Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Real-time locking of 1550 nm single-photon linear polarization state

YU Bo YIN Zhenqiang DING Weijie ZHAI Rongrong ZHANG Hong

Citation:

Real-time locking of 1550 nm single-photon linear polarization state

YU Bo, YIN Zhenqiang, DING Weijie, ZHAI Rongrong, ZHANG Hong
cstr: 32037.14.aps.74.20251055
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The key security of quantum key distribution (QKD) is guaranteed by the basic principle of quantum mechanics, which makes it possible to combine information theory security communication with one-time encryption. The key is usually encoded on the polarization dimension or phase dimension of a single-photon. It is considered that the birefringence effect of single-mode fiber leads to a random variation of polarization state, which would induce the bit error rate. So it is of great significance to keep the single-photon linear polarization state stable for both polarization encoding QKD system and phase encoding QKD system. By using the single-photon polarization modulation technology, the single-photon linear polarization state periodically varies with the external modulation signal. The flicker noise is suppressed effectively, and the signal-to-noise ratio (SNR) of single-photon counting is increased as indicated by the phase-sensitive detection with a lock-in amplifier (LIA). The error signal is generated by demodulating the modulated single photons and it is used to lock an arbitrary 1550 nm single-photon linear polarization state to the optical axis of in-line polarizer (ILP). The modulation frequency reaches up to 5 kHz, which can eliminate the influence of low frequency flicker noise. The LIA demodulates the single-photon pulses by using 78.1 Hz filter bandwidth, with a time constant of 1 ms and a filter slope of 24 dB. The SNR of error signal is 20. The zero-crossing point of error signal represents the single photon’s linear polarization state aligned to the optical axis of ILP. The linear slope around the zero-crossing point for the polarization state angle versus the error signal amplitude is 1.267 rad/V. When the negative feedback loop does not work, the polarization drift of single-photon pulses is 0.082 rad due to the random environmental noise. However, by using the single-photon polarization modulation technology, the polarization drift of stable single-photon pulses is limited to 0.0011 rad within 2000 s through the precise control with a polarization rotator, and the corresponding Allan deviation reaches the minimal value of 6.7×10–5 at an integration time of 128 ms. The advantages for the single-photon polarization modulation technology are as follows: i) the linear polarization state drift is compensated in real-time at the single-photon level; ii) single frequency polarization modulation can be extended to multiple frequency polarization modulation in order to achieve simultaneous locking of multiple linear polarization states of single-photon pulses; iii) these 1550 nm single-photon pulses with the 0.0011 rad linear polarization state stability can be directly used as the single-photon source in either polarization encoding or phase encoding QKD system.
      Corresponding author: YU Bo, yb@xztu.edu.cn
    • Funds: Project supported by the Fundamental Research Program of Shanxi Province, China (Grant No. 202403021211084) and the Science & Technology Program of Xinzhou City, China (Grant No. 20240509).
    [1]

    Xu F H, Ma X F, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [2]

    Portmann C, Renner R 2022 Rev. Mod. Phys. 94 025008Google Scholar

    [3]

    Li Y, Li Y H, Xie H B, Li Z P, Jiang X, Cai W Q, Ren J G, Yin J, Liao S K, Peng C Z 2019 Opt. Lett. 44 5262Google Scholar

    [4]

    Stein A, Grande I H L, Castelvero L, Pruneri V 2023 Opt. Express 31 13700Google Scholar

    [5]

    Wang Z X, Xu H X, Li J, Yu H C, Huang J Q, Han H, Wang C L, Zhang P, Yin F F, Xu K, Liu B, Dai Y T 2025 EPJ Quantum Technol. 12 47Google Scholar

    [6]

    Tang Z Y, Liao Z F, Xu F H, Qi B, Qian L, Lo H K 2014 Phys. Rev. Lett. 112 190503Google Scholar

    [7]

    Yin J, Li Y H, Liao S K, Yang M, Cao Y, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F H, Wang J Y, Peng C Z, Ekert Artur K, Pan J W 2020 Nature 582 501Google Scholar

    [8]

    Chen Y A, Zhang Q, Chen T Y, Cai W Q, Liao S K, Zhang J, Chen K, Yin J, Ren J G, Chen Z, Han S L, Yu Q, Liang K, Zhou F, Yuan X, Zhao M S, Wang T Y, Jiang X, Zhang L, Liu W Y, Li Y, Shen Q, Cao Y, Lu C Y, Shu R, Wang J Y, Li L, Liu N L, Xu F H, Wang X B, Peng C Z, Pan J W 2021 Nature 589 214Google Scholar

