-
The key security of quantum key distribution (QKD) is guaranteed by the basic principle of quantum mechanics, which makes it possible to combine information theory security communication with one-time encryption. The key is usually encoded on the polarization dimension or phase dimension of a single-photon. It is considered that the birefringence effect of single-mode fiber leads to a random variation of polarization state, which would induce the bit error rate. So it is of great significance to keep the single-photon linear polarization state stable for both polarization encoding QKD system and phase encoding QKD system. By using the single-photon polarization modulation technology, the single-photon linear polarization state periodically varies with the external modulation signal. The flicker noise is suppressed effectively, and the signal-to-noise ratio (SNR) of single-photon counting is increased as indicated by the phase-sensitive detection with a lock-in amplifier (LIA). The error signal is generated by demodulating the modulated single photons and it is used to lock an arbitrary 1550 nm single-photon linear polarization state to the optical axis of in-line polarizer (ILP). The modulation frequency reaches up to 5 kHz, which can eliminate the influence of low frequency flicker noise. The LIA demodulates the single-photon pulses by using 78.1 Hz filter bandwidth, with a time constant of 1 ms and a filter slope of 24 dB. The error signal with a signal-to-noise ratio(SNR) of 20 is shown in
Fig. 3 of the main text. The zero-crossing point of error signal represents the single photon’s linear polarization state aligned to the optical axis of ILP. The linear slope around the zero-crossing point for the polarization state angle versus the error signal amplitude is 1.267 rad/V. When the negative feedback loop does not work, the polarization drift of single-photon pulses is 0.082 rad due to the random environmental noise. However, by using the single-photon polarization modulation technology and the precise and dynamic control of the polarization rotator, the polarization drift of stable single-photon pulse is limited to 0.0011 rad within 2000 s, 6.7×10–5 in an integration time of 128 ms. The advantages for the single-photon polarization modulation technology are as follows: i) the linear polarization state drift is compensated for real-time at the single-photon level; ii) single frequency polarization modulation can be extended to multiple frequency polarization modulation in order to achieve locking of multiple linear polarization states of single photons simultaneously; iii) these 1550 nm single-photon pulses with the 0.0011 rad linear polarization state stability can be directly used as the single-photon source in either polarization encoding or phase encoding QKD system. -
图 1 实时锁定1550 nm单光子线偏振态的实验装置(红色虚线代表光信号, 黑色实线代表电信号), 其中Iso为隔离开关; Att为衰减器; AM为强度调制器; PR为偏振旋转器; ILP为同轴检偏器; SPD为单光子探测器; FG为函数发生器; LIA为锁相放大器; Amp为放大器
Figure 1. Experimental setup of real-time locking the 1550 nm single-photon linear polarization state (red dashed lines for the light signal, black solid lines for the electrical signal), where Iso represents isolator; Att represents attenuator; AM represents amplitude modulator; PR represents polarization rotator; ILP represents in-line polarizer; SPD represents single-photon detector; FG represents function generator; LIA represents lock-in amplifier; Amp represents amplifier.
图 4 (a) 单光子偏振态未锁定和锁定的测量结果; (b) 单光子偏振态未锁定时误差信号的统计结果; 单光子偏振态锁定时误差信号的统计结果(c)和对应的阿伦偏差分析结果(d)
Figure 4. (a) Measurement results of unlocked and locked single-photon polarization states; (b) statistics results of error signal for unlocked single-photon polarization state; statistics results of error signal for locked single-photon polarization state (c) and corresponding analysis results of Allan deviation (d).
