Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of dust particles on non-local kinetic behavior in low-pressure radio frequency plasma

ZHAO Yueyue MIAO Yang YANG Wei DU Chengran

Citation:

Influence of dust particles on non-local kinetic behavior in low-pressure radio frequency plasma

ZHAO Yueyue, MIAO Yang, YANG Wei, DU Chengran
cstr: 32037.14.aps.74.20251096
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Low-pressure radio-frequency inductively coupled discharges can produce uniformly distributed monodisperse particles and plasma, making them widely used in nanodevice fabrication. The manufacturing of nanodevices typically requires the generation of particles ranging from nanometer to submicron scales. These particles usually carry negative charges and can significantly influence the discharge characteristics of the plasma. This study investigates the effects of particle size and density on electron bounce resonance heating (BRH) and fundamental plasma properties in low-pressure inductively coupled plasmas (ICPs) by using a hybrid model. The hybrid model consists of kinetic equation, electromagnetic field equation, and global model equation. The simulation results show that as the dust radius or density increases, the BRH effect characterized by the formation of a plateau in the probability function of electron energy, is gradually suppressed and eventually disappears, accompanied by a decrease in electron temperature, an increase in electron density, and an increase in particle surface potential. The dust charge decreases with the increase of particle density, while exhibiting a nonmonotonic variation with particle radius. The results show that the loss of high-energy electrons caused by the dust particles may create a more favorable plasma environment for the growth of monodisperse nanoparticles with low defects. Such an improvement in particle quality is crucial for reducing trap densities and enhancing the electrical performance of nanoparticle-based electronic devices.
      Corresponding author: YANG Wei, weiyang@dhu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12035003).
    [1]

    Fortov V E, Ivlev A V, Khrapak S A, Khrapak A G, Morfill G E 2005 Phys. Rep. 421 1Google Scholar

    [2]

    Merlino R L, Goree J A 2004 Phys. Today 57 32

    [3]

    Beckers J, Berndt J, Block D, Bonitz M, Bruggeman P J, Couëdel L, Delzanno G L, Feng Y, Gopalakrishnan R, Greiner F, Hartmann P, Horányi M, Kersten H, Knapek C A, Konopka U, Kortshagen U, Kostadinova E G, Kovačević E, Krasheninnikov S I, Mann I, Mariotti D, Matthews L S, Melzer A, Mikikian M, Nosenko V, Pustylnik M Y, Ratynskaia S, Sankaran R M, Schneider V, Thimsen E J, Thomas E, Thomas H M, Tolias P, Van De Kerkhof M 2023 Phys. Plasmas 30 120601Google Scholar

    [4]

    Morfill G E, Ivlev A V 2009 Rev. Mod. Phys. 81 1353Google Scholar

    [5]

    De La Cal E, Martín A, Carralero D, De Pablos J L, Pedrosa M A, Shoji M, Hidalgo C, the TJ-II Team 2013 Phys. Control. Fusion 55 065001Google Scholar

    [6]

    Boufendi L, Bouchoule A 2002 Plasma Sources Sci. Technol. 11 A211Google Scholar

    [7]

    Vladimirov S V, Ostrikov K 2004 Phys. Rep. 393 175Google Scholar

    [8]

    Shukla P K, Eliasson B 2009 Rev. Mod. Phys. 81 25Google Scholar

    [9]

    Kersten H, Deutsch H, Stoffels E, Stoffels W W, Kroesen G M W, Hippler R 2001 Contrib. Plasma Phys. 41 598Google Scholar

    [10]

    杜诚然, 冯岩, 王晓钢 2022 载人航天 28 323

    Du C R, Feng Y, Wang X G 2022 Manned Spaceflight 28 323

    [11]

    杨唯, 王垚楠, 梁颖悦, 黄晓江, 周鸿颖, 郭颖, 张菁, 冯岩, 王晓钢, 张立宪, 杜诚然 2025 中国科学: 物理学 力学 天文学 55 105206Google Scholar

    Yang W, Wang Y N, Liang Y Y, Huang X J, Zhou H Y, Guo Y, Zhang J, Feng Y, Wang X G, Zhang L X, Du C R 2025 Sci. Sin. Phys. Mech. Astron. 55 105206Google Scholar

