Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Collisional-radiative model for on-line analysis of C4F8/O2/Ar plasma optical emission spectroscopy

ZHANG Zhanling ZHU Ximing WANG Lu ZHAO Yu YANG Xihong

Citation:

Collisional-radiative model for on-line analysis of C4F8/O2/Ar plasma optical emission spectroscopy

ZHANG Zhanling, ZHU Ximing, WANG Lu, ZHAO Yu, YANG Xihong
cstr: 32037.14.aps.74.20251182
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Octafluorocyclobutane (C4F8)-based fluorocarbon plasmas have become a cornerstone of nanometre-scale etching and deposition in advanced semiconductor manufacturing, owing to their tunable fluorine-to-carbon (F/C) ratio, high density of reactive radicals, and superior material selectivity. In high-aspect-ratio pattern transfer, optical emission spectroscopy (OES) enables in-situ monitoring by correlating the density of morphology-determining radicals with their characteristic spectral signatures, thereby providing a viable pathway for the simultaneously optimizing pattern fidelity and process yield. A predictive plasma model that integrates kinetic simulation with spectroscopic analysis is therefore indispensable. In this study, a C4F8/O2/Ar plasma model tailored for on-line emission-spectroscopy analysis is established. First, the comprehensive reaction mechanism is refined through a systematic investigation of C4F8 dissociation pathways and the oxidation kinetics of fluorocarbon radicals. Subsequently, the radiative-collisional processes for the excited states of F, CF, CF2, CO, Ar and O are incorporated, establishing an explicit linkage between spectral features and radical densities. Under representative inductively coupled plasma (ICP) discharge conditions, the spatiotemporal evolution of the aforementioned active species is analyzed and validated against experimental data. Kinetic back-tracking is employed to elucidate the formation and loss mechanisms of fluorocarbon radicals and ions, and potential sources of modelling uncertainty are discussed. This model has promising potential for application in real-time OES monitoring during actual etching processes.
      Corresponding author: ZHU Ximing, zhuximing@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. U22B2094).
    [1]

    Imamura T, Sakai I, Hayashi H, Sekine M, Hori M 2021 Jpn. J. Appl. Phys. 60 036001Google Scholar

    [2]

    Antoun G, Tillocher T, Lefaucheux P, Faguet J, Maekawa K, Dussart R 2021 Sci. Rep. 11 357Google Scholar

    [3]

    Nonaka T, Takahashi K, Uchida A, Tsuji O 2024 J. Micromech. Microeng. 34 085014Google Scholar

    [4]

    You S, Lee Y J, Chae H, Kim C K 2022 Coatings 12 679Google Scholar

    [5]

    Nunomura S, Tsutsumi T, Hori M 2025 Appl. Surface Sci. 713 164180Google Scholar

    [6]

    Huang S, Huard C, Shim S, Nam S K, Song I C, Lu S, Kushner M J 2019 J. Vac. Sci. Technol. A 37 031304Google Scholar

    [7]

    Lee B J, Efremov A, Nam Y, Kwon K H 2020 Plasma Chem. Plasma Process. 40 1365Google Scholar

    [8]

    Li X, Ling L, Hua X, Fukasawa M, Oehrlein G S, Barela M, Anderson H M 2003 J. Vac. Sci. Technol. A 21 284Google Scholar

    [9]

    陈锦峰, 朱林繁 2024 物理学报 73 095201Google Scholar

    Chen J F, Zhu L F 2024 Acta Phys. Sin. 73 095201Google Scholar

    [10]

    Kambara M, Kawaguchi S, Lee H J, Ikuse K, Hamaguchi S, Ohmori T, Ishikawa K 2023 Jpn. J. Appl. Phys. 62 SA0803Google Scholar

    [11]

    Kazumi H, Hamasaki R, Tago K 1996 Plasma Sources Sci. Technol. 5 200Google Scholar

    [12]

    Font G I, Morgan W L, Mennenga G 2002 J. Appl. Phys. 91 3530Google Scholar

    [13]

    Vasenkov A V, Li X, Oehrlein G S, Kushner M J 2004 J. Vac. Sci. Technol. A 22 511Google Scholar

    [14]

    Kokkoris G, Goodyear A, Cooke M, Gogolides E 2008 J. Phys. D: Appl. Phys. 41 195211Google Scholar

    [15]

    Chun I, Efremov A, Yeom G Y, Kwon K H 2015 Thin Solid Films 579 136Google Scholar

    [16]

    Le-Dain G, Rhallabi A, Girard A, Cardinaud C, Roqueta F, Boufnichel M 2019 Plasma Sources Sci. Technol. 28 085002Google Scholar

    [17]

    王彦飞, 朱悉铭, 张明智, 孟圣峰, 贾军伟, 柴昊, 王旸, 宁中喜 2021 物理学报 70 095211Google Scholar

    Wang Y F, Zhu X M, Zhang M Z, Meng S F, Jia J W, Chai H, Wang Y, Ning Z X 2021 Acta Phys. Sin. 70 095211Google Scholar

    [18]

    Zhu X M, Pu Y K 2010 J. Phys. D: Appl. Phys. 43 403001Google Scholar

    [19]

