Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of magnetic field gradient on rotating spoke instability

YANG Sanxiang LIU Chao GUO Ning WANG Zhengxiong

Citation:

Influence of magnetic field gradient on rotating spoke instability

YANG Sanxiang, LIU Chao, GUO Ning, WANG Zhengxiong
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Rotating spokes, as one of the low-frequency, long-wavelength instabilities, are commonly observed in the ${\boldsymbol{E}} \times {\boldsymbol{B}}$ plasma discharge devices, such as the magnetrons and Hall thrusters. In Hall thrusters, the rotating spokes, which are located in the discharge channel and rotate in the azimuthal direction, feature the bright luminous regions. The space potential will be distorted by the instability of rotating spokes, thereby increasing the possibility for electrons to reach the anode and enhancing their drift along the equipotential lines. However, the excitation mechanism of the rotating spoke and its influencing factors remain ambiguous. In order to address this problem, we conduct numerical simulations and linear stability analysis to investigate the effects of the magnetic field gradient on the driving mechanism and mode characteristics of the rotating spoke instability. In this work, a particle-fluid two-dimensional hybrid model in the axial-azimuthal plane is employed to numerically study the effect of axial magnetic field gradient in the discharge channel on the rotating spoke. The numerical simulation results are analyzed using a dispersion relation derived from fluid theory, which combines the effects of plasma density and the magnetic field gradient. The output profiles of ion density, potential, and electric field from the numerical simulation serve as input parameters for the dispersion relation used in the linear stability analysis. The simulation results show that the frequency and propagation velocity of the $m = 1$ rotating spoke slightly increase as the magnetic field gradient in the discharge channel decreases. However, changing the magnetic field gradient in the discharge channel does not affect the propagation direction nor intrinsic characteristics of the rotating spoke. More specifically, when the value of ${\alpha _1}$increases from 1.1 to 1.7, which means a decrease of the magnetic field gradient in the discharge channel, the mode frequency rises from 6.2 kHz to 7.5 kHz, remaining within the frequency range of the rotating spoke instability. At the same time, the phase velocity also increases form 1013 m/s to 1225 m/s, which is consistent with the propagation velocity of the rotating spoke instability, and the rotating spoke instability still propagates along the ${\boldsymbol{E}} \times {\boldsymbol{B}}$ direction. Dispersion relation analysis indicates that the rotating spoke arises from an azimuthal drift instability which is located near downstream region of the thruster exit, and it is excited by the plasma density and magnetic field gradient effects. The axial position of the azimuthal drift instability, responsible for the rotating spoke formation, is slightly modulated by density profile variations caused by the change of magnetic field in the discharge channel. However, it remains near the downstream region of the thruster exit. The results indicate that the rotating spoke does not originate from ionization instabilities, and changing the magnetic field distribution in the discharge channel does not affect its propagation direction nor mode number. The research results provide theoretical support for explaining the excitation mechanism and key influencing factors of rotating spoke.
  • 图 1  磁场(a)和电子温度(b)的轴向分布

    Figure 1.  Axial distribution of magnetic field (a) and electron temperature (b).

    图 2  ${\alpha _1} = 1.1$时离子数密度(a)、电离率(b)、中性原子数密度(c)、电势(d)、轴向电场(e), 角向电场(f)在一个周期内不同时刻的分布

    Figure 2.  Distribution of ion number density (a), ionization rate (b), neutral particle number density (c), electrical potential (d), axial electric field (e), and azimuthal electric field (f) at different time in one period for ${\alpha _1} = 1.1$.

    图 3  归一化的离子数密度在角向上的分布随时间的演化

    Figure 3.  Time history of azimuthal distribution of normalized ion number density.

    图 4  $\theta = {180^ \circ }$时, 离子数密度(上方)和电离率(下方)的轴向分布随时间的演化

    Figure 4.  Time history of axially distribution for ion number density (upper panel) and ionization rate (lower panel) at $\theta = {180^ \circ }$.