    [9]

    Tang Y L, Yin H L, Zhao Q, Liu H, Sun X X, Huang M Q, Zhang W J, Chen S J, Zhang L, You L X, Wang Z, Liu Y, Lu C Y, Jiang X, Ma X F, Zhang Q, Chen T Y, Pan J W 2016 Phys. Rev. X 6 011024

    [10]

    Liu Y, Zhang W J, Jiang C, Chen J P, Zhang C, Pan W X, Ma D, Dong H, Xiong J M, Zhang C J, Li H, Wang R C, Wu J, Chen T Y, You L, Wang X B, Zhang Q, Pan J W 2023 Phys. Rev. Lett. 130 210801Google Scholar

    [11]

    Zhu H T, Huang Y Z, Pan W X, Zhou C W, Tang J J, He H, Cheng M, Jin X D, Zou M, Tang S B, Ma X F, Chen T Y, Pan J W 2024 Optica 11 883Google Scholar

    [12]

    Mamdoohi G, Abas A F, Samsudin K 2012 Eng. Appl. Artif. Intell. 25 869Google Scholar

    [13]

    刘令令, 景明勇, 于波, 胡建勇, 肖连团, 贾锁堂 2015 激光与光电子学进展 52 072701Google Scholar

    Liu L L, Jing M Y, Yu B, Hu J Y, Xiao L T, Jia S T 2015 Laser Optoelectron. Prog. 52 072701Google Scholar

    [14]

    Xi L X, Zhang X G, Tian F, Tang X F, Weng X, Zhang G Y, Li X X, Xiong Q J 2010 IEEE Photon. J. 2 195Google Scholar

    [15]

    Asgari H, Khodabandeh M, Hajibaba S, Dadahkhani A H, Madani S A 2025 Indian J. Phys. 99 1471Google Scholar

    [16]

    唐鹏毅, 李国春, 高松, 余刚, 代云启, 相耀, 李东东, 张英华, 吴冰, 赵子岩, 高德荃, 刘建宏, 王坚 2018 光学学报 38 0106005Google Scholar

    Tang P Y, Li G C, Gao S, Yu G, Dai Y Q, Xiang Y, Li D D, Zhang Y H, Wu B, Zhao Z Y, Gao D Q, Liu J H, Wang J 2018 Acta Opt. Sin. 38 0106005Google Scholar

    [17]

    李鹏程, 刘琨, 江俊峰, 潘亮, 马鹏飞, 李志辰, 张炤, 李鑫, 刘铁根 2018 中国激光 45 0510002Google Scholar

    Li P C, Liu K, Jiang J F, Pan L, Ma P F, Li Z C, Zhang S, Li X, Liu T G 2018 Chin. J. Lasers 45 0510002Google Scholar

    [18]

    马兵斌, 柯熙政, 张颖 2019 中国激光 46 0106002Google Scholar

    Ma B B, Ke X Z, Zhang Y 2019 Chin. J. Lasers 46 0106002Google Scholar

    [19]

    夏骞, 张涛, 刘金璐, 杨杰, 何远杭, 黄伟, 李大双, 徐兵杰 2020 光学学报 40 1526001Google Scholar

    Xia Q, Zhang T, Liu J, Yang J, He Y H, Huang W, Li D S, Xu B J 2020 Acta Opt. Sin. 40 1526001Google Scholar

    [20]

    Huang T, Dong S L, Guo X J, Xiao L T, Jia S T 2006 Appl. Phys. Lett. 89 061102Google Scholar

    [21]

    王晶晶, 何博, 于波, 刘岩, 王晓波, 肖连团, 贾锁堂 2012 物理学报 61 204203Google Scholar

    Wang J J, He B, Yu B, Liu Y, Wang X B, Xiao L T, Jia S T 2012 Acta Phys. Sin. 61 204203Google Scholar

    [22]

    Lounis B, Orrit M 2005 Rep. Prog. Phys. 68 1129Google Scholar

  • 图 1  实时锁定1550 nm单光子线偏振态的实验装置(红色虚线代表光信号, 黑色实线代表电信号), 其中Iso为隔离开关; Att为衰减器; AM为强度调制器; PR为偏振旋转器; ILP为同轴检偏器; SPD为单光子探测器; FG为函数发生器; LIA为锁相放大器; Amp为放大器

    Figure 1.  Experimental setup of real-time locking the 1550 nm single-photon linear polarization state (red dashed lines for the light signal, black solid lines for the electrical signal), where Iso represents isolator; Att represents attenuator; AM represents amplitude modulator; PR represents polarization rotator; ILP represents in-line polarizer; SPD represents single-photon detector; FG represents function generator; LIA represents lock-in amplifier; Amp represents amplifier.

