Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The study of electron impact ionization of C, N, and O at the solar radiation/convection zone boundary

HOU Yong LUO Qingbo LIANG Xin ZENG Jiaolong YUAN Jianmin

Citation:

The study of electron impact ionization of C, N, and O at the solar radiation/convection zone boundary

HOU Yong, LUO Qingbo, LIANG Xin, ZENG Jiaolong, YUAN Jianmin
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The boundary region between the solar radiation zone and the convection zone ($ T\thicksim180$ eV, $ n_e\thicksim $$ 9\times10^{22}\;{\rm{cm}}^{-3}$) is a critical interface where energy transport in the solar interior transitions from radiation-dominated to convection-dominated regimes. This region also serves as a natural laboratory for studying hot dense plasma. The physical properties of this zone are essential for the reliability of stellar evolution models and the stability of energy transport mechanisms. One of major unresolved issue is how electron collision ionization affects the density of free electrons and radiation properties in this plasma, while accurately describing the impact of hot-dense environments on electron impact ionization (EII) (such as electron screening, ion correlation). To fill this gap, we systematically calculate EII cross sections for C, N, and O ions under realistic solar boundary conditions, with a focus on hot-dense environment impacts. We develop a novel computational framework that merges?hot-dense environment effects into atomic structure calculations: the Flexible Atomic Code (FAC) for atomic structure is combined with the Hyper-netted-Chain (HNC) approximation to capture electron-electron, electron-ion and ion-ion correlations, enabling self-consistent treatment of electron screening and ion correlation. Atomic wave functions are derived by solving the Dirac equation within the ion-sphere model, using a modified central potential that incorporates both free-electron screening and ion–ion interactions. EII cross sections are then computed via the Distorted-Wave (DW) approximation in FAC. The results demonstrate that hot-dense environment effects significantly enhance the electron-impact ionization cross sections of C, N, and O compared to those calculated under the free-atom model. Additionally, a notable reduction in the ionization threshold energy is observed. These effects are attributed to the overlap of atomic potentials due to strong ion coupling and the shift in bound-state energy levels caused by free-electron screening. For instance, under solar boundary conditions, the ionization cross section of C+ increased by up to 50%, with the ionization threshold decreasing from about 24 eV (isolated) to 18 eV (with screening). Similar enhancements were observed for nitrogen and oxygen ions across various charge states. By providing updated ionization cross sections for C, N, and O ions under realistic solar interior conditions, this work offers essential parameters for improving radiation transport models, ionization balance calculations, and equation-of-state models in stellar interiors. The results underscore the necessity of including hot-dense environment effects in atomic process calculations for hot dense plasmas, with implications for astrophysics and inertial confinement fusion research.
  • 图 1  孤立情况下, 类铍离子电子碰撞电离截面随着入射电子能量变化的关系. (a) C2+的结果; (b) N3+的结果; (c) O4+的结果. 带有误差的黑色正方形是Fogle等人[5]实验测量的结果, 红色实线和绿色点线是Fogle等人分别采用组态平均扭曲波(CADW) 近似[56]与赝态R-matrix(RMPS) 近似[57]计算的理论结果, 蓝色虚线、橙色点-虚线和紫色点-点-虚线是本文分别采用DW近似、CBE近似和BED近似理论计算的结果

    Figure 1.  The electron impact ionization cross section of beryllium-like ions as a function of incident electron energy for the isolation ion. (a) The case of C2+; (b) The case of N3+; (c) The case of O4+. The black squares with error bars[5] represent the experimental measurements by Fogle et al. The red solid and green dotted lines represent the theoretical results calculated by Fogle et al. by using the CADW approximation[56] and the RMPS[57] approximation, respectively. The blue dashed, orange dotted-dashed, and violet dotted-dotted-dashed lines represent the theoretical results calculated in this paper using the DW, CBE, and BED approximation, respectively.

    图 2  热稠密等离子体中C2+的$ 1 s^22 s^2\; ^{1}S_{0} $组态$ 2 s $束缚电子径向波函数. (a) 在温度为100 eV时, 径向波函数随等离子体密度的变化. 黑色实线为孤立情况下计算的结果; 蓝色点-虚线、绿色虚线、红色点线是T为100 eV, $ n_e $分别为$ 3\times10^{22} $ cm–3、$ 6\times10^{22} $ cm–3、$ 15\times10^{22} $ cm–3情况下计算的结果; (b) 在相同密度$ n_e $为$ 9\times10^{22} $ cm–3下, 径向波函数随等离子体温度的变化. 黑色实线为孤立情况下的计算结果; 青色点线、蓝色点-虚线、棕色点-点-虚线是T分别为50 eV、100 eV和180 eV情况下计算的结果.