    图 5  ${\alpha _1} = 1.1$, 1.3, 1.5, 1.7时的(a)离子密度分布, (b)空间电势分布, (c)电场分布, (d)密度梯度${\kappa _{\text{N}}}$, 以及(e)磁场梯度${\kappa _{\text{B}}}$

    Figure 5.  The axial distribution of (a) ion density profile, (b) space potential, (c) electric field, and (d) the density gradient ${\kappa _{\text{N}}}$, (e) the magnetic field gradient ${\kappa _{\text{B}}}$, for ${\alpha _1} = 1.1$, 1.3, 1.5, 1.7, respectively.

    图 6  由密度梯度和磁场梯度驱动的不稳定性的增长率(a), 频率(b), 以及相速度(c); (b), (c)中的阴影区域表示旋转辐条不稳定性典型的频率范围和相速度范围, 分别为5—25 kHz和1200—2800 m/s

    Figure 6.  The instability growth rate (a), frequency (b), and phase velocity (c) induced by density and magnetic gradient. The shaded area in (b), (c), are the typical spoke frequency and phase velocity, range from 5–25 kHz and 1200–2800 m/s, respectively.

  • [1]

    Kawashima R, Hara K, Komurasaki K 2018 Plasma Sources Sci. Technol. 27 035010Google Scholar

    [2]

    McDonald M S, Gallimore A D 2011 IEEE Trans. Plasma Sci. 39 2952Google Scholar

    [3]

    Lobbia R B, Gallimore A D 2007 30th International Electric Propulsion Conference Florence, Italy, September 17−20, 2007 IEPC-2007-177

    [4]

    Martinez R, Hoskins A, Peterson P, Massey D 2009 31st International Electric Propulsion Conference Michigan, USA, September 20−24, 2009 IEPC-2009-120

    [5]

    Hoffer R R 2004 Ph. D. Dissertation (University of Michigan

    [6]

    Liang R, Gallimore A 2011 49th AIAA Aerospace Sciences Meeting Orlando, Florida, USA, Janurary 4−7, 2011 AIAA-2011-1016

    [7]

    McDonald M S, Bellant C K, St. Pierre B A, Gallimore A D 2011 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit San Diego California, USA, July 31−August 03, 2011 AIAA-2011-5810

    [8]

    Barral S, Makowski K, Peradzynski Z, Gascon N, Dudeck M 2003 Phys. Plasmas 10 4137Google Scholar

    [9]

    Campanell M D, Khrabrov A V, Kaganovich I D 2012 Phys. Rev. Lett. 108 235001Google Scholar

    [10]

    Boeuf J P, Takahashi M 2020 Phys. Rev. Lett. 18 185005

    [11]

    Boeuf J P, Takahashi M 2020 Phys. Plasmas 27 083520Google Scholar

    [12]

    Escobar D, Ahedo E 2014 Phys. Plasmas 21 043505Google Scholar

    [13]

    Escobar D, Ahedo E 2015 Phys. Plasmas 22 102114Google Scholar

    [14]

    Sekerak M J, Longmier B W, Gallimore A D 2013 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference San Jose, CA, July 14−17, 2013 AIAA-2013-4116

    [15]

    Parker J B, Raitses Y, Fisch N J 2010 Appl. Phys. Lett. 97 091501Google Scholar

    [16]

    Janes G S, Lowder R S 1966 Phys. Fluids 9 1115Google Scholar

    [17]

    Sekerak M J, Longmier B W, Gallimore A D, Brown D L, Hofer R R, Polk J E 2015 IEEE Trans. Plasma Sci. 43 72Google Scholar

    [18]

    Ellison C L, Raitses Y, Fisch N J 2012 Phys. Plasmas 19 013503Google Scholar

    [19]

    Escobar D, Ahedo E 2014 50th International Electric Propulsion Conference IEPC-2014-3512

    [20]

    Boeuf J P, Smolyakov A 2023 Phys. Plasmas 30 050901Google Scholar

    [21]

    Lomas P J, Kilkenny J D 1977 Phys. Plasmas 19 329Google Scholar

    [22]

    Chesta E, Lam C M, Meezan N B, Schmidt D P, Cappelli M A 2001 IEEE Trans. Plasma Sci. 29 582Google Scholar

    [23]

