Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Periodic orbit analysis and DSP implementation of a novel memristor-based chaotic system with multiple coexisting phenomena

Pan Yijun Dong Chengwei

Citation:

Periodic orbit analysis and DSP implementation of a novel memristor-based chaotic system with multiple coexisting phenomena

Pan Yijun, Dong Chengwei
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Memristors exhibit controllable nonlinear characteristics, generating chaotic signals that are characterized by randomness, sensitivity, and unpredictability, thereby demonstrating significant potential applications in information encryption and signal processing. With the integration of chaos theory and electronic technology, constructing memristive hyperchaotic systems has become a hot topic in nonlinear science and information security. To overcome the limitation of monotonic dynamic characteristics in traditional chaotic systems, we design a novel memristor-based hyperchaotic system with richer dynamic behavior and higher application value in this paper. Moreover, the characteristic analysis, theoretical verification, application exploration, and hardware implementation are conducted to support the engineering applications of the system. Building upon the classical Chen system, this work is innovatively combined with a cubic nonlinear magnetically controlled memristor model as a feedback element. By establishing a mathematical model of the memristor and coupling it with the state equations of the Chen system, we design a four-dimensional memristor-based hyperchaotic system. First, by integrating numerical computation with differential equation theory, a comprehensive mathematical model is established to analyze fundamental properties, such as symmetry and dissipativity, thereby validating the system's rationality. Second, the system’s dynamical behaviors are analyzed, including attractor phase diagrams, Lyapunov exponents, power spectra, parameter effects, transient dynamics, and coexisting attractors. Simultaneously, variational methods are utilized to analyze unstable periodic orbits within the system. A symbolic coding approach based on orbital characteristics is established to convert orbital information into symbolic sequences, and orbital pruning rules are explored to provide a basis for optimal orbital control. Furthermore, a digital image encryption method is proposed based on this system. Using chaotic sequences as keys, image pixels are scrambled and diffused. The effectiveness of encryption is validated through histogram analysis, correlation analysis, information entropy evaluation, and testing of anti-attack capabilities. Finally, a DSP-based digital circuit hardware platform is constructed to run the system, and the hardware experimental results are compared with software simulation outcomes. These findings reveal that the introduction of memristors induces linearly distributed equilibrium points in phase space, generating hidden attractors that enrich the chaotic behavior of the system. The simulation of dynamic behavior confirms the rich dynamics of this four-dimensional memristor-based hyperchaotic system. The proposed digital image encryption method demonstrates robust security performance. The DSP hardware experiments and software simulations yield highly consistent attractor phase diagrams, validating the correctness and feasibility of the system.
  • 图 1  混沌吸引子相图 (a) x-y平面; (b) x-z平面; (c) y-z平面; (d) y-z-w三维视图

    Figure 1.  Phase portraits of chaotic attractor: (a) x-y phase; (b) x-z phase; (c) y-z phase; (d) The 3D view in y-z-w space.

    图 2  连续的频谱图

    Figure 2.  Continuous broadband frequency spectrum.

    图 3  系统(3)在参数$ (a, b, c, d, e, k)=(49, 2, 35, 2, 0.1, $$ 0.01) $下的李雅普诺夫指数

    Figure 3.  Lyapunov exponents spectrum of system (3) for $ (a, b, c, d, e, k)=(49, 2, 35, 2, 0.1, 0.01) $.

    图 4  系统(3)随参数 b 变化的分岔图和李雅普诺夫指数谱 (a) 分岔图; (b) 李雅普诺夫指数谱

    Figure 4.  Bifurcation diagram and Lyapunov exponents spectrum of system(3)versus b: (a) Bifurcation diagram; (b) Lyapunov exponents spectrum.

    图 5  系统(3)随参数 k 变化的分岔图和李雅普诺夫指数谱 (a) 分岔图; (b) 李雅普诺夫指数谱

    Figure 5.  Bifurcation diagram and Lyapunov exponents spectrum of system(3)versus k: (a) Bifurcation diagram; (b) Lyapunov exponents spectrum.