    杜永权, 刘文耀, 朱爱民, 李小松, 赵天亮, 刘永新, 高飞, 徐勇, 王友年 2013 物理学报 62 205208Google Scholar

    Du Y Q, Liu W Y, Zhu A M, Li X S, Zhao T L, Liu Y X, Gao F, Xu Y, Wang Y N 2013 Acta Phys. Sin. 62 205208Google Scholar

    [20]

    张秩凡, 高俊, 雷鹏, 周素素, 王新兵, 左都罗 2018 物理学报 67 145202Google Scholar

    Zhang Z F, Gao J, Lei P, Zhou S S, Wang X B, Zuo D L 2018 Acta Phys. Sin. 67 145202Google Scholar

    [21]

    Kimura T, Hanaki K 2009 Jpn. J. Appl. Phys. 48 096004Google Scholar

    [22]

    Park W, Han J, Park S, Moon S Y 2023 Vacuum 216 112466Google Scholar

    [23]

    Kim B, Im S, Yoo G 2020 Electronics 10 49Google Scholar

    [24]

    Qi L, Chang X, Mao J, Lin X, Wang X 2025 IEEE Trans. Semiconduct. Manuf. 38 717Google Scholar

    [25]

    Osipov A A, Iankevich G A, Speshilova A B, Gagaeva A E, Osipov A A, Enns Y B, Kazakin A N, Endiiarova E V, Belyanov I A, Ivanov V I, Alexandrov S E 2022 Sci. Rep. 12 5287Google Scholar

    [26]

    Kuboi N 2024 Jpn. J. Appl. Phys. 63 080801Google Scholar

    [27]

    Toneli D A, Pessoa R S, Roberto M, Gudmundsson J T 2019 Plasma Sources Sci. Technol. 28 025007Google Scholar

    [28]

    Cunge G, Vempaire D, Ramos R, Touzeau M, Joubert O, Bodard P, Sadeghi N 2010 Plasma Sources Sci. Technol. 19 034017Google Scholar

    [29]

    Franklin R N 2003 J. Phys. D: Appl. Phys. 36 R309Google Scholar

    [30]

    Dai Z L, Wang Y N 2006 Front. Phys. China 1 178Google Scholar

    [31]

    张钰如, 高飞, 王友年 2021 物理学报 70 095206Google Scholar

    Zhang Y R, Gao F, Wang Y N 2021 Acta Phys. Sin. 70 095206Google Scholar

    [32]

    Perrin J, Leroy O, Bordage M C 1996 Contrib. Plasma Phys. 36 3Google Scholar

    [33]

    Efremov A M, Kim D P, Kim C I 2004 Vacuum 75 133Google Scholar

    [34]

    Rauf S, Ventzek P L G 2002 J. Vac. Sci. Technol 20 14

    [35]

    Christophorou L G, Olthoff J K 1999 J. Phys. Chem. Ref. Data 28 967Google Scholar

    [36]

    Kimura T, Noto M 2006 J. Appl. Phys. 100 063303Google Scholar

    [37]

    Lowke J J, Phelps A V, Irwin B W 1973 J. Appl. Phys. 44 4664Google Scholar

    [38]

    Itikawa Y 2015 J. Phys. Chem. Ref. Data 44 013105Google Scholar

    [39]

    Rauf S, Kushner M J 1997 J. Appl. Phys. 82 2805Google Scholar

    [40]

    Tachibana K 1986 Phys. Rev. A 34 1007Google Scholar

    [41]

    Levko D, Shukla C, Upadhyay R R, Raja L L 2021 J. Vac. Sci. Technol. B 39 042202

    [42]

    Bose D, Rauf S, Hash D B, Govindan T R, Meyyappan M 2004 J. Vac. Sci. Technol. A 22 2290Google Scholar

    [43]

    Hayashi T, Ishikawa K, Iwayama H, Sekine M, Hori M 2022 Jpn. J. Appl. Phys. 61 106006Google Scholar

    [44]

    Christophorou L G, Olthoff J K, Rao M V V S 1996 J. Phys. Chem. Ref. Data 25 1341Google Scholar

    [45]

    Plumb I C, Ryan K R 1986 Plasma Chem. Plasma Process. 6 205Google Scholar

    [46]

    Donnelly V M, Guha J, Stafford L 2011 J. Vac. Sci. Technol. A 29 010801

    [47]

    You H S, Yook Y G, Chang W S, Park J H, Oh M J, Kwon D C, Yoon J S, Yu D H, Kwon H C, Park S K, Im Y H 2020 J. Phys. D: Appl. Phys. 53 385207Google Scholar

    [48]

    Zhang D, Kushner M J 2000 J. Appl. Phys. 87 1060Google Scholar

    [49]

    Walkup R E, Saenger K L, Selwyn G S 1986 J. Chem. Phys. 84 2668Google Scholar

    [50]

    Kramida A 2011 7th International Conference on Atomic and Molecular Data and Their Applications Vilnius (Lithuania), 2011 pp81−95

    [51]

    Kunze H J 2009 Introduction to Plasma Spectroscopy (Berlin, Heidelberg: Springer Berlin Heidelberg) p183

    [52]

    Lopaev D V, Volynets A V, Zyryanov S M, Zotovich A I, Rakhimov A T 2017 J. Phys. D: Appl. Phys. 50 075202Google Scholar

    [53]

    Kiss L D B, Nicolai J P, Conner W T, Sawin H H 1992 J. Appl. Phys. 71 3186Google Scholar

    [54]

    Karakas E, Kaler S, Lou Q, Donnelly V M, Economou D J 2014 J. Phys. D: Appl. Phys. 47 085203Google Scholar

    [55]

    Boffard J B, Lin C C, DeJosephJr C A 2004 J. Phys. D: Appl. Phys. 37 R143Google Scholar

    [56]

    Lee B J, Efremov A, Kwon K 2021 Plasma Process. Polym. 18 2000249Google Scholar

    [57]

    Zhu X M, Wang L, Wang Y F, Wang Y, Yu D R, Bartschat K 2024 Plasma Sources Sci. Technol. 33 055006Google Scholar

    [58]

    Zhu X M, Pu Y K, Celik Y, Siepa S, Schüngel E, Luggenhölscher D, Czarnetzki U 2012 Plasma Sources Sci. Technol. 21 024003Google Scholar

  • 图 1  本文方法流程图

    Figure 1.  Principle of the method developed in this work.

    图 2  C4F8分解机制图

    Figure 2.  Reaction pathway diagram of C4F8 dissociation.

    图 3  CFx氧化机制图

    Figure 3.  Oxidation mechanism diagram of CFx.

    图 4  F, O和CO密度实验-模型验证 (a) F; (b) O; (c) CO

    Figure 4.  F, O, and CO density experiment-model validation: (a) F; (b) O; (c) CO.

    图 5  中性粒子密度计算结果

    Figure 5.  Calculation result of neutral particle density.

    图 6  离子密度计算结果

    Figure 6.  Calculation result of ion density.

    图 7  (a) ${\mathrm{CF}}_2^+ $与(b) O(3p.3P)动力学过程占比分析结果

    Figure 7.  Analysis results of the proportion of (a) ${\mathrm{CF}}_2^+ $ and (b) O(3p.3P) kinetic processes.

    图 8  (a) O原子密度光学标定/修正与模型的相对误差; (b) O(3p.3P)基态/分解激发的速率系数

    Figure 8.  (a) Relative error between optical calibration/correction of O atom density and model; (b) rate coefficient of O(3p.3P) ground state/decomposition excitation.

    图 A1  实验装置和诊断系统示意图

    Figure A1.  Schematic diagram of experimental setup and diagnostic system.

    图 B1  本文C4F8/O2/Ar等离子体模型各粒子密度计算结果与Lee等[56]文献值(15% O2)比较

    Figure B1.  Comparison of C4F8/O2/Ar plasma particle densities of this work with Lee et al.(15% O2)[56].

    表 1  等离子体模型中涉及到的公式

    Table 1.  Equations mentioned in the model.

    编号 公式 注释
    E1 $\begin{array}{cc}\dfrac{{{\text{d}}{n_k}}}{{{\text{d}}t}} = \displaystyle\sum\nolimits_V {R_V^ + } (k) - \displaystyle\sum\nolimits_V {R_V^ - (k)} \\\qquad + \displaystyle\sum\nolimits_S {R_S^ + (k)} - \displaystyle\sum\nolimits_S {R_S^ - (k)} = 0 \end{array}$ $ {n_k} $: 物质 k 密度; $ R_V^ + (k) $: 物质 k 气相生成速率;
    $ R_V^ - (k) $: 物质 k 气相损失速率; $ R_S^ + (k) $: 物质 k 表面生成速率;
    $ R_S^ - (k) $: 物质 k 表面损失速率
    E2 $ {R_V} = {K_V}\displaystyle\sum\nolimits_v {{n_v}};\;\; R_V^{{\text{rad}}} = A {n_v} $ $ {K_V} $: 气相反应速率系数; $ {n_v} $: 气相反应物密度;
    $ R_V^{{\text{rad}}} $: 气相自发辐射速率; A: 爱因斯坦系数
    E3 $\begin{array} {cc} {K_V} = a T_{\text{e}}^b\exp \left( { - {c}/{{{T_{\text{e}}}}}} \right) ; \\ K_V^{{\text{exc}}} = \displaystyle\int_0^\infty {\sigma ({E_{\text{e}}})\sqrt {\dfrac{{2{E_{\text{e}}}}}{{{m_{\text{e}}}}}} f({E_{\text{e}}}){\text{d}}{E_{\text{e}}}} \end{array} $ $ {T_e} $: 电子温度; a, b, c : Arrhenius公式参数;
    $ K_V^{{\text{exc}}} $: 气相激发反应速率系数; Ee: 电子能量; me: 电子质量;
    $ \sigma ({E_{\text{e}}}) $: 激发截面; $ f({E_{\text{e}}}) $: 电子能量分布
    E4 $ {R_{\text{S}}} = {K_{\text{S}}}{n_{\text{s}}} $ $ {n_{\text{s}}} $: 表面损失物质密度
    E5 $ K_S^{\text{n}} = {\left[ {\dfrac{{{\varLambda ^2}}}{{{D_{\text{n}}}}} + \dfrac{{2 V(2 - \gamma )}}{{S{u_{\text{n}}}\gamma }}} \right]^{ - 1}} $ $ K_S^{\text{n}} $: 中性粒子表面损失系数; $ {D_{\text{n}}} $: 扩散系数; $ \gamma $: 表面黏附系数;
    $ {u_{\text{n}}} $: 平均热速度; V, S : 反应腔室体积和表面积
    E6 $ {\varLambda ^{ - 2}} = {\left( {{{\pi}}/{l}} \right)^2} + {\left( {{{2.405}}/{r}} \right)^2} $ $ \varLambda $: 有效扩散长度; l, r : 反应腔室高度和半径
    E7 $ K_{\text{S}}^{+} = 2{u_{\text{B}}}\left( {{{h_{\text{l}}}}}/{l} + {{{h_{\text{r}}}}}/{r}\right) $ $ K_{\text{S}}^{+} $: 离子表面损失系数; $ {u_{\text{B}}} $: 玻姆速度;
    E8 ${h_{\text{l}}} = 0.86{\left[ {3.0 + {l}/({{2\lambda }})} \right]^{-1/2}}$ ${h_{\text{l}}}$: 轴向边界-中心离子密度比; $\lambda $: 平均自由程
    E9 $ h_{\text{r}}=0.80\left(4.0 + {r}/{\lambda}\right)^{-1/2} $ ${h_{\text{r}}}$: 径向边界-中心离子密度比
    DownLoad: CSV

    表 2  模型中考虑的基本物种

    Table 2.  Different species taken into account in the model.

    类别 物种
    离子 $ \mathrm{CF}_3^+ $, ${\mathrm{CF}}_2^+ $, CF+, Ar+
    自由基 CF3, CF2, CF, COF, F, C, O
    中性产物 C2F4, CF4, F2, COF2, CO, CO2
    原料气体 C4F8, O2, Ar
    DownLoad: CSV

    表 3  激发态物种集

    Table 3.  Excited state species taken into account in the model.

    类别 物种
    Ar* Ar(1s5)-Ar(1s2), Ar(2p10)-Ar(2p1)
    O* O(2p.1D), O(2p.1S), O(3s.3So), O(3s.5So), O(3p.3P), O(3p.5P), O(3p.3Do), O(3p.5Do)
    F* F(3s.2P), F(3s.4P), F(3s.2D), F(3p.2So), F(3p.4So), F(3p.2Po), F(3p.4Po), F(3p.2Do), F(3p.4Do)
    CF* CF(a4Σ), CF(A2Σ), CF(b4Π), CF(B2Δ), CF(C2Σ)
    ${\mathrm{CF}}^*_2 $ CF2(A1B1), CF2(X1A2), CF2(X3A2), CF2(X3B1), CF2(X3B2)
    CO* CO(a3Π), CO(A1Π), CO(b3Σ), CO(B1Σ)
    DownLoad: CSV

    表 A1  气相反应集

    Table A1.  The set of gas phase reactions.

    反应编号 反应式 速率系数/(cm3·s–1) 参考文献
    a b c
    电子碰撞反应
    R1 e + C4F8 → 2C2F4 + e 9.58 × 10–8 0.042 8.572 [12]
    R2 e + C2F4 → 2CF2 + e 1.32 × 10–8 0.412 6.329 [12]
    R3 e + CF4 → CF3 + F + e 2.10 × 10–9 0.936 12.004 [35]
    R4 e + CF3 → CF2 + F + e 7.94 × 10–8 –0.452 12.100 [12]
    R5 e + CF2 → CF + F + e 1.16 × 10–8 –0.380 –14.350 [12]
    R6 e + CF → C + F + e 4.51 × 10–8 –0.110 8.941 [12]
    R7 e + F2 → 2F + e 1.08 × 10–8 –0.296 4.464 [12]
    R8 e + COF2 → COF + F + e 3.20 × 10–9 0.013 10.300 [36]
    R9 e + CO2 → CO + O + e 2.90 × 10–9 0.302 12.100 [37]
    R10 e + CO → C + O + e 1.54 × 10–8 0.270 14.600 [38]
    R11 e + O2 → 2O + e 1.71 × 10–8 –1.270 7.310 [39]
    R12 e + CF4 → ${\mathrm{CF}}_3^+ $ + F + 2e 2.29 × 10–8 0.680 18.304 [35]
    R13 e + CF3 → ${\mathrm{CF}}_2^+ $ + F + 2e 7.02 × 10–9 0.430 16.280 [12]
    R14 e + CF2 → CF+ + F + 2e 5.43 × 10–9 0.561 14.290 [12]
    R15 e + ${\mathrm{CF}}_3^+ $ → CF2 + F 6.54 × 10–8 –0.500 0.025 [13]
    R16 e + ${\mathrm{CF}}_2^+ $ → CF + F 6.54 × 10–8 –0.500 0.025 [13]
    R17 e + CF+ → C + F 6.54 × 10–8 –0.500 0.025 [13]
    R18 e + CF3 → ${\mathrm{CF}}_3^+ $ + 2e 1.36 × 10–9 0.796 9.057 [12]
    R19 e + CF2 → ${\mathrm{CF}}_2^+ $ + 2e 1.10 × 10–8 0.393 11.370 [12]
    R20 e + CF → CF+ + 2e 5.48 × 10–9 0.556 9.723 [12]
    R21 e + Ar → Ar+ + 2e 7.35 × 10–8 0.208 19.100 [40]
    电荷交换反应
    R22 $ {\mathrm{CF}}_2^+$ + CF → ${\mathrm{CF}}_3^+ $ + C 2.06 × 10–9 0 0 [13]
    R23 ${\mathrm{CF}}_2^+ $ + C → CF+ + CF 1.04 × 10–9 0 0 [13]
    R24 CF+ + CF3 → ${\mathrm{CF}}_3^+ $ + CF 1.71 × 10–9 0 0 [13]
    R25 CF+ + CF2 → ${\mathrm{CF}}_2^+ $ + CF 1.00 × 10–9 0 0 [13]
    R26 Ar+ + CF4 → ${\mathrm{CF}}_3^+ $ + F + Ar 4.80 × 10–10 0 0 [13]
    R27 Ar+ + CF3 → ${\mathrm{CF}}_2^+ $ + F + Ar 5.00 × 10–10 0 0 [13]
    R28 Ar+ + CF2 → CF+ + F + Ar 5.00 × 10–10 0 0 [13]
    氧化反应
    R29 CF3 + O → COF2 + F 3.30 × 10–11 0 0 [13]
    R30 CF2 + O → COF + F 3.10 × 10–11 0 0 [13]
    R31 CF + O → CO + F 6.60 × 10–11 0 0 [13]
    R32 COF + O → CO2 + F 9.30 × 10–11 0 0 [13]
    R33 COF + COF → COF2 + CO 1.00 × 10–11 0 0 [13]
    R34 C + CO2 → 2CO 1.00 × 10–15 0 0 [41]
    R35 COF + CF3 → COF2 + CF2 1.00 × 10–11 0 0 [13]
    R36 COF + CF2 → COF2 + CF 3.00 × 10–13 0 0 [13]
    R37 COF + CF3 → CO + CF4 1.00 × 10–11 0 0 [13]
    R38 COF + CF2 → CO + CF3 3.00 × 10–13 0 0 [13]
    重组反应
    R39 F + CF3 → CF4 2.00 × 10–11 0 0 [13]
    R40 F + CF2 → CF3 1.80 × 10–11 0 0 [13]
    R41 F + CF → CF2 9.96 × 10–11 0 0 [13]
    R42 F2 + CF3 → CF4 + F 1.90 × 10–14 0 0 [13]
    R43 F2 + CF2 → CF3 + F 8.30 × 10–14 0 0 [13]
    DownLoad: CSV

    表 A2  表面反应集

    Table A2.  The set of surface reactions.

    反应编号 反应式 速率系数
    原子扩散
    R44 O → $\dfrac{1}{2} $O2 4.20 × 103 s–1
    R45 F → $\dfrac{1}{2} $F2 3.2 × 102 s–1
    离子扩散
    R46 ${\mathrm{CF}}_3^+ $ → CF3 6.73 × 103 s–1
    R47 ${\mathrm{CF}}_2^+ $ → CF2 7.91 × 103 s–1
    R48 CF+ → CF 1.00 × 104 s–1
    R49 Ar+ → Ar 8.85 × 103 s–1
    等效表面反应
    R50 C2F4 + C2F4 → C4F8 1.00 × 10–11 cm3/s
    R51 CF2 + CF2 → C2F4 1.00 × 10–11 cm3/s
    R52 C + F → CF 1.00 × 10–11 cm3/s
    DownLoad: CSV

    表 B1  本文C4F8/O2/Ar等离子体模型输入参数与Lee等[56]文献对比表

    Table B1.  Comparison of C4F8/O2/Ar plasma model input parameters of this work with Lee et al. [56].

    参数Kimura和NotoLee等[56]
    ICP腔室尺寸
    半径/mm8080
    高度/mm80130
    放电工况
    气压/mTorr3010
    功率/W140700
    气流/sccm4040
    等离子参数
    电子温度/eV2.93—3.053.60—4.25
    电子密度/cm–35.48 × 1010
    1.00 × 1011
    5.00 × 1010
    6.20 × 1010
    DownLoad: CSV
  • [1]

    Imamura T, Sakai I, Hayashi H, Sekine M, Hori M 2021 Jpn. J. Appl. Phys. 60 036001Google Scholar

    [2]

    Antoun G, Tillocher T, Lefaucheux P, Faguet J, Maekawa K, Dussart R 2021 Sci. Rep. 11 357Google Scholar

    [3]

    Nonaka T, Takahashi K, Uchida A, Tsuji O 2024 J. Micromech. Microeng. 34 085014Google Scholar

    [4]

    You S, Lee Y J, Chae H, Kim C K 2022 Coatings 12 679Google Scholar

    [5]

    Nunomura S, Tsutsumi T, Hori M 2025 Appl. Surface Sci. 713 164180Google Scholar

    [6]

    Huang S, Huard C, Shim S, Nam S K, Song I C, Lu S, Kushner M J 2019 J. Vac. Sci. Technol. A 37 031304Google Scholar

    [7]

    Lee B J, Efremov A, Nam Y, Kwon K H 2020 Plasma Chem. Plasma Process. 40 1365Google Scholar

    [8]

    Li X, Ling L, Hua X, Fukasawa M, Oehrlein G S, Barela M, Anderson H M 2003 J. Vac. Sci. Technol. A 21 284Google Scholar

    [9]

    陈锦峰, 朱林繁 2024 物理学报 73 095201Google Scholar

    Chen J F, Zhu L F 2024 Acta Phys. Sin. 73 095201Google Scholar

    [10]

    Kambara M, Kawaguchi S, Lee H J, Ikuse K, Hamaguchi S, Ohmori T, Ishikawa K 2023 Jpn. J. Appl. Phys. 62 SA0803Google Scholar

    [11]

    Kazumi H, Hamasaki R, Tago K 1996 Plasma Sources Sci. Technol. 5 200Google Scholar

    [12]

    Font G I, Morgan W L, Mennenga G 2002 J. Appl. Phys. 91 3530Google Scholar

    [13]

    Vasenkov A V, Li X, Oehrlein G S, Kushner M J 2004 J. Vac. Sci. Technol. A 22 511Google Scholar

    [14]

    Kokkoris G, Goodyear A, Cooke M, Gogolides E 2008 J. Phys. D: Appl. Phys. 41 195211Google Scholar

    [15]

    Chun I, Efremov A, Yeom G Y, Kwon K H 2015 Thin Solid Films 579 136Google Scholar

    [16]

    Le-Dain G, Rhallabi A, Girard A, Cardinaud C, Roqueta F, Boufnichel M 2019 Plasma Sources Sci. Technol. 28 085002Google Scholar

    [17]

    王彦飞, 朱悉铭, 张明智, 孟圣峰, 贾军伟, 柴昊, 王旸, 宁中喜 2021 物理学报 70 095211Google Scholar

    Wang Y F, Zhu X M, Zhang M Z, Meng S F, Jia J W, Chai H, Wang Y, Ning Z X 2021 Acta Phys. Sin. 70 095211Google Scholar

    [18]

    Zhu X M, Pu Y K 2010 J. Phys. D: Appl. Phys. 43 403001Google Scholar

    [19]

    杜永权, 刘文耀, 朱爱民, 李小松, 赵天亮, 刘永新, 高飞, 徐勇, 王友年 2013 物理学报 62 205208Google Scholar

    Du Y Q, Liu W Y, Zhu A M, Li X S, Zhao T L, Liu Y X, Gao F, Xu Y, Wang Y N 2013 Acta Phys. Sin. 62 205208Google Scholar

    [20]

    张秩凡, 高俊, 雷鹏, 周素素, 王新兵, 左都罗 2018 物理学报 67 145202Google Scholar

    Zhang Z F, Gao J, Lei P, Zhou S S, Wang X B, Zuo D L 2018 Acta Phys. Sin. 67 145202Google Scholar

    [21]

    Kimura T, Hanaki K 2009 Jpn. J. Appl. Phys. 48 096004Google Scholar

    [22]

    Park W, Han J, Park S, Moon S Y 2023 Vacuum 216 112466Google Scholar

    [23]

    Kim B, Im S, Yoo G 2020 Electronics 10 49Google Scholar

    [24]

    Qi L, Chang X, Mao J, Lin X, Wang X 2025 IEEE Trans. Semiconduct. Manuf. 38 717Google Scholar

    [25]

    Osipov A A, Iankevich G A, Speshilova A B, Gagaeva A E, Osipov A A, Enns Y B, Kazakin A N, Endiiarova E V, Belyanov I A, Ivanov V I, Alexandrov S E 2022 Sci. Rep. 12 5287Google Scholar

    [26]

    Kuboi N 2024 Jpn. J. Appl. Phys. 63 080801Google Scholar

    [27]

    Toneli D A, Pessoa R S, Roberto M, Gudmundsson J T 2019 Plasma Sources Sci. Technol. 28 025007Google Scholar

    [28]

    Cunge G, Vempaire D, Ramos R, Touzeau M, Joubert O, Bodard P, Sadeghi N 2010 Plasma Sources Sci. Technol. 19 034017Google Scholar

    [29]

    Franklin R N 2003 J. Phys. D: Appl. Phys. 36 R309Google Scholar

    [30]

    Dai Z L, Wang Y N 2006 Front. Phys. China 1 178Google Scholar

    [31]

    张钰如, 高飞, 王友年 2021 物理学报 70 095206Google Scholar

    Zhang Y R, Gao F, Wang Y N 2021 Acta Phys. Sin. 70 095206Google Scholar

    [32]

    Perrin J, Leroy O, Bordage M C 1996 Contrib. Plasma Phys. 36 3Google Scholar

    [33]

    Efremov A M, Kim D P, Kim C I 2004 Vacuum 75 133Google Scholar

    [34]

    Rauf S, Ventzek P L G 2002 J. Vac. Sci. Technol 20 14

    [35]

    Christophorou L G, Olthoff J K 1999 J. Phys. Chem. Ref. Data 28 967Google Scholar

    [36]

    Kimura T, Noto M 2006 J. Appl. Phys. 100 063303Google Scholar

    [37]

    Lowke J J, Phelps A V, Irwin B W 1973 J. Appl. Phys. 44 4664Google Scholar

    [38]

    Itikawa Y 2015 J. Phys. Chem. Ref. Data 44 013105Google Scholar

    [39]

    Rauf S, Kushner M J 1997 J. Appl. Phys. 82 2805Google Scholar

    [40]

    Tachibana K 1986 Phys. Rev. A 34 1007Google Scholar

    [41]

    Levko D, Shukla C, Upadhyay R R, Raja L L 2021 J. Vac. Sci. Technol. B 39 042202

    [42]

    Bose D, Rauf S, Hash D B, Govindan T R, Meyyappan M 2004 J. Vac. Sci. Technol. A 22 2290Google Scholar

    [43]

    Hayashi T, Ishikawa K, Iwayama H, Sekine M, Hori M 2022 Jpn. J. Appl. Phys. 61 106006Google Scholar

    [44]

    Christophorou L G, Olthoff J K, Rao M V V S 1996 J. Phys. Chem. Ref. Data 25 1341Google Scholar

    [45]

    Plumb I C, Ryan K R 1986 Plasma Chem. Plasma Process. 6 205Google Scholar

    [46]

    Donnelly V M, Guha J, Stafford L 2011 J. Vac. Sci. Technol. A 29 010801

    [47]

    You H S, Yook Y G, Chang W S, Park J H, Oh M J, Kwon D C, Yoon J S, Yu D H, Kwon H C, Park S K, Im Y H 2020 J. Phys. D: Appl. Phys. 53 385207Google Scholar

    [48]

    Zhang D, Kushner M J 2000 J. Appl. Phys. 87 1060Google Scholar

    [49]

    Walkup R E, Saenger K L, Selwyn G S 1986 J. Chem. Phys. 84 2668Google Scholar

    [50]

    Kramida A 2011 7th International Conference on Atomic and Molecular Data and Their Applications Vilnius (Lithuania), 2011 pp81−95

    [51]

    Kunze H J 2009 Introduction to Plasma Spectroscopy (Berlin, Heidelberg: Springer Berlin Heidelberg) p183

    [52]

    Lopaev D V, Volynets A V, Zyryanov S M, Zotovich A I, Rakhimov A T 2017 J. Phys. D: Appl. Phys. 50 075202Google Scholar

    [53]

    Kiss L D B, Nicolai J P, Conner W T, Sawin H H 1992 J. Appl. Phys. 71 3186Google Scholar

    [54]

    Karakas E, Kaler S, Lou Q, Donnelly V M, Economou D J 2014 J. Phys. D: Appl. Phys. 47 085203Google Scholar

    [55]

    Boffard J B, Lin C C, DeJosephJr C A 2004 J. Phys. D: Appl. Phys. 37 R143Google Scholar

    [56]

    Lee B J, Efremov A, Kwon K 2021 Plasma Process. Polym. 18 2000249Google Scholar

    [57]

    Zhu X M, Wang L, Wang Y F, Wang Y, Yu D R, Bartschat K 2024 Plasma Sources Sci. Technol. 33 055006Google Scholar

    [58]

    Zhu X M, Pu Y K, Celik Y, Siepa S, Schüngel E, Luggenhölscher D, Czarnetzki U 2012 Plasma Sources Sci. Technol. 21 024003Google Scholar

  • [1] Wang Jun-Wu, Xuan Hong-Wen, Yu Hang-Hang, Wang Xin-Bing, Vassily S. Zakharov. Simulation of extreme ultraviolet radiation of laser induced discharge plasma. Acta Physica Sinica, 2024, 73(1): 015203. doi: 10.7498/aps.73.20231158
    [2] Meng Ju, He Zhen-Cen, Yan Jun, Wu Ze-Qing, Yao Ke, Li Ji-Guang, Wu Yong, Wang Jian-Guo. Effects of electric quadrupole transitions on ion energy-level populations of in electron beam ion trap plasma. Acta Physica Sinica, 2022, 71(19): 195201. doi: 10.7498/aps.71.20220489
    [3] Han Xiao-Ying, Li Ling-Xiao, Dai Zhen-Sheng, Zheng Wu-Di, Gu Pei-Jun, Wu Ze-Qing. A general model for rapid simulation of hot dense plasmas under non-local thermal equilibrium conditions. Acta Physica Sinica, 2021, 70(11): 115202. doi: 10.7498/aps.70.20201946
    [4] Wang Yan-Fei, Zhu Xi-Ming, Zhang Ming-Zhi, Meng Sheng-Feng, Jia Jun-Wei, Chai Hao, Wang Yang, Ning Zhong-Xi. Plasma optical emission spectroscopy based on feedforward neural network. Acta Physica Sinica, 2021, 70(9): 095211. doi: 10.7498/aps.70.20202248
    [5] Zhang Tai-Yang, Chen Ran. A collisional-radiative model for lithium impurity in plasma boundary region of Experimental Advanced Superconducting Tokamak. Acta Physica Sinica, 2017, 66(12): 125201. doi: 10.7498/aps.66.125201
    [6] Wu Jian, Li Xing-Wen, Li Mo, Yang Ze-Feng, Shi Zong-Qian, Jia Shen-Li, Qiu Ai-Ci. Comparisons and analyses of the aluminum K-shell spectroscopic models. Acta Physica Sinica, 2015, 64(20): 205201. doi: 10.7498/aps.64.205201
    [7] Xie Hui-Qiao, Tan Yi, Liu Yang-Qing, Wang Wen-Hao, Gao Zhe. A collisional-radiative model for the helium plasma in the sino-united spherical tokamak and its application to the line intensity ratio diagnostic. Acta Physica Sinica, 2014, 63(12): 125203. doi: 10.7498/aps.63.125203
    [8] Du Yong-Quan, Liu Wen-Yao, Zhu Ai-Min, Li Xiao-Song, Zhao Tian-Liang, Liu Yong-Xin, Gao Fei, Xu Yong, Wang You-Nian. Phase resolved optical emission spectroscopy of dual frequency capacitively coupled plasma. Acta Physica Sinica, 2013, 62(20): 205208. doi: 10.7498/aps.62.205208
    [9] Zhu Zhu-Qing, Wang Xiao-Lei. Experimental study on emission spectra of air plasma induced by femtosecond laser pulses. Acta Physica Sinica, 2011, 60(8): 085205. doi: 10.7498/aps.60.085205
    [10] Gao Xun, Song Xiao-Wei, Guo Kai-Min, Tao Hai-Yan, Lin Jing-Quan. Optical emission spectra of Si plasma induced by femtosecond laser pulse. Acta Physica Sinica, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [11] Pu Yu-Dong, Yang Jia-Min, Jin Feng-Tao, Zhang Lu, Ding Yong-Kun. Characteristics of emission spectroscopyof radiatively heated Al plasma. Acta Physica Sinica, 2011, 60(4): 045210. doi: 10.7498/aps.60.045210
    [12] Yu Xin-Ming, Cheng Shu-Bo, Yi You-Gen, Zhang Ji-Yan, Pu Yu-Dong, Zhao Yang, Hu Feng, Yang Jia-Min, Zheng Zhi-Jian. Analysis of formation mechanism of Li-like satellites in aluminum plasma and experimental application. Acta Physica Sinica, 2011, 60(8): 085201. doi: 10.7498/aps.60.085201
    [13] Li Jing, Xie Wei-Ping, Huang Xian-Bin, Yang Li-Bing, Cai Hong-Chun, Pu Yi-Kang. Application of a collisinal-radiative model for the analysis of K-shell line spectra emitted by Z-pinch plasma. Acta Physica Sinica, 2010, 59(11): 7922-7929. doi: 10.7498/aps.59.7922
    [14] Duan Yao-Yong, Guo Yong-Hui, Qiu Ai-Ci, Wu Gang. An extended model for ion charge state distribution of plasmas in collisional radiative steady state. Acta Physica Sinica, 2010, 59(8): 5588-5595. doi: 10.7498/aps.59.5588
    [15] Yi You-Gen, Tang Jing-Wu, Huang Du-Zhi. Theoretical calculations of X-ray spectra of Au plasma. Acta Physica Sinica, 2010, 59(11): 7769-7774. doi: 10.7498/aps.59.7769
    [16] Li Yang-Ping, Liu Zheng-Tang. Plasma emission diagnostics for the optimization of deposition parameters in RF magnetron sputtering of GaP film. Acta Physica Sinica, 2009, 58(7): 5022-5028. doi: 10.7498/aps.58.5022
    [17] Niu Tian-Ye, Cao Jin-Xiang, Liu Lei, Liu Jin-Ying, Wang Yan, Wang Liang, Lü You, Wang Ge, Zhu Ying. The techniques of single probe and emission spectroscopy diagnostics in low temperature argon plasmas. Acta Physica Sinica, 2007, 56(4): 2330-2336. doi: 10.7498/aps.56.2330
    [18] Li Yong, Sun Cheng-Wei, Liu Zhi-Wen, Zhang Qing-Yu. Study of ZnO film growth by reactive magnetron sputtering using plasma emission spectra. Acta Physica Sinica, 2006, 55(8): 4232-4237. doi: 10.7498/aps.55.4232
    [19] Wan Xiong, Yu Sheng-Lin, Wang Chang-Kun, Le Shu-Ping, Li Bing-Ying, He Xing-Dao. Emission spectral tomography algorithm based on multi-objective optimization and its application in plasma diagnosis. Acta Physica Sinica, 2004, 53(9): 3104-3113. doi: 10.7498/aps.53.3104
    [20] Zhang Hong, Cheng Xin-Lu, Yang Xiang-Dong, Xie Fang-Jun, Zhang Ji-Yan, Yang Guo-Hong. Study on the relationship of average ionization stage with the electron temperat ure for Au laser produced plasma. Acta Physica Sinica, 2003, 52(12): 3098-3101. doi: 10.7498/aps.52.3098
Metrics
  • Abstract views:  267
  • PDF Downloads:  12
  • Cited By: 0
Publishing process
  • Received Date:  31 August 2025
  • Accepted Date:  10 November 2025
  • Available Online:  13 November 2025
  • Published Online:  05 December 2025
  • /

    返回文章
    返回