    Panjan M, Loquai S, Klemberg-Sapieha J E, Martinu L 2015 Plasma Sources Sci. Technol. 24 065010Google Scholar

    [24]

    Sekerak M J 2014 PhD Dissertation (University of Michigan

    [25]

    杨三祥, 赵以德, 代鹏, 李建鹏, 耿海, 杨俊泰, 贾艳辉, 郭宁 2024 物理学报 73 245202Google Scholar

    Yang S X, Zhao Y D, Dai P, Li J P, Geng H, Yang J T, Jia Y H, Guo N 2024 Acta Phys. Sin. 73 245202Google Scholar

    [26]

    McDonald M S, Gallimore A D 2011 32nd International Electric Propulsion Conference Wiesbaden, Germany, September 11−15, 2011 IEPC-2011-242

    [27]

    杨三祥, 郭宁, 贾艳辉, 耿海, 高俊, 刘家涛, 刘士永, 杨盛林 2023 物理学报 72 085201Google Scholar

    Yang S X, Guo N, Jia Y H, Geng H, Gao J, Liu J T, Liu S Y, Yang S L 2023 Acta Phys. Sin. 72 085201Google Scholar

    [28]

    Boeuf J P, Takahashi M 2017 Phys. Plasmas 121 011101

    [29]

    Sekerak M, Longmier B, Gallimore A D, Brown D, Hofer R, Polk J 2013 33rd International Electric Propulsion Conference Washington D. C. , USA October 7−10, 2013 IEPC-2013-143

    [30]

    Escobar D, Ahedo E 2015 IEEE Trans. Plasma Sci. 43 149Google Scholar

    [31]

    Smolyakov A I, Chapurin O, Frias W, Kosakarov O, Romadanov I, Tang T, Umansky M, Raitses Y, Kaganovich I D, Lakhin V P 2017 Plasma Phys. Control. Fusion 59 014041Google Scholar

    [32]

    杨三祥, 赵以德, 代鹏, 李建鹏, 谷增杰, 孟伟, 耿海, 郭宁, 贾艳辉, 杨俊泰, 2025 物理学报 74 025201Google Scholar

    Yang S X, Zhao Y D, Dai P, Li J P, Gu Z J, Meng W, Geng H, Guo N, Jia Y H, Yang J T 2025 Acta Phys. Sin. 74 025201Google Scholar

    [33]