    图 6  不同 k 值对应的2D相图 (a) $ k=0.1 $; (b) $ k=0.5 $; (c) $ k=0.7 $; (d) $ k=2.5 $; (e) $ k=3.7 $; (f) $ k=4.4 $; (g) $ k=5.1 $; (h) $ k=8 $

    Figure 6.  2D phase portraits corresponding to different k values: (a) $ k=0.1 $; (b) $ k=0.5 $; (c) $ k=0.7 $; (d) $ k=2.5 $; (e) $ k=3.7 $; (f) $ k=4.4 $; (g) $ k=5.1 $; (h) $ k=8 $.

    图 7  暂态混沌转换周期行为 (a) z 的时域波形; (b) 在$ t\in \left (0, 100 \right) $ (绿色) 和$ t\in\left(200, 500\right) $ (红色) 下的相图

    Figure 7.  Transient chaotic transition periodic behavior: (a) Time domain waveform about z; (b) Phase portrait when $ t\in \left (0, 100 \right) $ (green) and $ t\in \left (200, 500 \right) $ (red).

    图 8  暂态混沌转换周期行为 (a) z 的时域波形; (b) 在$ t\in \left (0, 500 \right) $ (绿色) 和$ t\in \left (500, 1000 \right) $ (红色)下的相图

    Figure 8.  Transient chaotic transition periodic behavior: (a) Time domain waveform about z; (b) Phase portrait when $ t\in \left (0, 500 \right) $ (green) and $ t\in \left (500, 1000 \right) $ (red).

    图 9  暂态超混沌转换周期行为 (a) z 的时域波形; (b) 在$ t\in \left (0, 400 \right) $ (绿色), $ t\in \left (400, 1260 \right) $ (蓝色) 和$ t\in \left (1260, 2000 \right) $ (红色) 下的相图

    Figure 9.  Transient hyperchaotic transition periodic behavior: (a) Time domain waveform about z; (b) Phase portrait when $ t\in \left (0, 400 \right) $ (green), $ t\in \left (400, 1260 \right) $ (blue) and $ t\in \left (1260, 2000 \right) $ (red).

    图 10  系统(3) 的三个周期吸引子的共存 (a) 不对称周期吸引子; (b) 另一个不对称周期吸引子; (c) 对称周期吸引子; (d) 三个共存吸引子; (e) 共存吸引子吸引盆

    Figure 10.  Three coexisting periodic attractors of system (3): (a) Asymmetrical periodic attractor; (b) Another asymmetrical periodic attractor; (c) Symmetrical periodic attractor; (d) Three coexisting attractors; (e) Basins of attraction.

    图 11  系统(3) 的三个周期吸引子的共存 (a) 双层翼状周期吸引子; (b) 三层翼状周期吸引子; (c) 多层翼状周期吸引子; (d) 三个共存吸引子; (e) 共存吸引子吸引盆

    Figure 11.  Three coexisting periodic attractors of system (3): (a) Double-layered winged periodic attractor; (b) Three-layer winged periodic attractor; (c) Multi-layered winged periodic attractor; (d) Three coexisting attractors; (e) Basins of attraction.

    图 12  准周期和周期吸引子的共存 (a) 周期吸引子; (b) 另一个周期吸引子; (c) 准周期吸引子; (d) 三个共存吸引子; (e) 共存吸引子吸引盆

    Figure 12.  Coexistence of quasi-periodic and periodic attractors: (a) Periodic attractor; (b) Another periodic attractor; (c) Quasi-periodic attractor; (d) Three coexisting attractors; (e) Basins of attraction.

    图 13  混沌和准周期吸引子的共存 (a) 准周期吸引子; (b) 混沌吸引子; (c) 两个共存吸引子; (d) 共存吸引子吸引盆

    Figure 13.  Coexistence of chaotic and quasi-periodic attractors: (a) Quasi-periodic attractor; (b) Chaotic attractor; (c) Two coexisting attractors; (d) Basins of attraction.

    图 14  在参数$ (a, b, c, d, e, k)=(51, 2.4, 30, 2, 0.1, 0.01) $下, 当$ w_0=-90 $(黑色), $ w_0=-60 $(黄色), $ w_0=-30 $(洋红), $ w_0=0 $(青色), $ w_0=30 $(蓝色), $ w_0=60 $(绿色), $ w_0=90 $(红色) 时的相图 (a) x-y-w平面; (b) x-w平面

    Figure 14.  In the parameters $ (a, b, c, d, e, k)=(51, 2.4, 30, 2, 0.1, 0.01) $, the phase portraits under $ w_0=-90 $ (black), $ w_0=-60 $ (yellow), $ w_0=-30 $ (magenta), $ w_0=0 $ (cyan), $ w_0=30 $ (blue), $ w_0=60 $ (green), $ w_0=90 $ (red): (a) The 3D plot in x-y-w space; (b) The 2D plot in x-w plane.

    图 15  在参数$ (a, b, c, d, e, k)=(51, 3, 30, 2, 0.1, 1.7) $下, 当$ z_0=-45 $(黑色), $ z_0=-12 $(红色), $ z_0=5 $(蓝色), $ z_0=12 $(绿色)时的相图 (a) y-z-w平面; (b) x-y平面

    Figure 15.  In the parameters $ (a, b, c, d, e, k)=(51, 3, 30, 2, 0.1, 1.7) $, the phase portraits under $ z_0=-45 $ (black), $ z_0=-12 $ (red), $ z_0=5 $ (blue), $ z_0=12 $ (green): (a) The 3D plot in y-z-w space; (b) The 2D plot in x-y plane.

    图 16  不同f值 (表2) 条件下, 系统在x-z平面的相图 (a) $ f=0 $; (b) $ f=0.8 $; (c) $ f=8 $; (d) $ f=10 $; (e) $ f=-0.4 $; (f) $ f=-30 $

    Figure 16.  Phase portraits of the system with different parameter f (Table 2) on x-z plane: (a) $ f=0 $; (b) $ f=0.8 $; (c) $ f=8 $; (d) $ f=10 $; (e) $ f=-0.4 $; (f) $ f=-30 $.

    图 17  在参数$ (a, b, c, d, e, k)=(49, 2, 35, 2, 0.1, 0.01) $下, 系统(3)的部分基础单元轨道 (a) 轨道AB; (b) 轨道01; (c) 轨道23; (d) 轨道A3

    Figure 17.  Parts of building blocks in system (3) for parameters $ (a, b, c, d, e, k)=(49, 2, 35, 2, 0.1, 0.01) $: (a) Cycle AB; (b) Cycle 01; (c) Cycle 23; (d) Cycle A3.

    图 18  八个拓扑结构不同的不稳定周期轨道 (a) 轨道205; (b) 轨道1AA; (c) 轨道AA3; (d) 轨道4B1; (e) 轨道3A2B; (f) 轨道B01A; (g) 轨道AAB3; (f) 轨道2A13

    Figure 18.  Eight unstable periodic orbits with different topologies: (a) Cycle 205; (b) Cycle 1AA; (c) Cycle AA3; (d) Cycle 4B1; (e) Cycle 3A2B; (f) Cycle B01A; (g) Cycle AAB3; (f) Cycle 2A13.

    图 19  混沌图像加密算法流程图

    Figure 19.  Chaotic image encryption flow chart algorithm.

    图 20  明文图像加解密实验图 (a) 明文图像; (b) 密文图像; (c) 解密图像

    Figure 20.  Experimental diagram of plaintext image encryption and decryption: (a) Plaintext image; (b) Ciphertext image; (c) Decrypted image.

    图 21  明文图像、密文图像和解密图像的 R, G, B 分量直方图 (a) 明文图像的R分量; (b) G分量; (c) B分量; (d) 密文图像的R分量; (e) G分量; (f) B分量; (g) 解密图像的R分量; (h) G分量; (i) B分量

    Figure 21.  Histogram of R, G, B components of plaintext, ciphertext and decrypted image: (a) The R-component of plaintext image; (b) The G-component; (c) The B-component; (d) The R-component of ciphertext image; (e) The G-component; (f) The B-component; (g) The R-component of decrypted image; (h) The G-component; (i) The B-component.

    图 22  明文图像 R, G, B 通道分别在水平、垂直、对角线相邻元素相关性点图 (a) R通道水平相邻元素相关性点图; (b) 垂直; (c) 对角线; (d) G通道水平相邻元素相关性点图; (e) 垂直; (f) 对角线; (g) B通道水平相邻元素相关性点图; (h) 垂直; (i) 对角线

    Figure 22.  Plaintext image R, G, B channel in horizontal, vertical, diagonal adjacent elements correlation point map respectively: (a) R Channel Horizontal Neighboring Element Correlation Point Plot; (b) Vertical direction; (c) Diagonal direction; (d) G Channel Horizontal Neighboring Element Correlation Point Plot; (e) Vertical direction; (f) Diagonal direction; (g) B Channel Horizontal Neighboring Element Correlation Point Plot; (h) Vertical direction; (i) Diagonal direction.

    图 23  密文图像R, G, B通道分别在水平、垂直、对角线相邻元素相关性点图 (a) R通道水平相邻元素相关性点图; (b) 垂直; (c) 对角线; (d) G通道水平相邻元素相关性点图; (e) 垂直; (f) 对角线; (g) B通道水平相邻元素相关性点图; (h) 垂直; (i) 对角线

    Figure 23.  Ciphertext image R, G, B channel in horizontal, vertical, diagonal adjacent elements correlation point map respectively: (a) R Channel Horizontal Neighboring Element Correlation Point Plot; (b) Vertical direction; (c) Diagonal direction; (d) G Channel Horizontal Neighboring Element Correlation Point Plot; (e) Vertical direction; (f) Diagonal direction; (g) B Channel Horizontal Neighboring Element Correlation Point Plot; (h) Vertical direction; (i) Diagonal direction.

    图 24  密钥敏感性测试图 (a) 明文图像; (b) 密文$ P_1 $(密钥为$ p_1 $); (c) 密文$ P_2 $(密钥为$ p_2 $); (d) $ P_1 $用$ p_1 $解密结果; (e) $ P_1 $用$ p_2 $解密结果; (f) $ P_2 $用$ p_1 $解密结果

    Figure 24.  Key sensitivity tests: (a) Plaintext image; (b) Ciphertext $ P_1 $ (key $ p_1 $); (c) Ciphertext $ P_2 $ (key $ p_2 $); (d) $ P_1 $ decryption result with key $ p_1 $; (e) $ P_1 $ decryption result with key $ p_2 $; (f) $ P_2 $ decryption result with key $ p_1 $.

    图 25  电路原理图 (a) 系统(3)的电路原理图; (b) 忆阻器(1)的电路原理图

    Figure 25.  Circuit schematic diagram: (a) Circuit schematic diagram of system (3); (b) Circuit schematic of memristor (1).

    图 26  系统(3)在$ (a, b, c, d, e, k)=(51, 3, 30, 2, 0.1, 0.1) $, $ (x_0, y_0, z_0, w_0)=(10, 10, 10, 10) $条件下的DSP实现 (a) DSP实验平台; (b) 在x-y平面; (c) 在x-z平面; (d) 在y-z平面

    Figure 26.  DSP implementation of the system (3) with initial conditions $ (10, 10, 10, 10) $, $ (a, b, c, d, e, k)=(51, 3, 30, 2, 0.1, 0.1) $: (a) DSP experimental platform; (b) In the x-y plane; (c) In the x-z plane; (d) In the y-z plane.

    表 1  不同k值对应的李雅普诺夫指数和吸引子类型及相图

    Table 1.  Lyapunov exponents, attractor types and phase corresponding to different parameter k.

    参数k $ L_{1} $ $ L_{2} $ $ L_{3} $ $ L_{4} $ 吸引子类型 相图
    $ 0.1 $ $ 0.3675 $ $ 0.0109 $ $ -0.0012 $ $ -24.0787 $ 超混沌 图6(a)
    $ 0.5 $ $ 0.2356 $ $ 0.0596 $ $ -0.0059 $ $ -23.1174 $ 超混沌 图6(b)
    $ 1.7 $ $ 0.0058 $ $ -0.0011 $ $ -0.1339 $ $ -19.9824 $ 准周期 图6(c)
    $ 2.5 $ $ 0.0004 $ $ -0.0807 $ $ -0.0812 $ $ -18.1232 $ 极限环 图6(d)
    $ 3.7 $ $ 0.0002 $ $ -0.8435 $ $ -1.2411 $ $ -13.4649 $ 极限环 图6(e)
    $ 4.4 $ $ 0.0011 $ $ 0 $ $ -0.2547 $ $ -14.4246 $ 混沌 图6(f)
    $ 5.1 $ $ 0.0006 $ $ -0.0526 $ $ -0.0530 $ $ -13.2676 $ 极限环 图6(g)
    $ 8 $ $ -0.0006 $ $ -1.9258 $ $ -1.9672 $ $ -2.9574 $ 不动点 图6(h)
    DownLoad: CSV

    表 2  不同优化因子f值对应的李雅普诺夫指数, 吸引子类别及相图

    Table 2.  Lyapunov exponents, attractor types and phases corresponding to different values of optimization factor with parameter f.

    参数f $ L_{1} $ $ L_{2} $ $ L_{3} $ $ L_{4} $ 分形维数 吸引子类型 相图
    $ 0 $ $ 0.0052 $ $ -0.0017 $ $ -0.3898 $ $ -18.8902 $ $ 2.0116 $ 准周期 图16(a)
    $ 0.8 $ $ 0.0023 $ $ -0.0320 $ $ -0.0377 $ $ -19.4078 $ $ 1.0706 $ 极限环 图16(b)
    $ 8 $ $ 0.0013 $ $ -0.6203 $ $ -1.1092 $ $ -6.4579 $ $ 1.0020 $ 极限环 图16(c)
    $ 10 $ $ 0.0017 $ $ -0.4181 $ $ -2.6648 $ $ -14.3500 $ $ 1.004 $ 极限环 图16(d)
    $ -0.4 $ $ 0.0595 $ $ 0.0002 $ $ -0.1958 $ $ -19.2351 $ $ 2.3053 $ 混沌 图16(e)
    $ -30 $ $ 120.4688 $ $ 13.6667 $ $ 12.6813 $ $ -87.5597 $ $ 4.6768 $ 超混沌 图16(f)
    DownLoad: CSV

    表 3  系统(3)中隐藏超混沌吸引子内嵌的长度4以内的34条轨道, 其各自的拓扑长度, 编码以及周期

    Table 3.  The thirty-four orbits of length 4 or less embedded in the hidden hyperchaotic attractor of system (3), with their respective topological lengths, itinerary, and period.

    长度编码周期长度编码周期
    2AB0.9590054AAB32.046255
    A31.218612BBA22.046255
    B21.218612B01A2.219597
    011.282773A10B2.219597
    231.7564883A2B2.278487
    31AA1.7988670AB32.533050
    0BB1.7988671BA22.533050
    2052.0996862A132.543823
    3142.0996863B022.543823
    AA32.1736422B012.574009
    BB22.1736423A102.574009
    4B12.251978141A2.704436
    5A02.251978050B2.704436
    1142.44550633A02.936549
    0052.44550622B12.936549
    3433.00335254B03.161825
    2523.00335245A13.161825
    DownLoad: CSV

    表 4  相关性分析数据对比(以 R 通道为例)

    Table 4.  Correlation analysis data comparison (in the case of the R channel).

    算法 通道 相关性系数
    本文 R 水平: 0.0028
    垂直: –0.0026
    对角: 0.0039
    文献[38] R 水平: –0.0136
    垂直: –0.0325
    对角: –0.0304
    文献[39] R 水平: 0.0040
    垂直: 0.0010
    对角: 0.0012
    文献[40] R 水平: –0.0207
    垂直: –0.0176
    对角: 0.0168
    DownLoad: CSV

    表 5  明文图像和密文图像在R, G, B通道上的信息熵值

    Table 5.  Information entropy value of plaintext and ciphertext image on R, G, B channel.

    通道 信息熵
    明文图像 密文图像
    R 7.4346 7.9994
    G 7.5319 7.9994
    B 7.3011 7.9993
    DownLoad: CSV

    表 6  NPCR, UACI 数据对比

    Table 6.  Comparison of NPCR and UACI data.

    算法 NPCR UACI
    本文 $ 99.5795{\text{%}} $ $ 33.4555{\text{%}} $
    文献[38] $ 99.5687{\text{%}} $ $ 33.4381{\text{%}} $
    文献[39] $ 99.6257{\text{%}} $ $ 33.4835{\text{%}} $
    文献[40] $ 99.5506{\text{%}} $ $ 33.4055{\text{%}} $
    DownLoad: CSV

    表 7  忆阻器参数对加密性能的影响

    Table 7.  The influence of memristor parameters on encryption performance.

    文献 所用忆阻器模型 功耗 磁滞回归线面积 平均信息熵 NPCR UACI
    本文 $ \alpha \varphi +\beta \varphi ^{3} $ $ 200\mu J $/周期 $ 0.5\mu J $ 7.9994 $ 99.5795{\text{%}} $ $ 33.4555{\text{%}} $
    文献[41] $ \alpha +\beta \varphi ^{2} $ $ 220\mu J $/周期 $ 0.5\mu J $ 7.9990 $ 98.0042{\text{%}} $ $ 32.2856{\text{%}} $
    文献[42] $ tanh(z)\varphi $ $ \gt 200\mu J $/周期 $ 0.5\mu J $ 7.9993 $ 99.5952{\text{%}} $ $ 33.0282{\text{%}} $
    DownLoad: CSV
  • [1]

    刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳 2014 物理学报 63 187301Google Scholar

    Liu D Q, Cheng H F, Zhu X, Wang N N, Zhang C Y 2014 Acta Phys. Sin. 63 187301Google Scholar

    [2]

    丁大为, 卢小齐, 胡永兵, 杨宗立, 王威, 张红伟 2022 物理学报 71 230501Google Scholar

    Ding D W, Lu X Q, Hu Y B, Yang Z L, Wang W, Zhang H W 2022 Acta Phys. Sin. 71 230501Google Scholar

    [3]

    Chua L 1971 IEEE Trans. Circ. Theor. 18 507Google Scholar

    [4]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar

    [5]

    Ji X Y, Dong Z K, Lai C S, Zhou G D, Qi D L 2022 Mater. Today Adv. 16 100293Google Scholar

    [6]

    Ji X Y, Lai C S, Zhou G D, Dong Z K, Qi D L, Lai L L 2023 IEEE Trans. Nano Biosci. 22 52

    [7]

    Ji X Y, Chen Y, Wang J F, Zhou G D, Lai C S, Dong Z K 2024 IEEE Internet Things J. 11 39941Google Scholar

    [8]

    Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 120502Google Scholar

    [9]

    Muthuswamy B, Chua L O 2010 Int. J. Bifurc. Chaos 20 1567Google Scholar

    [10]

    Itoh M, Chua L O 2008 Int. J. Bifurc. Chaos 18 3183Google Scholar

    [11]

    Xi H L, Li Y X, Huang X 2014 Entropy 16 6240Google Scholar

    [12]

    闫登卫, 王丽丹, 段书凯 2018 物理学报 67 110502Google Scholar

    Yan D W, Wang L D, Duan S K 2018 Acta Phys. Sin. 67 110502Google Scholar

    [13]

    Lai Q, Chen Z J, Xu G H, Liu F 2023 J. Vib. Eng. Technol. 11 3493Google Scholar

    [14]

    Leonov G A, Kuznetsov N V 2013 Int. J. Bifurc. Chaos 23 1330002Google Scholar

    [15]

    张贵重, 全旭, 刘嵩 2022 物理学报 71 240502Google Scholar

    Zhang G Z, Quan X, Liu S 2022 Acta Phys. Sin. 71 240502Google Scholar

    [16]

    Wang J H, Dong C W, Li H T 2022 Fractal Fract. 6 740Google Scholar

    [17]

    Dong C W, Yang M 2024 Fractal Fract. 8 266Google Scholar

    [18]

    Dong C W, Iu Herbert H C 2025 Chin. J. Phys. 97 433Google Scholar

    [19]

    王培杰, 吴国祯 2005 物理学报 54 3034Google Scholar

    Wang P J, Wu G Z 2005 Acta Phys. Sin. 54 3034Google Scholar

    [20]

    Lan Y H, Cvitanović P 2004 Phys Rev E. 69 016217Google Scholar

    [21]

    Dong C W 2022 Fractal Fract. 6 190Google Scholar

    [22]

    Wang X, Chen G R 2012 Commun Nonlinear Sci Numer Simul. 17 1264Google Scholar

    [23]

    Dong C W 2022 Fractal Fract. 6 547Google Scholar

    [24]

    Yang M, Dong C W, Pan H P 2024 Physica A 637 129586Google Scholar

    [25]

    Dong C W, Wang J H 2022 Fractal Fract. 6 306Google Scholar

    [26]

    庄志本, 李军, 刘静漪, 陈世强 2020 物理学报 69 040502Google Scholar

    Zhuang Z B, Li J, Liu J Y, Chen S Q 2020 Acta Phys. Sin. 69 040502Google Scholar

    [27]

    Huang L L, Yao W J, Xiang J H, Zhang Z F 2020 Complex. 2020 2408460

    [28]

    Dong C W, Yang M, Jia L, Li Z R 2024 Physica A 633 129391Google Scholar

    [29]

    Baranger M, Davies K T R, Mahoney J H 1988 Ann. Phys. 186 95Google Scholar

    [30]

    Cvitanović P, Dettmann C P, Mainieri R, Vattay G 1998 J. Stat. Phys. 93 981Google Scholar

    [31]

    Chai M S, Lan Y H 2021 Chaos 31 033144Google Scholar

    [32]

    Dong C W, Liu H H, Jie Q, Li H T 2022 Chaos Soliton Fract 154 111686Google Scholar

    [33]

    Fridrich J 1997 In 1997 IEEE international conference on systems, man, and cybernetics. Computational cybernetics and simulation (IEEE), pp 1105–1110

    Fridrich J 1997 In 1997 IEEE international conference on systems, man, and cybernetics. Computational cybernetics and simulation (IEEE), pp 1105–1110

    [34]

    Chen T Q, Li J, Cao J, Yang J 2021 Opt. Mater. 117 111150Google Scholar

    [35]

    Hua Z Y, Jin F, Xu B X, Huang H J 2018 Signal Process. 149 148Google Scholar

    [36]

    Peng G Y, Min F H, Wang E R 2018 J. Electr. Comput. Eng. 2018 8649294

    [37]

    Li C L, Li Z Y, Feng W, Tong Y N, Du J R, Wei D Q 2019 AEU- Int. J. Electron Commun. 110 152861Google Scholar

    [38]

    刘瀚扬, 华南, 王一诺, 梁俊卿, 马鸿洋 2022 物理学报 71 170303Google Scholar

    Liu H Y, Hua N, Wang Y N, Liang J Q, Ma H Y 2022 Acta Phys. Sin. 71 170303Google Scholar

    [39]

    王一诺, 宋昭阳, 马玉林, 华南, 马鸿洋 2021 物理学报 70 230302Google Scholar

    Wang Y N, Song Z Y, Ma Y L, Hua N, Ma H Y 2021 Acta Phys. Sin. 70 230302Google Scholar

    [40]

    Niu Y, Zhang X C, Han F 2017 Comput. Intell. Neurosci. 2017 4079793

    [41]

    Yildirim M 2020 Microelectron J. 104 104878Google Scholar

    [42]

    赵益波, 杨清, 于程程, 刘明华 2025 计算物理 42 232

    Zhao Y B, Yang Q, Yu C C, Liu M H 2025 Chin. J. Comput. Phys. 42 232

    [43]

    Wu C Y, Sun K H 2022 Chaos Soliton Fract 159 112129Google Scholar

  • [1] Xu Yi-Dan, Dong Cheng-Wei. Dynamics, periodic orbit and image encryption of a new four-order memristor chaotic system. Acta Physica Sinica, doi: 10.7498/aps.75.20251190
    [2] LAI Qiang, WANG Jun, HUANG Daxun. Diverse dynamical behaviors and predefined-time synchronization of a simple memristive chaotic system. Acta Physica Sinica, doi: 10.7498/aps.74.20250954
    [3] Lai Qiang, Wang Jun. Finite and fixed-time synchronization of memristive chaotic systems based on sliding mode reaching law. Acta Physica Sinica, doi: 10.7498/aps.73.20241013
    [4] Quan Xu, Qiu Da, Sun Zhi-Peng, Zhang Gui-Zhong, Liu Song. Dynamic analysis and FPGA implementation of a fourth-order chaotic system with coexisting attractor. Acta Physica Sinica, doi: 10.7498/aps.72.20230795
    [5] Liu Han-Yang, Hua Nan, Wang Yi-Nuo, Liang Jun-Qing, Ma Hong-Yang. Three dimensional image encryption algorithm based on quantum random walk and multidimensional chaos. Acta Physica Sinica, doi: 10.7498/aps.71.20220466
    [6] Qin Ming-Hong, Lai Qiang, Wu Yong-Hong. Analysis and implementation of simple four-dimensional memristive chaotic system with infinite coexisting attractors. Acta Physica Sinica, doi: 10.7498/aps.71.20220593
    [7] Zhang Gui-Zhong, Quan Xu, Liu Song. Analysis and FPGA implementation of memristor chaotic system with extreme multistability. Acta Physica Sinica, doi: 10.7498/aps.71.20221423
    [8] Wang Yi-Nuo, Song Zhao-Yang, Ma Yu-Lin, Hua Nan, Ma Hong-Yang. Color image encryption algorithm based on DNA code and alternating quantum random walk. Acta Physica Sinica, doi: 10.7498/aps.70.20211255
    [9] Zhao Zhi-Peng, Zhou Shuang, Wang Xing-Yuan. A new chaotic signal based on deep learning and its application in image encryption. Acta Physica Sinica, doi: 10.7498/aps.70.20210561
    [10] Fang Jie, Jiang Ming-Hao, An Xiao-Yu, Sun Jun-Wei. "One image corresponding to one key" image encryption algorithm based on chaotic encryption and DNA encoding. Acta Physica Sinica, doi: 10.7498/aps.70.20201642
    [11] Dong Cheng-Wei. Periodic orbits of diffusionless Lorenz system. Acta Physica Sinica, doi: 10.7498/aps.67.20181581
    [12] Guan Guo-Rong, Wu Cheng-Mao, Jia Qian. An improved high performance Lorenz system and its application. Acta Physica Sinica, doi: 10.7498/aps.64.020501
    [13] Wu Hua-Gan, Chen Sheng-Yao, Bao Bo-Cheng. Impulsive synchronization and initial value effect for a memristor-based chaotic system. Acta Physica Sinica, doi: 10.7498/aps.64.030501
    [14] Ai Xing-Xing, Sun Ke-Hui, He Shao-Bo, Wang Hui-Hai. Design and application of multi-scroll chaotic attractors based on simplified Lorenz system. Acta Physica Sinica, doi: 10.7498/aps.63.120511
    [15] Deng Hai-Tao, Deng Jia-Xian, Deng Xiao-Mei. Joint compression and tree structure encryption algorithm based on EZW. Acta Physica Sinica, doi: 10.7498/aps.62.110701
    [16] Lin Yuan, Wang Chun-Hua, Xu Hao. Grid multi-scroll chaotic attractors in hybrid image encryption algorithm based on current conveyor. Acta Physica Sinica, doi: 10.7498/aps.61.240503
    [17] Zhu Cong-Xu, Sun Ke-Hui. Cryptanalysis and improvement of a class of hyperchaos based image encryption algorithms. Acta Physica Sinica, doi: 10.7498/aps.61.120503
    [18] Sun Fu-Yan, Lv Zong-Wang. Cryptographic spatial chaos sequence. Acta Physica Sinica, doi: 10.7498/aps.60.040503
    [19] Duan Li-Li, Liao Xiao-Feng, Xiang Tao. Image encryption based on arithmetic coding with order-1 Markov model. Acta Physica Sinica, doi: 10.7498/aps.59.6744
    [20] He Wen-Qi, Qin Wan, Peng Xiang, Guo Ji-Ping, Li A-Meng, Cai Lü-Zhong, Meng Xiang-Feng. Optimized two-step phase-shifting algorithm applied to image encryption. Acta Physica Sinica, doi: 10.7498/aps.59.6118
Metrics
  • Abstract views:  354
  • PDF Downloads:  15
  • Cited By: 0
Publishing process
  • Received Date:  15 August 2025
  • Accepted Date:  19 September 2025
  • Available Online:  11 October 2025
  • /

    返回文章
    返回