15]

    Sebih L, Carbone E, Hamdan A 2025 J. Phys. D: Appl. Phys. 58 045206

    [16]

    Kruszelnicki J, Lietz A M, Kushner M J 2019 J. Phys. D: Appl. Phys. 52 355207

    [17]

    Nayak G, Oinuma G, Yue Y F, Sousa J S, Bruggeman P J 2021 Plasma Sources Sci. Technol. 30 115003

    [18]

    Oinuma G, Nayak G, Du Y J, Bruggeman P J 2020 Plasma Sources Sci. Technol. 29 095002

    [19]

    Samukawa S, Hori M, Rauf S, Tachibana K, Bruggeman P, Kroesen G, Whitehead J C, Murphy A B, Gutsol A F, Starikovskaia S 2012 J. Phys. D: Appl. Phys. 45 253001

    [20]

    Wang R X, Nian W F, Wu H Y, Feng H Q, Zhang K, Zhang J, Zhu W D, Becker K H, Fang J 2012 Eur. Phys. J. D 66 276

    [21]

    Yan A, Kong X H, Xue S, Guo P W, Chen Z T, Li D L, Liu Z W, Zhang H B, Ning W J, Wang R X 2024 Plasma Sources Sci. Technol. 33 105011

    [22]

    Konina K, Kruszelnicki J, Meyer M E, Kushner M J 2022 Plasma Sources Sci. Technol. 31 115001

    [23]

    Ning W J, Lai J, Kruszelnicki J, Foster J E, Dai D, Kushner M J 2021 Plasma Sources Sci. Technol. 30 015005

    [24]

    Meyer M, Nayak G, Bruggeman P J, Kushner M J 2022 J. Appl. Phys. 132 083303

    [25]

    Li D C, Li C, Liang T Y, Li J W, Yang Z W, Fu Q X, Zhang M, Yang Y, Yu K X, Du Y P, Zhao X G 2024 Phys. Fluids 36 122020

    [26]

    Adesina K, Lin T-C, Huang Y-W, Locmelis M, Han D 2024 IEEE Trans. Radiat. Plasma Med. Sci. 8 295

    [27]

    Massines F, Gouda G, Gherardi N, Duran M, Croquesel E 2001 Plasmas Polym. 6 35

    [28]

    Wang Q, Ning W J, Dai D, Zhang Y H, Ouyang J T 2019 J. Phys. D: Appl. Phys. 52 205201

    [29]

    Wang Q, Dai D, Ning W J, Zhang Y H 2021 J. Phys. D: Appl. Phys. 54 115203

    [30]

    Sudarsan A, Keener K M 2022 LWT-Food Sci. Technol. 155 112903

    [31]

    Lee H, Kim J E, Chung M-S, Min S C 2015 Food Microbiol. 51 74

    [32]

    Ziuzina D, Misra N N, Han L, Cullen P J, Moiseev T, Mosnier J P, Keener K, Gaston E, Vilaró I, Bourke P 2020 Innov. Food Sci. Emerg. Technol. 59 102229

    [33]

    Min S C, Roh S H, Niemira B A, Boyd G, Sites J E, Uknalis J, Fan X T 2017 Food Microbiol. 65 1

    [34]

    Tan J Z, Karwe M V 2021 Innov. Food Sci. Emerg. Technol. 74 102868

    [35]

    Min S C, Roh S H, Niemira B A, Sites J E, Boyd G, Lacombe A 2016 Int. J. Food Microbiol. 237 114

    [36]

    Wang Q, Zhou X Y, Dai D, Huang Z N, Zhang D M 2021 Plasma Sources Sci. Technol. 30 05LT01

    [37]

    Lu L, Ku K-M, Palma-Salgado S P, Storm A P, Feng H, Juvik J A, Nguyen T H 2015 PLoS ONE 10 e0132841

    [38]

    Sipahioglu O, Barringer S A 2003 J. Food Sci. 68 234

    [39]

    Nelson S O 2003 IEEE Antennas Propag. Soc. Int. Symp. 4 46

    [40]

    Liu J, Yang Y, Nie L, Liu D, Lu X 2024 J. Phys. D: Appl. Phys. 57 275201

    [41]

    Huang Z M, Hao Y P, Yang L, Han Y X, Li L C 2015 Phys. Plasmas 22 123509

    [42]

    Boeuf J P, Bernecker B, Callegari T, Blanco S, Fournier R 2012 Appl. Phys. Lett. 100 244108

    [43]

    Wang Q 2022 Ph. D. Dissertation (Guangzhou: South China University of Technology) (in Chinese) [王乔 2022 博士学位论文 (广州:华南理工大学)]

    [44]

    Lubarda V A, Talke K A 2011 Langmuir 27 10705

    [45]

    Wang Q, Ning W J, Dai D, Zhang Y H 2020 Plasma Process. Polym. 17 1900182

    [46]

    Zhou X Y, Wang Q, Dai D, Huang Z N 2021 Plasma Sci. Technol. 23 064003

    [47]

    Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sources Sci. Technol. 28 104001

    [48]

    Yatom S, Dobrynin D 2022 J. Phys. D: Appl. Phys. 55 485203

    [49]

    Bruggeman P J, Iza F, Brandenburg R 2017 Plasma Sources Sci. Technol. 26 123002

    [50]

    Katsigiannis A S, Bayliss D L, Walsh J L 2022 Compr. Rev. Food Sci. Food Saf. 21 1086

    [51]

    Hasan M I, Walsh J L 2016 J. Appl. Phys. 119 203302

    [52]

    Chen X Y, Li Y H, Li M Q, Xiong Z L 2022 Plasma Sci. Technol. 24 124015

    [53]