    图 2  透射信号

    Figure 2.  Transmission signal.

    图 3  误差信号

    Figure 3.  Error signal.

    图 4  (a) 单光子偏振态未锁定和锁定的测量结果; (b) 单光子偏振态未锁定时误差信号的统计结果; 单光子偏振态锁定时误差信号的统计结果(c)和对应的阿伦偏差分析结果(d)

    Figure 4.  (a) Measurement results of unlocked and locked single-photon polarization states; (b) statistics results of error signal for unlocked single-photon polarization state; statistics results of error signal for locked single-photon polarization state (c) and corresponding analysis results of Allan deviation (d).

  • [1]

    Xu F H, Ma X F, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [2]

    Portmann C, Renner R 2022 Rev. Mod. Phys. 94 025008Google Scholar

    [3]

    Li Y, Li Y H, Xie H B, Li Z P, Jiang X, Cai W Q, Ren J G, Yin J, Liao S K, Peng C Z 2019 Opt. Lett. 44 5262Google Scholar

    [4]

    Stein A, Grande I H L, Castelvero L, Pruneri V 2023 Opt. Express 31 13700Google Scholar

    [5]

    Wang Z X, Xu H X, Li J, Yu H C, Huang J Q, Han H, Wang C L, Zhang P, Yin F F, Xu K, Liu B, Dai Y T 2025 EPJ Quantum Technol. 12 47Google Scholar

    [6]

    Tang Z Y, Liao Z F, Xu F H, Qi B, Qian L, Lo H K 2014 Phys. Rev. Lett. 112 190503Google Scholar

    [7]

    Yin J, Li Y H, Liao S K, Yang M, Cao Y, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F H, Wang J Y, Peng C Z, Ekert Artur K, Pan J W 2020 Nature 582 501Google Scholar

    [8]

    Chen Y A, Zhang Q, Chen T Y, Cai W Q, Liao S K, Zhang J, Chen K, Yin J, Ren J G, Chen Z, Han S L, Yu Q, Liang K, Zhou F, Yuan X, Zhao M S, Wang T Y, Jiang X, Zhang L, Liu W Y, Li Y, Shen Q, Cao Y, Lu C Y, Shu R, Wang J Y, Li L, Liu N L, Xu F H, Wang X B, Peng C Z, Pan J W 2021 Nature 589 214Google Scholar

    [9]

    Tang Y L, Yin H L, Zhao Q, Liu H, Sun X X, Huang M Q, Zhang W J, Chen S J, Zhang L, You L X, Wang Z, Liu Y, Lu C Y, Jiang X, Ma X F, Zhang Q, Chen T Y, Pan J W 2016 Phys. Rev. X 6 011024

    [10]

    Liu Y, Zhang W J, Jiang C, Chen J P, Zhang C, Pan W X, Ma D, Dong H, Xiong J M, Zhang C J, Li H, Wang R C, Wu J, Chen T Y, You L, Wang X B, Zhang Q, Pan J W 2023 Phys. Rev. Lett. 130 210801Google Scholar

    [11]

    Zhu H T, Huang Y Z, Pan W X, Zhou C W, Tang J J, He H, Cheng M, Jin X D, Zou M, Tang S B, Ma X F, Chen T Y, Pan J W 2024 Optica 11 883Google Scholar

    [12]

    Mamdoohi G, Abas A F, Samsudin K 2012 Eng. Appl. Artif. Intell. 25 869Google Scholar

    [13]

    刘令令, 景明勇, 于波, 胡建勇, 肖连团, 贾锁堂 2015 激光与光电子学进展 52 072701Google Scholar

    Liu L L, Jing M Y, Yu B, Hu J Y, Xiao L T, Jia S T 2015 Laser Optoelectron. Prog. 52 072701Google Scholar

    [14]

    Xi L X, Zhang X G, Tian F, Tang X F, Weng X, Zhang G Y, Li X X, Xiong Q J 2010 IEEE Photon. J. 2 195Google Scholar

    [15]