    Figure 2.  The radial wave function of the $ 2 s $ bound electron in the $ 1 s^22 s^2\; ^{1}S_{0} $ configuration of C2+ in hot dense plasmas. (a) The black solid line represents the result calculated for the isolated case. The blue dotted-dashed, green dashed, and red dotted lines represent the results calculated for $ T = 100 eV $ and $ n_e $ values of $ 3\times10^{22} $ cm–3, $ 6\times10^{22} $ cm–3, and $ 15\times10^{22} $ cm–3, respectively; (b) The black solid line represents the result calculated for the isolated case. The cyan dotted, blue dotted-dashed, and brown dotted-dotted-dashed lines represent the results calculated for $ n_e = 9\times10^{22} $ cm–3 and T values of 50 eV, 100 eV, and 180 eV, respectively.

    图 3  随着入射电子能量变化的C2+的$ 1 s^22 s^2\; ^{1}S_{0}\; \rightarrow 1 s^22 s^1 $的电子碰撞电离截面. (a) 温度T为100 eV、不同电子密度的碰撞电离截面计算结果. 黑色实线为孤立情况下计算的结果; 绿色点线、紫色点-点-虚线、红色虚线是电子密度$ n_e $分别为$ 3\times10^{22} $ cm–3、$ 6\times10^{22} $ cm–3、$ 15\times10^{22} $ cm–3情况下计算的结果. (b) 电子密度$ n_e $为$ 9\times10^{22} $ cm–3、不同温度的碰撞电离截面计算结果. 黑色实线为孤立情况下的计算结果; 橙色点-虚线、绿色点线、蓝色虚线是温度T分别为50 eV、100 eV和180 eV情况下计算的结果

    Figure 3.  The electron impact ionization cross section of $ 1 s^22 s^2\; ^{1}S_{0} \rightarrow 1 s^22 s^1 $ of C2+ as a function of incident electron energy. (a) The collision ionization cross sections with temperature T of 100 eV and different electron densities. The black solid line represents the result calculated for the isolated case. The green dotted, violet dotted-dotted-dashed, and red dashed lines represent the results calculated for $ n_e $ values of $ 3\times10^{22}cm^{-3} $, $ 6\times10^{22} $ cm–3, and $ 15\times10^{22} $ cm–3, respectively; (b) The collision ionization cross sections with electron density $ n_e = 9\times10^{22} $ cm–3 and different temperatures. The black solid line represents the result calculated for the isolated case. The orange dotted-dashed, green dotted, and blue dashed lines represent the results calculated for T values of 50 eV, 100 eV, and 180 eV, respectively.

    图 4  碳元素在孤立情况下以及在$ T = 180 $ eV, $ n_e = 9\times10^{22} $ cm–3的太阳辐射/对流区域边界处条件下, 随着入射电子能量变化的电子碰撞电离截面. (a) 黑色、红色和绿色分别为C+、C2+和C3+的碰撞电离截面计算结果. (b) 蓝色和橙色分别为C4+和C5+的碰撞电离截面计算结果. 在计算中分别考虑了在孤立情况(isolated)、屏蔽效应(no_IPD)和屏蔽效应+电离能(IPD)下降情况下对碰撞电离截面的影响, 在图中分别采用实线、虚线和点线表示

    Figure 4.  The electron impact ionization cross sections of carbon under isolated conditions and at the solar radiation/convection zone boundary($ T = 180 $ eV, $ n_e = 9\times10^{22} $ cm–3) as functions of incident electron energy. (a) Black, red, and green lines represent the calculated results for C+, C2+, and C3+, respectively; (b) Blue and orange lines correspond to C4+and C5+, respectively. Here, the solid line represents the calculation results in the isolated case, the dashed line represents the calculation results considering the screening effect at the boundary of the solar radiation/convective region, and the dotted line represents the calculation results further considering the ionization potential depression on the basis of the dashed line.