    [12]

    Chu J H, Lin I 1994 Phys. Rev. Lett. 72 4009Google Scholar

    [13]

    Thomas H, Morfill G E, Demmel V, Goree J, Feuerbacher B, Möhlmann D 1994 Phys. Rev. Lett. 73 652Google Scholar

    [14]

    Liu B, Goree J, Feng Y 2010 Phys. Rev. Lett. 105 085004Google Scholar

    [15]

    Du C R, Nosenko V, Thomas H M, Lin Y F, Morfill G E, Ivlev A V 2019 Phys. Rev. Lett. 123 185002Google Scholar

    [16]

    Nunomura S, Zhdanov S, Samsonov D, Morfill G 2005 Phys. Rev. Lett. 94 045001Google Scholar

    [17]

    Teng L W, Chang M C, Tseng Y P, I L 2009 Phys. Rev. Lett. 103 245005Google Scholar

    [18]

    Couëdel L, Nosenko V, Ivlev A V, Zhdanov S K, Thomas H M, Morfill G E 2010 Phys. Rev. Lett. 104 195001Google Scholar

    [19]

    Huang H, Ivlev A V, Nosenko V, Yang W, Du C R 2023 Phys. Rev. E 107 045205Google Scholar

    [20]

    Huang D, Baggioli M, Lu S Y, Ma Z, Feng Y 2023 Phys. Rev. Res. 5 013149Google Scholar

    [21]

    Killer C, Bockwoldt T, Schütt S, Himpel M, Melzer A, Piel A 2016 Phys. Rev. Lett. 116 115002Google Scholar

    [22]

    Wysocki A, Räth C, Ivlev A V, Sütterlin K R, Thomas H M, Khrapak S, Zhdanov S, Fortov V E, Lipaev A M, Molotkov V I, Petrov O F, Löwen H, Morfill G E 2010 Phys. Rev. Lett. 105 045001Google Scholar

    [23]

    Ivlev A V, Zhdanov S K, Thomas H M, Morfill G E 2009 Europhys. Lett. 85 45001Google Scholar

    [24]

    Winter J 2000 Phys. Plasmas 7 3862Google Scholar

    [25]

    Pigarov A Yu, Krasheninnikov S I, Soboleva T K, Rognlien T D 2005 Phys. Plasmas 12 122508Google Scholar

    [26]

    Smirnov R D, Pigarov A Y, Rosenberg M, Krasheninnikov S I, Mendis D A 2007 Plasma Phys. Control. Fusion 49 347Google Scholar

    [27]

    Kokura H, Yoneda S, Nakamura K, Mitsuhira N, Nakamura M, Sugai H 1999 Jpn. J. Appl. Phys. 38 5256Google Scholar

    [28]

    Raha D, Das D 2013 Appl. Surf. Sci. 276 249Google Scholar

    [29]

    Cheng Q, Xu S, Long J D, Ni Z H, Rider A E, Ostrikov K 2008 J. Phys. D: Appl. Phys. 41 055406Google Scholar

    [30]

    Bapat A, Perrey C R, Campbell S A, Barry Carter C, Kortshagen U 2003 J. Appl. Phys. 94 1969Google Scholar

    [31]

    Shen Z, Kortshagen U, Campbell S A 2004 J. Appl. Phys. 96 2204Google Scholar

    [32]

    Shen Z, Kim T, Kortshagen U, McMurry P H, Campbell S A 2003 J. Appl. Phys. 94 2277Google Scholar

    [33]

    Denysenko I B, Kersten H, Azarenkov N A 2015 Phys. Rev. E 92 033102Google Scholar

    [34]

    Wang D Z, Dong J Q 1997 J. Appl. Phys. 81 38Google Scholar

    [35]

    Denysenko I, Yu M Y, Ostrikov K, Smolyakov A 2004 Phys. Rev. E 70 046403Google Scholar

    [36]

    Czarnetzki U, Alves L L 2022 Mod. Plasma Phys. 6 31Google Scholar

    [37]

    Gu S, Kang H J, Kwon D C, Kim Y S, Chang Y M, Chung C W 2016 Phys. Plasmas 23 063506Google Scholar