-
[1] Xu F H, Ma X F, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002
Google Scholar
[2] Portmann C, Renner R 2022 Rev. Mod. Phys. 94 025008
Google Scholar
[3] Li Y, Li Y H, Xie H B, Li Z P, Jiang X, Cai W Q, Ren J G, Yin J, Liao S K, Peng C Z 2019 Opt. Lett. 44 5262
Google Scholar
[4] Stein A, Grande I H L, Castelvero L, Pruneri V 2023 Opt. Express 31 13700
Google Scholar
[5] Wang Z X, Xu H X, Li J, Yu H C, Huang J Q, Han H, Wang C L, Zhang P, Yin F F, Xu K, Liu B, Dai Y T 2025 EPJ Quantum Technol. 12 47
Google Scholar
[6] Tang Z Y, Liao Z F, Xu F H, Qi B, Qian L, Lo H K 2014 Phys. Rev. Lett. 112 190503
Google Scholar
[7] Yin J, Li Y H, Liao S K, Yang M, Cao Y, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F H, Wang J Y, Peng C Z, Ekert Artur K, Pan J W 2020 Nature 582 501
Google Scholar
[8] Chen Y A, Zhang Q, Chen T Y, Cai W Q, Liao S K, Zhang J, Chen K, Yin J, Ren J G, Chen Z, Han S L, Yu Q, Liang K, Zhou F, Yuan X, Zhao M S, Wang T Y, Jiang X, Zhang L, Liu W Y, Li Y, Shen Q, Cao Y, Lu C Y, Shu R, Wang J Y, Li L, Liu N L, Xu F H, Wang X B, Peng C Z, Pan J W 2021 Nature 589 214
Google Scholar
[9] Tang Y L, Yin H L, Zhao Q, Liu H, Sun X X, Huang M Q, Zhang W J, Chen S J, Zhang L, You L X, Wang Z, Liu Y, Lu C Y, Jiang X, Ma X F, Zhang Q, Chen T Y, Pan J W 2016 Phys. Rev. X 6 011024
[10] Liu Y, Zhang W J, Jiang C, Chen J P, Zhang C, Pan W X, Ma D, Dong H, Xiong J M, Zhang C J, Li H, Wang R C, Wu J, Chen T Y, You L, Wang X B, Zhang Q, Pan J W 2023 Phys. Rev. Lett. 130 210801
Google Scholar
[11] Zhu H T, Huang Y Z, Pan W X, Zhou C W, Tang J J, He H, Cheng M, Jin X D, Zou M, Tang S B, Ma X F, Chen T Y, Pan J W 2024 Optica 11 883
Google Scholar
[12] Mamdoohi G, Abas A F, Samsudin K 2012 Eng. Appl. Artif. Intell. 25 869
Google Scholar
[13] 刘令令, 景明勇, 于波, 胡建勇, 肖连团, 贾锁堂 2015 激光与光电子学进展 52 072701
Google Scholar
Liu L L, Jing M Y, Yu B, Hu J Y, Xiao L T, Jia S T 2015 Laser Optoelectron. Prog. 52 072701
Google Scholar
[14] Xi L X, Zhang X G, Tian F, Tang X F, Weng X, Zhang G Y, Li X X, Xiong Q J 2010 IEEE Photon. J. 2 195
Google Scholar
[15] Asgari H, Khodabandeh M, Hajibaba S, Dadahkhani A H, Madani S A 2025 Indian J. Phys. 99 1471
Google Scholar
[16] 唐鹏毅, 李国春, 高松, 余刚, 代云启, 相耀, 李东东, 张英华, 吴冰, 赵子岩, 高德荃, 刘建宏, 王坚 2018 光学学报 38 0106005
Google Scholar
Tang P Y, Li G C, Gao S, Yu G, Dai Y Q, Xiang Y, Li D D, Zhang Y H, Wu B, Zhao Z Y, Gao D Q, Liu J H, Wang J 2018 Acta Opt. Sin. 38 0106005
Google Scholar
[17] 李鹏程, 刘琨, 江俊峰, 潘亮, 马鹏飞, 李志辰, 张炤, 李鑫, 刘铁根 2018 中国激光 45 0510002
Google Scholar
Li P C, Liu K, Jiang J F, Pan L, Ma P F, Li Z C, Zhang S, Li X, Liu T G 2018 Chin. J. Lasers 45 0510002
Google Scholar
[18] 马兵斌, 柯熙政, 张颖 2019 中国激光 46 0106002
Google Scholar
Ma B B, Ke X Z, Zhang Y 2019 Chin. J. Lasers 46 0106002
Google Scholar
[19] 夏骞, 张涛, 刘金璐, 杨杰, 何远杭, 黄伟, 李大双, 徐兵杰 2020 光学学报 40 1526001
Google Scholar
Xia Q, Zhang T, Liu J, Yang J, He Y H, Huang W, Li D S, Xu B J 2020 Acta Opt. Sin. 40 1526001
Google Scholar
[20] Huang T, Dong S L, Guo X J, Xiao L T, Jia S T 2006 Appl. Phys. Lett. 89 061102
Google Scholar
[21] 王晶晶, 何博, 于波, 刘岩, 王晓波, 肖连团, 贾锁堂 2012 物理学报 61 204203
Google Scholar
Wang J J, He B, Yu B, Liu Y, Wang X B, Xiao L T, Jia S T 2012 Acta Phys. Sin. 61 204203
Google Scholar
[22] Lounis B, Orrit M 2005 Rep. Prog. Phys. 68 1129
Google Scholar
Metrics
- Abstract views: 285
- PDF Downloads: 12
- Cited By: 0









DownLoad: