搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于忆阻器的新型混沌系统的动力学、周期轨道及其在图像加密中的应用

徐一丹 董成伟

引用本文:
Citation:

基于忆阻器的新型混沌系统的动力学、周期轨道及其在图像加密中的应用

徐一丹, 董成伟

Dynamics, periodic orbit and image encryption of a new four-order memristor chaotic system

Xu Yi-Dan, Dong Cheng-Wei
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 由于忆阻器具有独特的非线性特性和记忆效应,基于忆阻器的混沌系统成为目前研究的热点.然而,关于忆阻混沌系统的不稳定周期轨道研究目前较少.本文通过引入三角函数忆阻器改进三维混沌系统,构建了一个新型四维忆阻混沌系统.通过Lyapunov指数、庞加莱截面、相图、时域波动图对系统进行动力学行为分析.针对变分法在寻找可靠圈猜想受限的问题,创新性地提出了一种基于三角函数物理特性的优化策略.通过该优化策略,结合符号动力学对新系统的不稳定周期轨道进行了系统分析,并进一步采用自适应反步法控制已知轨道的稳定性.对新型忆阻混沌系统序列进行NIST测试,发现该序列具有良好的伪随机性,适用于图像加密算法的应用.设计了基于新系统的图像加密算法,忆阻混沌系统的应用显著提高了密钥空间和密钥敏感度,增强了图像加密的安全性.算法首先通过RGB三个通道之间的跨平面置乱对彩色图像像素首次置乱,随后进行单平面的二次置乱,充分改变图像像素.算法采用异或运算进行扩散,其NPCR和UACI的平均值表明其具有强大的差分攻击能力.此外,通过直方图、相关性、抗剪切攻击及运行时间等测试验证其可靠性.最后,在DPS平台上验证了实验结果与数值分析结果的一致性.
    Due to their unique nonlinear characteristics and memory effects, memristor-based chaotic systems have become a significant focus of research. However, studies on unstable periodic orbits in memristive chaotic systems remain relatively scarce. In this paper, a novel four-dimensional memristive chaotic system is constructed by introducing a trigonometric-function-based memristor to enhance a three-dimensional chaotic system. The dynamical behaviors of the system are analyzed using Lyapunov exponents, Poincaré sections, phase portraits, and time-domain plots. The proposed memristive chaotic system exhibits rich dynamical characteristics, including transient behavior, intermittent chaos, and diverse attractor dynamics under parameter variations. To overcome the limitations of the variational method in finding reliable initial guesses for unstable periodic orbits, an innovative optimization strategy leveraging the physical characteristics of trigonometric functions is proposed. Integrated with symbolic dynamics, this strategy enables the rapid acquisition of robust initial guesses for unstable periodic orbits within specific intervals. Furthermore, it allows for the migration of these guesses to other regions of the attractor, ultimately achieving full coverage of the attractor's unstable periodic orbits. Following a systematic analysis of the unstable periodic orbits in the new system, the adaptive backstepping method is employed to control the stability of the known unstable periodic orbits, namely 320 and 013. The pseudorandom sequences generated by the novel memristive chaotic system successfully passed the NIST suite, with all test items yielding P-values greater than 0.01, which confirms their excellent pseudo-random characteristics. The application of this system in image encryption achieves a key space of 10120, significantly enhancing the key space and key sensitivity of the algorithm. The encryption process begins with cross-plane scrambling operations among the RGB color channels for initial pixel processing, followed by intra-plane scrambling to further disrupt the pixel arrangement. XOR operations are then employed for pixel value diffusion. The algorithm demonstrates outstanding resistance to differential attacks, with average NPCR and UACI values reaching 99.6041% and 33.4933%, respectively. Comprehensive security analyses, including histogram analysis, correlation analysis, resistance to cropping attacks, and runtime evaluation, verify that the proposed encryption scheme not only possesses strong security capabilities but also maintains high computational efficiency, making it highly suitable for practical image encryption applications. Finally, the realizability of the system is verified by utilizing a DSP circuit.
  • [1]

    Sella Y, Broderick N A, Stouffer K M, McEwan D L, Ausubel F M, Casadevall A, Bergman A 2024 Msystems. 9 23 01110

    [2]

    Han Z T, Sun B, Banerjee S, Mou J 2024 Chaos Solitons Fract. 184 115020

    [3]

    Xu Q, Ding X C, Wang N, Chen B, Parastesh F, Chen M 2024 Chaos Solitons Fract. 187 115339

    [4]

    Murphy K A, Bassett D S 2017 Phys. Rev. Lett. 132 197201

    [5]

    X Yan, Q Hu, L Teng, Y Su 2024 Chaos Solitons Fract. 185 115146

    [6]

    Vogl M 2024 Commun Nonlinear Sci. 130 107760

    [7]

    Rehman Z U, Boulaaras S, Jan R, Ahmad I, Bahramand S 2024 J Comput Sci. 75 102204

    [8]

    Li L. 2024 Expert Syst. Appl. 252 124316

    [9]

    Umar T, Nadeem M, Anwer F. 2004 Expert Syst. Appl. 257 125050

    [10]

    Wang C H, Tang D, Lin H, Yu F, Sun Y C 2024 Expert Syst. Appl. 242 122513

    [11]

    Leonov G, Kuznetsov N 2013 Int. J. Bifur. Chaos 23 1330002

    [12]

    Dong C W, Yang M 2024 Chin. J. Phys. 89 930

    [13]

    Dong C W, Yang M, Jia L, Li Z R 2024 Phys. A 633 129391

    [14]

    Wei D S, Dong C W 2024 Phys. Scr 99 085251

    [15]

    Dong C W 2022 Fractal Fract. 6 547

    [16]

    Dong C W, Yang M 2024 Fractal Fract. 8 266

    [17]

    Dong C W, Iu H H C 2025 Chin. J. Phys. 97 433

    [18]

    Wang P J, Wu G Z. 2005 Acta Phys. Sin. 54 3034 (in Chinese)[王培杰,吴国珍2005 物理学报 54 3034]

    [19]

    Sanchez J, Net M. 2010 Int. J. Bifur. Chaos 20 43

    [20]

    Lan Y, Cvitanović P 2004 Phys. Rev. E 69 016217

    [21]

    Dong C W 2018 Acta Phys. Sin. 76 55 (in Chinese) [董成伟 2018 物理学报 76 55]

    [22]

    Chua L O 1971 IEEE Trans. Circuits Theor. 18 507

    [23]

    Strukov D B,Snider G S, Stewart D R, Stanley W R 2008 Nature 453 80

    [24]

    Xiao Y Y, Jiang B, Zhang Z, Ke S W, Jin Y Y, Wen X, Ye C. 2023 Sci. Technol. Adv. Mater. 24 2162323

    [25]

    Zhang L, Li Z, Peng Y 2024 Chaos Solitons Fract. 185 115109

    [26]

    Diao Y F, Huang S F, Huang L Q, Xiong X M, Yang J, Cai S T 2024 Chaos Solitons Fract. 188 115526

    [27]

    An X L, Liu S Y, Xiong L, Zhang J G, Li XY 2024 Expert Syst. Appl. 243 122899

    [28]

    Kong X, Yu F, Yao W, Cai S, Zhang J, Lin H 2024 Neural Netw. 171 85

    [29]

    He S, Hu K, Wang M, Wang H, Wu X 2024 Chaos Solitons Fract. 188 115517

    [30]

    Lai Q,Wang J 2024 Acta Phys. Sin. 73 75(in Chinese) [赖强, 王君 2024 物理学报 73 75]

    [31]

    Njitacke Z T, Takembo C N, Awrejcewicz J, Fouda H P E, Kengne J 2022 Chaos Solitons Fract. 160 112211

    [32]

    Zhang X, Xu J, Moshayedi A J 2024 Chaos Solitons Fract. 179 114460

    [33]

    Lampartová A, Lampart M 2024 Chaos Solitons Fract. 182 114863

    [34]

    Wu H G, Ban Y X, Chen M, Chen Q 2024 J.Electron.Inf.Techn. 46 3818 (in Chinese) [武花干, 边逸轩, 陈墨, 徐权 2024 电子与信息学报 46 3818]

    [35]

    Hua C C, Guan X P 2004 Chaos Solitons Fract. 22 55

    [36]

    Konishi K, Hirai M, Kokame H 1998 Phys.Lett.A. 245 511

    [37]

    Dadras S,Momeni H R 2009 Chaos Solitons Fract. 42 3140

    [38]

    Rasappan S,Vaidyanathan S 2014 Kyungpook Math. J. 54 293

    [39]

    Pan Y, Ji W, Liang H 2022 IEEE Trans. Circuits Syst. II-Express Briefs. 69 5064

    [40]

    Zhang X, Yang X, Huang C, Cao J, Liu H 2024 Inf Sci 661 120148

    [41]

    Wang Z, Li Y X, Hui X J,Lu L 2011 Acta Phys. Sin. 60 125(in Chinese) [王震, 李永新, 惠小健, 吕雷 2011 物理学报 60 125]

    [42]

    Wu F, Wang G, Zhuang S, Wang K, Keimer A, Stoica I, Bayen A 2023 IEEE Trans. Autom. Sci. Eng. 21 2088

    [43]

    Lin T C, Kuo C H 2012 Int. J. Syst. Dyn. Appl. 1 1

    [44]

    Li X J, Sun B, Bi X G, Yan H Z, Wang L 2024 Mobile. Netw. Appl 29 583

    [45]

    Chen J X, Zhu Z L, Zhang L B, Zhang Y S, Yang B Q 2017 Signal Process. 142 340

    [46]

    Wang L N, Zhou N R, Sun B, Cao Y H 2024 Chin. Phys.B 33 050501

    [47]

    Dehghani R, Kheiri H 2024 Multimed Tools Appl. 83 17429

    [48]

    Xin J, Hu H, Zheng J 2023 Nonlinear Dyn.111 7859

    [49]

    Wang Q, Zhang X, Zhao X 2023 Nonlinear Dyn. 111 22679

    [50]

    Xiao W, Xuemei X, Kehui S, Zhaohui J, Mingjun L, Jun W 2023 Nonlinear Dyn.111 14513

    [51]

    Zhang Z Y, Cao Y H, Zhou N R, Xu X Y, Mou J 2025 Appl. Intell. 55 61

    [52]

    Cao H L, Cao Y H, Qin L, Mou J 2025 Chaos Solitons Fract. 191 115857

  • [1] 潘奕君董成伟. 具有多种共存现象的新型忆阻混沌系统的周期轨道分析及 DSP 实现. 物理学报, doi: 10.7498/aps.74.20251102
    [2] 张宇琦, 王俊杰, 吕子玉, 韩素婷. 应用于感存算一体化系统的多模调控忆阻器. 物理学报, doi: 10.7498/aps.71.20220226
    [3] 刘瀚扬, 华南, 王一诺, 梁俊卿, 马鸿洋. 基于量子随机行走和多维混沌的三维图像加密算法. 物理学报, doi: 10.7498/aps.71.20220466
    [4] 赵智鹏, 周双, 王兴元. 基于深度学习的新混沌信号及其在图像加密中的应用. 物理学报, doi: 10.7498/aps.70.20210561
    [5] 方洁, 姜明浩, 安小宇, 孙军伟. 基于混沌加密和DNA编码的“一图一密”图像加密算法. 物理学报, doi: 10.7498/aps.70.20201642
    [6] 闫登卫, 王丽丹, 段书凯. 基于忆阻器的多涡卷混沌系统及其脉冲同步控制. 物理学报, doi: 10.7498/aps.67.20180025
    [7] 董成伟. 非扩散洛伦兹系统的周期轨道. 物理学报, doi: 10.7498/aps.67.20181581
    [8] 肖利全, 段书凯, 王丽丹. 基于Julia分形的多涡卷忆阻混沌系统. 物理学报, doi: 10.7498/aps.67.20172761
    [9] 王伟, 曾以成, 孙睿婷. 含三个忆阻器的六阶混沌电路研究. 物理学报, doi: 10.7498/aps.66.040502
    [10] 吴洁宁, 王丽丹, 段书凯. 基于忆阻器的时滞混沌系统及伪随机序列发生器. 物理学报, doi: 10.7498/aps.66.030502
    [11] 许雅明, 王丽丹, 段书凯. 磁控二氧化钛忆阻混沌系统及现场可编程逻辑门阵列硬件实现. 物理学报, doi: 10.7498/aps.65.120503
    [12] 阮静雅, 孙克辉, 牟俊. 基于忆阻器反馈的Lorenz超混沌系统及其电路实现. 物理学报, doi: 10.7498/aps.65.190502
    [13] 洪庆辉, 李志军, 曾金芳, 曾以成. 基于电流反馈运算放大器的忆阻混沌电路设计与仿真. 物理学报, doi: 10.7498/aps.63.180502
    [14] 杨芳艳, 冷家丽, 李清都. 基于Chua电路的四维超混沌忆阻电路. 物理学报, doi: 10.7498/aps.63.080502
    [15] 李志军, 曾以成, 李志斌. 改进型细胞神经网络实现的忆阻器混沌电路. 物理学报, doi: 10.7498/aps.63.010502
    [16] 刘玉东, 王连明. 基于忆阻器的spiking神经网络在图像边缘提取中的应用. 物理学报, doi: 10.7498/aps.63.080503
    [17] 许碧荣. 一种最简的并行忆阻器混沌系统. 物理学报, doi: 10.7498/aps.62.190506
    [18] 朱从旭, 孙克辉. 对一类超混沌图像加密算法的密码分析与改进. 物理学报, doi: 10.7498/aps.61.120503
    [19] 孙福艳, 吕宗旺. 空间混沌序列的加密特性研究. 物理学报, doi: 10.7498/aps.60.040503
    [20] 包伯成, 胡文, 许建平, 刘中, 邹凌. 忆阻混沌电路的分析与实现. 物理学报, doi: 10.7498/aps.60.120502
计量
  • 文章访问数:  33
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-24

/

返回文章
返回