    [38]

    Kolobov V, Godyak V 2019 Phys. Plasmas 26 060601Google Scholar

    [39]

    Liu Y X, Zhang Q Z, Jiang W, Hou L J, Jiang X Z, Lu W Q, Wang Y N 2011 Phys. Rev. Lett. 107 055002Google Scholar

    [40]

    Chung C W, You K I, Seo S H, Kim S S, Chang H Y 2001 Phys. Plasmas 8 2992Google Scholar

    [41]

    张钰如, 高飞, 王友年 2021 物理学报 70 095206Google Scholar

    Zhang Y R, Gao F, Wang Y N 2021 Acta Phys. Sin. 70 095206Google Scholar

    [42]

    Jia W Z, Zhang Q Z, Wang X F, Song Y H, Zhang Y Y, Wang Y N 2019 J. Phys. D: Appl. Phys. 52 015206Google Scholar

    [43]

    De Bleecker K, Bogaerts A, Goedheer W 2004 Phys. Rev. E 70 056407Google Scholar

    [44]

    Boeuf J P 1992 Phys. Rev. A 46 7910Google Scholar

    [45]

    Alexandrov A L, Schweigert I V, Peeters F M 2008 New J. Phys. 10 093025Google Scholar

    [46]

    Wen H, Schulze J, Fu Y, Sun J Y, Zhang Q Z 2025 Plasma Sources Sci. Technol. 34 03LT01Google Scholar

    [47]

    Fu C C, Dong Y C, Li Y F, Wang W Z, Wang Z H, Liu W 2024 J. Phys. D: Appl. Phys. 57 135201Google Scholar

    [48]

    Liu Y X, Zhang Q Z, Zhao K, Zhang Y R, Gao F, Song Y H, Wang Y N 2022 Chin. Phys. B 31 085202Google Scholar

    [49]

    Li S, Rabadanov K M, Bogdanov E A, Kudryavtsev A A, Ashurbekov N A, Yuan C, Zhou Z 2021 Plasma Sources Sci. Technol. 30 047001Google Scholar

    [50]

    Liang Y G, Wang Y, Li H, Tian R H, Yuan C X, Kudryavtsev A A, Rabadanov K M, Wu J, Zhou Z X, Tian H 2018 Phys. Plasmas 25 053702Google Scholar

    [51]

    Fedoseev A V, Demin N A, Salnikov M V, Sukhinin G I 2019 Contrib. Plasma Phys. 59 e201800181Google Scholar

    [52]

    Yang W, Wang Y N 2021 Plasma Phys. Control. Fusion 63 035031Google Scholar

    [53]

    DiPeso G, Vahedi V, Hewett D W, Rognlien T D 1994 J. Vac. Sci. Technol. A 12 1387Google Scholar

    [54]

    Belenguer Ph, Blondeau J Ph, Boufendi L, Toogood M, Plain A, Bouchoule A, Laure C, Boeuf J P 1992 Phys. Rev. A 46 7923Google Scholar

    [55]

    Yang W, Gao F, Wang Y N 2022 Plasma Sci. Technol. 24 055401Google Scholar

    [56]

    Yang W, Gao F, Wang Y N 2022 Phys. Plasmas 29 063503Google Scholar

    [57]

    Allen J E 1992 Phys. Scr. 45 497Google Scholar

    [58]

    Wood B P, Lieberman M A, Lichtenberg A J 1995 IEEE Trans. Plasma Sci. 23 89Google Scholar

  • 图 1  模拟的腔室结构图

    Figure 1.  Chamber structure in the simulation.

    图 2  模拟计算程序流程图

    Figure 2.  The flowchart of simulation.

    图 3  不同尘埃半径(a), (b)与不同尘埃密度(c), (d)情况下EEPF及放大图

    Figure 3.  EEPF and zoomed-in plots for different dust radii (a), (b) and different dust densities (c), (d).

    图 4  电子密度和电子温度随尘埃半径(a)与尘埃密度(b)的变化

    Figure 4.  Variation of electron temperature, electron density, and ion density with different dust radii (a) and dust densities (b).

    图 5  尘埃带电量和表面电势随尘埃半径(a)与尘埃密度(b)的变化

    Figure 5.  Variation of dust charge and surface potential with different dust radii (a) and dust densities (b).

    图 6  尘埃收集的电子流、离子流随尘埃半径的变化

    Figure 6.  Dust collected electron and ion currents under different dust radii.

  • [1]

    Fortov V E, Ivlev A V, Khrapak S A, Khrapak A G, Morfill G E 2005 Phys. Rep. 421 1Google Scholar

    [2]

    Merlino R L, Goree J A 2004 Phys. Today 57 32

    [3]

    Beckers J, Berndt J, Block D, Bonitz M, Bruggeman P J, Couëdel L, Delzanno G L, Feng Y, Gopalakrishnan R, Greiner F, Hartmann P, Horányi M, Kersten H, Knapek C A, Konopka U, Kortshagen U, Kostadinova E G, Kovačević E, Krasheninnikov S I, Mann I, Mariotti D, Matthews L S, Melzer A, Mikikian M, Nosenko V, Pustylnik M Y, Ratynskaia S, Sankaran R M, Schneider V, Thimsen E J, Thomas E, Thomas H M, Tolias P, Van De Kerkhof M 2023 Phys. Plasmas 30 120601Google Scholar

    [4]

    Morfill G E, Ivlev A V 2009 Rev. Mod. Phys. 81 1353Google Scholar

    [5]

    De La Cal E, Martín A, Carralero D, De Pablos J L, Pedrosa M A, Shoji M, Hidalgo C, the TJ-II Team 2013 Phys. Control. Fusion 55 065001Google Scholar

    [6]

    Boufendi L, Bouchoule A 2002 Plasma Sources Sci. Technol. 11 A211Google Scholar

    [7]

    Vladimirov S V, Ostrikov K 2004 Phys. Rep. 393 175Google Scholar

    [8]

    Shukla P K, Eliasson B 2009 Rev. Mod. Phys. 81 25Google Scholar

    [9]

    Kersten H, Deutsch H, Stoffels E, Stoffels W W, Kroesen G M W, Hippler R 2001 Contrib. Plasma Phys. 41 598Google Scholar

    [10]

    杜诚然, 冯岩, 王晓钢 2022 载人航天 28 323

    Du C R, Feng Y, Wang X G 2022 Manned Spaceflight 28 323

    [11]

    杨唯, 王垚楠, 梁颖悦, 黄晓江, 周鸿颖, 郭颖, 张菁, 冯岩, 王晓钢, 张立宪, 杜诚然 2025 中国科学: 物理学 力学 天文学 55 105206Google Scholar

    Yang W, Wang Y N, Liang Y Y, Huang X J, Zhou H Y, Guo Y, Zhang J, Feng Y, Wang X G, Zhang L X, Du C R 2025 Sci. Sin. Phys. Mech. Astron. 55 105206Google Scholar

    [12]

    Chu J H, Lin I 1994 Phys. Rev. Lett. 72 4009Google Scholar

    [13]

    Thomas H, Morfill G E, Demmel V, Goree J, Feuerbacher B, Möhlmann D 1994 Phys. Rev. Lett. 73 652Google Scholar

    [14]

    Liu B, Goree J, Feng Y 2010 Phys. Rev. Lett. 105 085004Google Scholar

    [15]

    Du C R, Nosenko V, Thomas H M, Lin Y F, Morfill G E, Ivlev A V 2019 Phys. Rev. Lett. 123 185002Google Scholar

    [16]

    Nunomura S, Zhdanov S, Samsonov D, Morfill G 2005 Phys. Rev. Lett. 94 045001Google Scholar

    [17]

    Teng L W, Chang M C, Tseng Y P, I L 2009 Phys. Rev. Lett. 103 245005Google Scholar

    [18]

    Couëdel L, Nosenko V, Ivlev A V, Zhdanov S K, Thomas H M, Morfill G E 2010 Phys. Rev. Lett. 104 195001Google Scholar

    [19]

    Huang H, Ivlev A V, Nosenko V, Yang W, Du C R 2023 Phys. Rev. E 107 045205Google Scholar

    [20]

    Huang D, Baggioli M, Lu S Y, Ma Z, Feng Y 2023 Phys. Rev. Res. 5 013149Google Scholar

    [21]

    Killer C, Bockwoldt T, Schütt S, Himpel M, Melzer A, Piel A 2016 Phys. Rev. Lett. 116 115002Google Scholar

    [22]

    Wysocki A, Räth C, Ivlev A V, Sütterlin K R, Thomas H M, Khrapak S, Zhdanov S, Fortov V E, Lipaev A M, Molotkov V I, Petrov O F, Löwen H, Morfill G E 2010 Phys. Rev. Lett. 105 045001Google Scholar

    [23]

    Ivlev A V, Zhdanov S K, Thomas H M, Morfill G E 2009 Europhys. Lett. 85 45001Google Scholar

    [24]

    Winter J 2000 Phys. Plasmas 7 3862Google Scholar

    [25]

    Pigarov A Yu, Krasheninnikov S I, Soboleva T K, Rognlien T D 2005 Phys. Plasmas 12 122508Google Scholar

    [26]

    Smirnov R D, Pigarov A Y, Rosenberg M, Krasheninnikov S I, Mendis D A 2007 Plasma Phys. Control. Fusion 49 347Google Scholar

    [27]

    Kokura H, Yoneda S, Nakamura K, Mitsuhira N, Nakamura M, Sugai H 1999 Jpn. J. Appl. Phys. 38 5256Google Scholar

    [28]

    Raha D, Das D 2013 Appl. Surf. Sci. 276 249Google Scholar

    [29]

    Cheng Q, Xu S, Long J D, Ni Z H, Rider A E, Ostrikov K 2008 J. Phys. D: Appl. Phys. 41 055406Google Scholar

    [30]

    Bapat A, Perrey C R, Campbell S A, Barry Carter C, Kortshagen U 2003 J. Appl. Phys. 94 1969Google Scholar

    [31]

    Shen Z, Kortshagen U, Campbell S A 2004 J. Appl. Phys. 96 2204Google Scholar

    [32]

    Shen Z, Kim T, Kortshagen U, McMurry P H, Campbell S A 2003 J. Appl. Phys. 94 2277Google Scholar

    [33]

    Denysenko I B, Kersten H, Azarenkov N A 2015 Phys. Rev. E 92 033102Google Scholar

    [34]

    Wang D Z, Dong J Q 1997 J. Appl. Phys. 81 38Google Scholar

    [35]

    Denysenko I, Yu M Y, Ostrikov K, Smolyakov A 2004 Phys. Rev. E 70 046403Google Scholar

    [36]

    Czarnetzki U, Alves L L 2022 Mod. Plasma Phys. 6 31Google Scholar

    [37]

    Gu S, Kang H J, Kwon D C, Kim Y S, Chang Y M, Chung C W 2016 Phys. Plasmas 23 063506Google Scholar

    [38]

    Kolobov V, Godyak V 2019 Phys. Plasmas 26 060601Google Scholar

    [39]

    Liu Y X, Zhang Q Z, Jiang W, Hou L J, Jiang X Z, Lu W Q, Wang Y N 2011 Phys. Rev. Lett. 107 055002Google Scholar

    [40]

    Chung C W, You K I, Seo S H, Kim S S, Chang H Y 2001 Phys. Plasmas 8 2992Google Scholar

    [41]

    张钰如, 高飞, 王友年 2021 物理学报 70 095206Google Scholar

    Zhang Y R, Gao F, Wang Y N 2021 Acta Phys. Sin. 70 095206Google Scholar

    [42]

    Jia W Z, Zhang Q Z, Wang X F, Song Y H, Zhang Y Y, Wang Y N 2019 J. Phys. D: Appl. Phys. 52 015206Google Scholar

    [43]

    De Bleecker K, Bogaerts A, Goedheer W 2004 Phys. Rev. E 70 056407Google Scholar

    [44]

    Boeuf J P 1992 Phys. Rev. A 46 7910Google Scholar

    [45]

    Alexandrov A L, Schweigert I V, Peeters F M 2008 New J. Phys. 10 093025Google Scholar

    [46]

    Wen H, Schulze J, Fu Y, Sun J Y, Zhang Q Z 2025 Plasma Sources Sci. Technol. 34 03LT01Google Scholar