    图 5  氮、氧元素在$ T = 180 $ eV, $ n_e = 9\times10^{22} $ cm–3的太阳辐射/对流区域边界处条件下, 随着入射电子能量变化的电子碰撞电离截面. (a) 黑色实线、红色点线、绿色虚线和蓝色点-虚线分别为N+、N2+、N3+和N4+的计算结果; (b) 黑色实线、红色点线、绿色虚线、蓝色点-虚线和橙色点-点-虚线分别为O+、O2+、O3+、O4+和O5+ 的计算结果; (c) 紫色实线、青色点线、粉色虚线和棕色点-虚线分别为N5+、N6+、O6+和O7+的计算结果

    Figure 5.  The electron impact ionization cross sections for nitrogen and oxygen at the solar radiation/convection zone boundary($ T = 180 $ eV, $ n_e = 9\times10^{22} $ cm–3) as functions of incident electron energy. (a) Black solid, red dotted, green dashed, and blue dotted-dashed lines represent calculated results for N+, N2+, N3+, and N4+, respectively; (b) Black solid, red dotted, green dashed, blue dotted-dashed, and orange dotted-dotted-dashed lines correspond to O+, O2+, O3+, O4+, and O2+, respectively; (c) Purple solid, cyan dotted, pink dashed, and brown dotted-dashed lines show results for N5+, N6+, O6+, and O7+, respectively.

  • [1]

    Guenther D B, Demarque P, Kim Y C, Pinsonneault M H 1992 ApJ 387 372Google Scholar

    [2]

    Bahcall J N, Ulrich R K 1988 Rev. Mod. Phys. 60 297Google Scholar

    [3]

    Basu S, Grevesse N, Mathis S, Turck-Chièze S 2015 Space Sci. Rev. 196 49Google Scholar

    [4]

    Bailey J E, Nagayama T, Loisel G P, Rochau G A, Blancard C, Colgan J, et al 2015 Nature 517 56Google Scholar

    [5]

    Fogle M, Bahati E M, Bannister M E, Vane C R, Loch S D, Pindzola M S, Ballance C P, Thomas R D, Zhaunerchyk V, Bryans P, Mitthumsiri W, Savin D W 2008 Astrophys. J. Suppl. Ser. 175 543Google Scholar

    [6]

    Woodruff P R, Hublet M C, Harrison M F A, Brook E 1978 J. Phys. B: At. Mol. Opt. Phys. 11 L679Google Scholar

    [7]

    Falk R A, Stefani G, Camilloni R, Dunn G H, Phaneuf R A, Gregory D C, Crandall D H 1983 Phys. Rev. A 28 91Google Scholar

    [8]

    Loch S D, Witthoeft M, Pindzola M S, Bray I, Fursa D V, Fogle M, Schuch R, Glans P, Ballance C P, Griffin D C 2005 Phys. Rev. A 71 012716Google Scholar

    [9]

    Loch S D, Colgan J, Pindzola M S, Westermann M, Scheuermann F, Aichele K, Hathiramani D, Salzborn E 2003 Phys. Rev. A 67 042714Google Scholar

    [10]

    Alna'washi G A, Aryal N B, Baral K K, Thomas C M, Phaneuf R A, 2014 J. Phys. B: At. Mol. Opt. Phys. 47 135203Google Scholar

    [11]

    Ludlow J A, Ballance C P, Loch S D, Pindzola M S, Griffin D C, 2009 Phys. Rev. A 79 032715Google Scholar

    [12]

    Bray I, McNamara K, Fursa D V 2015 Phys. Rev. A 92 022705Google Scholar

    [13]

    Fontes C J, Sampson D H, Zhang H L 1993 Phys. Rev. A 48 1975Google Scholar

    [14]

    Kim Y K, Rudd M E 1994 Phys. Rev. A 50 3954Google Scholar

    [15]

    马莉莉, 张世平, 张芳军, 李麦娟, 蒋军, 丁晓彬, 颉录有, 张登红, 董晨钟 2005 物理学报 73 136

    Ma L L, Zhang S P, Zhang F J, Li M J, Jiang J, Ding X B, Jie L Y, Zhang D H, Dong C Z 2005 Acta Phys. Sin. 73 136

    [16]

    Kritcher A L, Swift D C, Döppner T, Bachmann B, Benedict L X, Collins G W, et al 2020 Nature 584 51Google Scholar

    [17]

    Giammichele N, Charpinet S, Fontaine G, Brassard P, Green E M, Van Grootel V, et al 2018 Nature 554 73Google Scholar

    [18]

    Bethkenhagen M, Witte B B L, Schörner M, Röpke G, Döppner T, Kraus D, Glenzer S H, Sterne P A, Redmer R 2020 Phys. Rev. Res. 2 023260Google Scholar