    Asgari H, Khodabandeh M, Hajibaba S, Dadahkhani A H, Madani S A 2025 Indian J. Phys. 99 1471Google Scholar

    [16]

    唐鹏毅, 李国春, 高松, 余刚, 代云启, 相耀, 李东东, 张英华, 吴冰, 赵子岩, 高德荃, 刘建宏, 王坚 2018 光学学报 38 0106005Google Scholar

    Tang P Y, Li G C, Gao S, Yu G, Dai Y Q, Xiang Y, Li D D, Zhang Y H, Wu B, Zhao Z Y, Gao D Q, Liu J H, Wang J 2018 Acta Opt. Sin. 38 0106005Google Scholar

    [17]

    李鹏程, 刘琨, 江俊峰, 潘亮, 马鹏飞, 李志辰, 张炤, 李鑫, 刘铁根 2018 中国激光 45 0510002Google Scholar

    Li P C, Liu K, Jiang J F, Pan L, Ma P F, Li Z C, Zhang S, Li X, Liu T G 2018 Chin. J. Lasers 45 0510002Google Scholar

    [18]

    马兵斌, 柯熙政, 张颖 2019 中国激光 46 0106002Google Scholar

    Ma B B, Ke X Z, Zhang Y 2019 Chin. J. Lasers 46 0106002Google Scholar

    [19]

    夏骞, 张涛, 刘金璐, 杨杰, 何远杭, 黄伟, 李大双, 徐兵杰 2020 光学学报 40 1526001Google Scholar

    Xia Q, Zhang T, Liu J, Yang J, He Y H, Huang W, Li D S, Xu B J 2020 Acta Opt. Sin. 40 1526001Google Scholar

    [20]

    Huang T, Dong S L, Guo X J, Xiao L T, Jia S T 2006 Appl. Phys. Lett. 89 061102Google Scholar

    [21]

    王晶晶, 何博, 于波, 刘岩, 王晓波, 肖连团, 贾锁堂 2012 物理学报 61 204203Google Scholar

    Wang J J, He B, Yu B, Liu Y, Wang X B, Xiao L T, Jia S T 2012 Acta Phys. Sin. 61 204203Google Scholar

    [22]