    [47]

    Fu C C, Dong Y C, Li Y F, Wang W Z, Wang Z H, Liu W 2024 J. Phys. D: Appl. Phys. 57 135201Google Scholar

    [48]

    Liu Y X, Zhang Q Z, Zhao K, Zhang Y R, Gao F, Song Y H, Wang Y N 2022 Chin. Phys. B 31 085202Google Scholar

    [49]

    Li S, Rabadanov K M, Bogdanov E A, Kudryavtsev A A, Ashurbekov N A, Yuan C, Zhou Z 2021 Plasma Sources Sci. Technol. 30 047001Google Scholar

    [50]

    Liang Y G, Wang Y, Li H, Tian R H, Yuan C X, Kudryavtsev A A, Rabadanov K M, Wu J, Zhou Z X, Tian H 2018 Phys. Plasmas 25 053702Google Scholar

    [51]

    Fedoseev A V, Demin N A, Salnikov M V, Sukhinin G I 2019 Contrib. Plasma Phys. 59 e201800181Google Scholar

    [52]

    Yang W, Wang Y N 2021 Plasma Phys. Control. Fusion 63 035031Google Scholar

    [53]

    DiPeso G, Vahedi V, Hewett D W, Rognlien T D 1994 J. Vac. Sci. Technol. A 12 1387Google Scholar

    [54]

    Belenguer Ph, Blondeau J Ph, Boufendi L, Toogood M, Plain A, Bouchoule A, Laure C, Boeuf J P 1992 Phys. Rev. A 46 7923Google Scholar

    [55]

    Yang W, Gao F, Wang Y N 2022 Plasma Sci. Technol. 24 055401Google Scholar

    [56]

    Yang W, Gao F, Wang Y N 2022 Phys. Plasmas 29 063503Google Scholar

    [57]

    Allen J E 1992 Phys. Scr. 45 497Google Scholar

    [58]

    Wood B P, Lieberman M A, Lichtenberg A J 1995 IEEE Trans. Plasma Sci. 23 89Google Scholar