    Choueiri E Y 2001 Phys. Plasmas 8 1411Google Scholar

  • [1] YANG Sanxiang, ZHAO Yide, DAI Peng, LI Jianpeng, GU Zengjie, MENG Wei, GENG Hai, GUO Ning, JIA Yanhui, YANG Juntai. Instabilities triggered off by electron collision, plasma density gradient, and magnetic field gradient in Hall thruster. Acta Physica Sinica, doi: 10.7498/aps.74.20241330
    [2] Yang San-Xiang, Zhao Yi-De, Dai Peng, Li Jian-Peng, Geng Hai, Yang Jun-Tai, Jia Yan-Hui, Guo Ning. Two-dimensional simulation of influence of plume magnetic field on performance of Hall thrusters. Acta Physica Sinica, doi: 10.7498/aps.73.20241331
    [3] Yang San-Xiang, Guo Ning, Jia Yan-Hui, Geng Hai, Gao Jun, Liu Jia-Tao, Liu Shi-Yong, Yang Sheng-Lin. Breathing oscillations excitation mechanism and influence factors in Hall thrusters. Acta Physica Sinica, doi: 10.7498/aps.72.20230009
    [4] Su Rui-Xia, Huang Xia, Zheng Zhi-Gang. Lattice wave solution and its dispersion relation of two coupled Frenkel-Kontorova chains. Acta Physica Sinica, doi: 10.7498/aps.71.20212362
    [5] Yang San-Xiang, Wang Qian-Nan, Gao Jun, Jia Yan-Hui, Geng Hai, Guo Ning, Chen Xin-Wei, Yuan Xing-Long, Zhang Peng. Numerical study of the effect of radial magnetic field on performance of Hall thruster. Acta Physica Sinica, doi: 10.7498/aps.71.20212386
    [6] Wang Wen-Zhao, Hu Bi-Tao, Zheng Hao, Tu Xiao-Qing, Gao Peng-Lin, Yan Song, Guo Wen-Chuan, Yan Hai-Yang. A new magnetic field system for 3He polarization. Acta Physica Sinica, doi: 10.7498/aps.67.20180571
    [7] Wang Tong, Wang Xiao-Fang. An analytic approach for density gradient injection in laser wake field acceleration. Acta Physica Sinica, doi: 10.7498/aps.65.044102
    [8] Li Xiao-Ze, Teng Yan, Wang Jian-Guo, Song Zhi-Min, Zhang Li-Jun, Zhang Yu-Chuan, Ye Hu. Mode selection in surface wave oscillator with overmoded structure. Acta Physica Sinica, doi: 10.7498/aps.62.084103
    [9] Qing Shao-Wei, E Peng, Duan Ping. Effect of wall secondary electron emission on the characteristics of double sheath near the dielectric wall in Hall thruster. Acta Physica Sinica, doi: 10.7498/aps.62.055202
    [10] Wang Guan-Yu, Song Jian-Jun, Zhang He-Ming, Hu Hui-Yong, Ma Jian-Li, Wang Xiao-Yan. Analytical dispersion relation model for conduction band of uniaxial strained Si. Acta Physica Sinica, doi: 10.7498/aps.61.097103
    [11] Qing Shao-Wei, E Peng, Duan Ping. Effect of electron temperature anisotropy on plasma-wall interaction in Hall thruster. Acta Physica Sinica, doi: 10.7498/aps.61.205202
    [12] Qing Shao-Wei, Ding Yong-Jie, Duan Ping, Wang Xiao-Gang, Yu Da-Ren. Effect of electron temperature anisotropy on BN dielectric wall sheath characteristics in Hall thrusters. Acta Physica Sinica, doi: 10.7498/aps.60.025204
    [13] Deng Li-Yun, Lan Hong-Mei, Liu Yue. Numerical study on Hall thruster magnetic configuration and its optimization. Acta Physica Sinica, doi: 10.7498/aps.60.025213
    [14] E Peng, Duan Ping, Wei Li-Qiu, Bai De-Yu, Jiang Bin-Hao, Xu Dian-Guo. Experimental study of vacuum backpressure on the discharge characteristics of a Hall thruster. Acta Physica Sinica, doi: 10.7498/aps.59.8676
    [15] E Peng, Duan Ping, Jiang Bin-Hao, Liu Hui, Wei Li-Qiu, Xu Dian-Guo. On the effect of magnetic field gradient on the discharge characteristics of Hall thrusters. Acta Physica Sinica, doi: 10.7498/aps.59.7182
    [16] Ji Pei-Yong, Lu Nan, Zhu Jun. Dispersion relation and Landau damping of linear waves in quantum plasma. Acta Physica Sinica, doi: 10.7498/aps.58.7473
    [17] E Peng, Han Ke, Wu Zhi-Wen, Yu Da-Ren. On the role of magnetic field intensity effects on the discharge characteristics of Hall thrusters. Acta Physica Sinica, doi: 10.7498/aps.58.2535
    [18] Song Jian-Jun, Zhang He-Ming, Dai Xian-Ying, Hu Hui-Yong, Xuan Rong-Xi. Dispersion relation model of valence band in strained Si. Acta Physica Sinica, doi: 10.7498/aps.57.7228
    [19] Zhao Guo-Wei, Xu Yue-Min, Chen Cheng. Calculation of dispersion relation and radiation pattern of plasma antenna. Acta Physica Sinica, doi: 10.7498/aps.56.5298
    [20] FAN ZHI-KAI, LIU QING-XIANG. ANALYTIC RESEARCH ON THE DISPERSION RELATION AND FIELD DISTRIBUTION OF THE RESON ANT CAVITY CHAIN. Acta Physica Sinica, doi: 10.7498/aps.49.1249
Metrics
  • Abstract views:  410
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Received Date:  29 July 2025
  • Accepted Date:  03 September 2025
  • Available Online:  30 September 2025
  • /

    返回文章
    返回