    Lounis B, Orrit M 2005 Rep. Prog. Phys. 68 1129Google Scholar

  • [1] JIANG Peiheng, SHI Chaodu, FU Shijie, TIAN Hao, SHENG Quan, SHI Wei, SHEN Qihao, ZHOU Dingfu, YAO Jianquan. 130 μJ linear-polarized single-frequency 12-μm-core Er/Yb co-doped fiber amplifier based on pre-shaped seed pulse. Acta Physica Sinica, 2025, 74(2): 024201. doi: 10.7498/aps.74.20241371
    [2] LI Yiqi, SUN Xiaobing, ZHENG Xiaobing, HUANG Honglian, LIU Xiao, TI Rufang, WEI Yichen, WANG Yuxuan. Sensitivity analysis of Venus (disk) linear polarization at near-infrared wavelengths. Acta Physica Sinica, 2025, 74(9): 094201. doi: 10.7498/aps.74.20250015
    [3] Liu Jing-Yu, Li Wen-Yu, Liu Zhi-Xing, Shu Jing-Yi, Zhao Guo-Zhong. Transmission polarization converter based on V-shaped metasurface in terahertz region. Acta Physica Sinica, 2022, 71(23): 230701. doi: 10.7498/aps.71.20221259
    [4] Zhang Wan-Ru, Chen Si-Yu, Su Rong-Tao, Jiang Man, Li Can, Ma Yan-Xing, Zhou Pu. Gain switched linearly polarized single-frequency pulsed fiber laser. Acta Physica Sinica, 2022, 71(19): 194204. doi: 10.7498/aps.71.20220829
    [5] Qiang Fan, Zhu Jing-Ping, Zhang Yun-Yao, Zhang Ning, Li Hao, Zong Kang, Cao Ying-Yu. Reconstruction of polarization parameters in channel modulated polarization imaging system. Acta Physica Sinica, 2016, 65(13): 130202. doi: 10.7498/aps.65.130202
    [6] Chen Guo-Jun, Zhou Qiao-Qiao, Ji Xian-Ming, Yin Jian-Ping. Generation of the tunable vector ellipse hollow beam by using linearly polarized light beams. Acta Physica Sinica, 2014, 63(8): 083701. doi: 10.7498/aps.63.083701
    [7] Zhou Guo-Quan. Far-field divergent properties of linearly polarized Laguerre-Gauss beams. Acta Physica Sinica, 2012, 61(2): 024208. doi: 10.7498/aps.61.024208
    [8] Lin Qing. Mapping between multi-photon polarization state and single-photon spatial qudit and its applications. Acta Physica Sinica, 2011, 60(8): 084209. doi: 10.7498/aps.60.084209
    [9] Huang Chong, Chen Hai-Qing, Liao Zhao-Shu, Zhao Shuang. Light attenuation coefficient of polarization attenuator at high attenuation level. Acta Physica Sinica, 2010, 59(3): 1756-1761. doi: 10.7498/aps.59.1756
    [10] Qi Yun-Feng, Liu Chi, Zhou Jun, Chen Wei-Biao, Dong Jing-Xing, Wei Yun-Rong, Lou Qi-Hong. High power narrow linewidth single-frequency line-polarized fiber amplifier based on master-oscillator power amplifier technology. Acta Physica Sinica, 2010, 59(6): 3942-3947. doi: 10.7498/aps.59.3942
    [11] Ma Hai-Qiang, Wang Su-Mei, Wu Ling-An. A single photon source based on entangled photon pairs. Acta Physica Sinica, 2009, 58(2): 717-721. doi: 10.7498/aps.58.717
    [12] Li Jian-Long, Lü Bai-Da. Propagation of linearly polarized Gaussian beam through the compound modulated diffraction grating. Acta Physica Sinica, 2008, 57(3): 1656-1661. doi: 10.7498/aps.57.1656
    [13] Zhang Qing-Bin, Hong Wei-Yi, Lan Peng-Fei, Yang Zhen-Yu, Lu Pei-Xiang. Control of attosecond pulse generation with modulated polarization gating. Acta Physica Sinica, 2008, 57(12): 7848-7854. doi: 10.7498/aps.57.7848
    [14] Gao Peng, Yao Bao-Li, Han Jun-He, Chen Li-Ju, Wang Ying-Li, Lei Ming. Modulation of the azimuth of polarization of reconstruction beam on the diffraction efficiency of anisotropic gratings recorded in bacteriorhodopsin films by two parallel linearly polarized beams. Acta Physica Sinica, 2008, 57(5): 2952-2958. doi: 10.7498/aps.57.2952
    [15] Liu Xiao-Yi, Zhang Fang-Di, Zhang Min, Ye Pei-Da. Numerical investigation on single-mode single-polarization photonic crystal fiber using resonant absorption effect. Acta Physica Sinica, 2007, 56(1): 301-307. doi: 10.7498/aps.56.301
    [16] Li Jian-Long, Lü Bai-Da. Propagation of linearly polarized Gaussian beams through a bar relief diffraction grating. Acta Physica Sinica, 2007, 56(10): 5778-5783. doi: 10.7498/aps.56.5778
    [17] Jing Guo-Liang, Yu Wei, Li Ying-Jun, Zhao Shi-Hua, Qian Lie-Jia, Tian You-Wei, Liu Bing-Chen. J×B heating by non-relativistic linearly polarized laser light. Acta Physica Sinica, 2006, 55(7): 3475-3479. doi: 10.7498/aps.55.3475
    [18] Zhou Hui-Jun, Cheng Mu-Tian, Liu Shao-Ding, Wang Qu-Quan, Zhan Ming-Sheng, Xue Qi-Kun. High polarization properties of single-photon emission from anisotropic InGaAs quantum dots. Acta Physica Sinica, 2005, 54(9): 4141-4145. doi: 10.7498/aps.54.4141
    [19] Zhou Guo-Quan. Nonparaxial propagation of Gaussian beam in arbitrary linearly polarized state. Acta Physica Sinica, 2005, 54(10): 4710-4717. doi: 10.7498/aps.54.4710
    [20] WANG YUNG. WAVE FUNCTIONS AND POLAEIZATION STATES OF A TWO-PHOTON SYSTEM. Acta Physica Sinica, 1959, 15(2): 55-62. doi: 10.7498/aps.15.55
Metrics
  • Abstract views:  323
  • PDF Downloads:  12
  • Cited By: 0
Publishing process
  • Received Date:  06 August 2025
  • Accepted Date:  28 September 2025
  • Available Online:  10 October 2025
  • Published Online:  05 December 2025
  • /

    返回文章
    返回