  • [1] LIANG Chen, LU Shaoyu, HUANG Dong, CHEN Xin, FENG Yan. Diagnosing global properties of dusty plasma based on machine learning from single particle dynamics. Acta Physica Sinica, 2025, 74(20): 205202. doi: 10.7498/aps.74.20251129
    [2] ZHANG Shunxin, WANG Shuo, LIU Xue, WANG Xinzhan, LIU Fucheng, HE Yafeng. Rectification of dust particles in a dusty plasma metal straight ratchet. Acta Physica Sinica, 2025, 74(7): 075202. doi: 10.7498/aps.74.20241740
    [3] Tian Miao, Yao Ting-Yu, Cai Zhi-Min, Liu Fu-Cheng, He Ya-Feng. Three-dimensional numerical simulation of particle separation using a dusty plasma ratchet. Acta Physica Sinica, 2024, 73(11): 115201. doi: 10.7498/aps.73.20240319
    [4] Jiang Hong-Fan, Lin Ji, Hu Bei-Bei, Zhang Xiao. Nonlocal soliton in non-parity-time-symmetric coupler. Acta Physica Sinica, 2023, 72(10): 104205. doi: 10.7498/aps.72.20230082
    [5] Chen Wei, Huang Hai, Yang Li-Xia, Bo Yong, Huang Zhi-Xiang. Scattering characteristics of non-uniform dusty plasma targets based on Fokker-Planck-Landau collision model. Acta Physica Sinica, 2023, 72(6): 060201. doi: 10.7498/aps.72.20222113
    [6] Li Sen-Qing, Zhang Xiao, Lin Ji. Coupled mode and novel soliton structure in fused coupler. Acta Physica Sinica, 2022, 71(23): 234207. doi: 10.7498/aps.71.20221273
    [7] Yang Jian-Rong, Mao Jie-Jian, Wu Qi-Cheng, Liu Ping, Huang Li. Drift wave in strong collisional dusty magnetoplasma. Acta Physica Sinica, 2020, 69(17): 175201. doi: 10.7498/aps.69.20200468
    [8] Sun Jun-Chao, Zhang Zong-Guo, Dong Huan-He, Yang Hong-Wei. Fractional order model and Lump solution in dusty plasma. Acta Physica Sinica, 2019, 68(21): 210201. doi: 10.7498/aps.68.20191045
    [9] Wu Dan-Dan, She Wei-Long. Wave coupling theory of nonlocal linear electro-optic effect in a linear absorbent medium. Acta Physica Sinica, 2017, 66(6): 064202. doi: 10.7498/aps.66.064202
    [10] Xu Bin, Li Hui, Wang Zhan-Ge, Xu Zheng-Wen, Wu Jian. Study on incoherent scatter theory of high density dusty plasma. Acta Physica Sinica, 2017, 66(4): 049401. doi: 10.7498/aps.66.049401
    [11] Gong Wei-Hua, Zhang Yong-Liang, Feng Fan, Liu Fu-Cheng, He Ya-Feng. Complex motions of grains in dusty plasma with nonuniform magnetic field. Acta Physica Sinica, 2015, 64(19): 195202. doi: 10.7498/aps.64.195202
    [12] Gao Xing-Hui, Tang Dong, Zhang Cheng-Yun, Zheng Hui, Lu Da-Quan, Hu Wei. Nonlocal surface dark solitons and their stability analysis. Acta Physica Sinica, 2014, 63(2): 024204. doi: 10.7498/aps.63.024204
    [13] Li Xue-Liang, Shi Yan-Xiang. Theoretical study on charging equation of dust plasmas in double Maxwellian distribution. Acta Physica Sinica, 2014, 63(21): 215201. doi: 10.7498/aps.63.215201
    [14] Gao Xing-Hui, Zhang Cheng-Yun, Tang Dong, Zheng Hui, Lu Da-Quan, Hu Wei. Nonlocal dark soliton and its linear stability analysis. Acta Physica Sinica, 2013, 62(4): 044214. doi: 10.7498/aps.62.044214
    [15] Zhong Sheng-Ren. Instability and interaction of the nonlinear solitary waves in two-temperature-ion dusty plasma. Acta Physica Sinica, 2010, 59(4): 2178-2181. doi: 10.7498/aps.59.2178
    [16] Ding Zhen-Feng, Yuan Guo-Yu, Gao Wei, Sun Jing-Chao. Experimental studies on the properties of the discharge modes in a cylindrical radio frequency inductively coupled plasma. Acta Physica Sinica, 2008, 57(7): 4304-4315. doi: 10.7498/aps.57.4304
    [17] Shi Yan-Xiang, Ge De-Biao, Wu Jian. Influence of charge and discharge processes of dust particles on the dust plasma conductivity. Acta Physica Sinica, 2006, 55(10): 5318-5324. doi: 10.7498/aps.55.5318
    [18] Wu Jing, Zhang Peng-Yun, Song Qiao-Li, Zhang Jia-Liang, Wang De-Zhen. Investigation of void in dust clouds in reactive plasma. Acta Physica Sinica, 2005, 54(10): 4794-4798. doi: 10.7498/aps.54.4794
    [19] Hong Xue-Ren, Duan Wen-Shan, Sun Jian-An, Shi Yu-Ren, Lü Ke-Pu. The propagation of solitons in an inhomogeneous dusty plasma. Acta Physica Sinica, 2003, 52(11): 2671-2677. doi: 10.7498/aps.52.2671
    [20] CHEN XIAO-HUA, WU GUO-TAO, DENG FU-MING, WANG JIAN-XIONG, YANG HANG-SHENG, WANG MIAO, LU XIAO-NAN, PENG JING-CUI, LI WEN-ZHU. GROWING CARBON BUCKONIONS BY RADIO FREQUENCY PLASMA-ENHANCED CHEMICAL VAPOR DEPOSITION. Acta Physica Sinica, 2001, 50(7): 1264-1267. doi: 10.7498/aps.50.1264
Metrics
  • Abstract views:  615
  • PDF Downloads:  22
  • Cited By: 0
Publishing process
  • Received Date:  15 August 2025
  • Accepted Date:  29 August 2025
  • Available Online:  04 September 2025
  • Published Online:  20 October 2025
  • /

    返回文章
    返回