    Yang X, Keener K M, Cheng J-H 2025 J. Food Eng. 388 112389

    [54]

    Mayer S E 1969 J. Phys. Chem. 73 3941

    [55]

    Lxcat program, Phelps database https://us.lxcat.net/data/set_databases.php [2024-11-16]

    [56]

    Hasan M I, Bradley J W 2015 J. Phys. D: Appl. Phys. 48 435201

  • [1] Zhao Li-Fen, Ha Jing, Wang Fei-Fan, Li Qing, He Shou-Jie. Simulation of hollow cathode discharge in oxygen. Acta Physica Sinica, doi: 10.7498/aps.71.20211150
    [2] Zhao Kai, Mu Zong-Xin, Zhang Jia-Liang. Dielectric layer equivalent capacitance and loading performance of a coaxial dielectric barrier discharge reactor. Acta Physica Sinica, doi: 10.7498/aps.63.185208
    [3] Dai Dong, Wang Qi-Ming, Hao Yan-Peng. Experimental study on asymmetrical period-one discharge in dielectric barrier discharge in helium at atmospheric pressure. Acta Physica Sinica, doi: 10.7498/aps.62.135204
    [4] Liu Wei-Yuan, Yue Han, Wang Shuai, Liu Zhong-Wei, Chen Qiang, Dong Li-Fang, Yang Yu-Jie. Characteristics of dielectric barrier discharge with different dielectric layer structures. Acta Physica Sinica, doi: 10.7498/aps.60.025216
    [5] Dong Li-Fang, Li Shu-Feng, Fan Wei-Li. Defects in transition between different filament structures in dielectric barrier discharge. Acta Physica Sinica, doi: 10.7498/aps.60.065205
    [6] Wang Li-Ming, Liang Zhuo, Guan Zhi-Cheng, Luo Hai-Yun, Wang Xin-Xin. Influences of gas flow on gas temperature and discharge mode in dielectric barrier discharge of nitrogen at atmospheric pressure. Acta Physica Sinica, doi: 10.7498/aps.59.8739
    [7] Dong Li-Fang, Yang Yu-Jie, Fan Wei-Li, Yue Han, Wang Shuai, Xiao Hong. Study on the phase transition of the filaments structure in dielectric barrier discharge. Acta Physica Sinica, doi: 10.7498/aps.59.1917
    [8] Shao Xian-Jun, Ma Yue, Li Ya-Xi, Zhang Guan-Jun. One-dimensional simulation of low pressure xenon dielectric barrier discharge. Acta Physica Sinica, doi: 10.7498/aps.59.8747
    [9] Dong Li-Fang, Wang Hong-Fang, Liu Wei-Li, He Ya-Feng, Liu Fu-Cheng, Liu Shu-Hua. Influence of dielectric parameters on temporal behavior of dielectric barrier discharge. Acta Physica Sinica, doi: 10.7498/aps.57.1802
    [10] Li Xue-Chen, Jia Peng-Ying, Liu Zhi-Hui, Li Li-Chun, Dong Li-Fang. Study on the transition from filamentary to uniform discharge in dielectric barrier discharge. Acta Physica Sinica, doi: 10.7498/aps.57.1001
    [11] Dong Li-Fang, Gao Rui-Ling, He Ya-Feng, Fan Wei-Li, Li Xue-Chen, Liu Shu-Hua, Liu Wei-Li. Study on the interaction of microdischarge channels in dielectric barrier discharge pattern. Acta Physica Sinica, doi: 10.7498/aps.56.1471
    [12] Investigation on power transfer in dielectric barrier discharge. Acta Physica Sinica, doi: 10.7498/aps.56.7078
    [13] Wang Yan-Hui, Wang De-Zhen. Characteristics of dielectric barrier homogenous discharge at atmospheric pressure in nitrogen. Acta Physica Sinica, doi: 10.7498/aps.55.5923
    [14] Ouyang Ji-Ting, He Feng, Miao Jin-Song, Feng Shuo. Study of characteristics of coplanar dielectric barrier discharge. Acta Physica Sinica, doi: 10.7498/aps.55.5969
    [15] Wang Yan-Hui, Wang De-Zhen. Study on homogeneous multiple-pulse barrier discharge at atmospheric pressure. Acta Physica Sinica, doi: 10.7498/aps.54.1295
    [16] Zhang Yuan-Tao, Wang De-Zhen, Wang Yan-Hui. Numerical simulation of filamentary discharge controlled by dielectric barrier at atmospheric pressure. Acta Physica Sinica, doi: 10.7498/aps.54.4808
    [17] He Ya-Feng, Dong Li-Fang, Liu Fu-Cheng, Fan Wei-Li. Localized hexagonal structure in dielectric barrier discharge. Acta Physica Sinica, doi: 10.7498/aps.54.4236
    [18] Dong Li-Fang, Mao Zhi-Guo, Ran Jun-Xia. Study on the electrical characteristic of different modes of dielectric barrier discharge in argon. Acta Physica Sinica, doi: 10.7498/aps.54.3268
    [19] Yin Zeng-Qian, Wang Long, Dong Li-Fang, Li Xue-Chen, Chai Zhi-Fang. The mapping equation of micro-discharge in dielectric barrier discharges. Acta Physica Sinica, doi: 10.7498/aps.52.929
    [20] Dong Li-Fang, Li Xue-Chen, Yin Zeng-Qian, Wang Long. . Acta Physica Sinica, doi: 10.7498/aps.51.2296
Metrics
  • Abstract views:  106
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  30 September 2025
  • /

    返回文章
    返回