    [19]

    Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, et al 2014 Nature 506 343Google Scholar

    [20]

    Seddon E A, Clarke J A, Dunning D J, Masciovecchio C, Milne C J, Parmigiani F, Rugg D, Spence J C H, Thompson N R, Ueda K, Vinko S M, Wark J S, Wurth W 2017 Rep. Prog. Phys. 80 115901Google Scholar

    [21]

    Vinko S M, Ciricosta O, Cho B I, Engelhorn K, Chung H K, Brown C R D, et al 2012 Nature 482 59Google Scholar

    [22]

    Ciricosta O, Vinko S M, Chung H K, Cho B I, Brown C R D, Burian T, et al 2012 Phys. Rev. Lett. 109 065002Google Scholar

    [23]

    Cho B I, Engelhorn, K Vinko S M, Chung, H K, Ciricosta O, Rackstraw D S, et al 2012 Phys. Rev. Lett. 109 245003Google Scholar

    [24]

    Van den Berg Q Y, Fernandez-Tello E V, Burian T, Chalupský J, Chung H K, Ciricosta1 O, Dakovski G L, et al 2018 Phys. Rev. Lett. 120 055002Google Scholar

    [25]

    Jung Y D, Yoon J S 1996 J. Phys. B: At. Mol. Opt. Phys. 29 3549Google Scholar

    [26]

    Jung Y D 1998 Phys. Plasma. 5 536Google Scholar

    [27]

    李博文, 蒋军, 董晨钟, 王建国, 丁晓彬 2009 物理学报 58 5274Google Scholar

    Li B W, Jang J, Dong C Z, Wang J G, Ding X B 2009 Acta Phys. Sin. 58 5274Google Scholar

    [28]

    Johnson W R, Nilsen J, Cheng K T 2024 High Energ Density Phys. 53 101153Google Scholar

    [29]

    Zeng J, Ye C, Liu P, Gao C, Li Y, Yuan J 2022 Int. J. Mol. Sci 23 6033Google Scholar

    [30]

    Zhang P, J Y, Zan X, Liu P, Li Y, Gao C, Hou Y, Zeng J, Yuan J 2021 Phys. Rev. E 104 035204

    [31]

    Bar-Shalom A, Klapisch M, Oreg J 1988 Phys. Rev. A 38 1773Google Scholar

    [32]

    Gu M F 2008 Can. J. Phys. 86 675

    [33]

    Wünsch K, Hilse P, Schlanges M, Gericke D O 2008 Phys. Rev. E 77 056404Google Scholar

    [34]

    Bredow R, Bornath T, Kraeft W D, Redmer R 2013 Contrib. to Plasma Phys. 53 276Google Scholar

    [35]

    Schwarz V, Bornath T, Kraeft W D, Glenzer S H, Höll A, Redmer R 2007 Contrib. to Plasma Phys. 47 324Google Scholar

    [36]

    Bezkrovniy V, Schlanges M, Kremp D, Kraeft W D 2004 Phys. Rev. E 69 061204Google Scholar

    [37]

    Baus M, Hansen J P 1980 Phys. Rep. 59 1Google Scholar

    [38]

    Saumon D, Starrett C E, Kress J D, Clerouin J 2012 High Energy Density Phys. 8 150Google Scholar

    [39]

    Hou Y, Bredow R, Yuan J M, Redmer R 2015 Phys. Rev. E 91 033114Google Scholar

    [40]

    Hou Y, Fu Y S, Bredow R, Kang D, Redmer R, Yuan J 2017 High Energy Density Phys. 22 21Google Scholar

    [41]

    Dharma-Wardana M W C, Taylor R 1981 J. Phys. C: Solid State Phys. 14 629Google Scholar

    [42]

    Feynman R P, Metropolis N, Teller E 1949 Phys. Rev. 75 1561Google Scholar

    [43]

    Thøgersen M, Zinner N T, Jensen A S 2009 Phys. Rev. A 80 043625Google Scholar

    [44]

    Deutsch C 1977 Phys. Lett. A 60 317Google Scholar

    [45]

    Wang Y 2020 Phys. Rev. Lett. 124 017002Google Scholar

    [46]

    金阳, 张平, 李永军, 侯永, 曾交龙, 袁建民 2021 物理学报 70 91

    Jin Y, Zhang P, Li Y J, Hou Y, Zeng J L, Yuan J M 2021 Acta Phys. Sin. 70 91

    [47]

    Zeng J L, Liu L P, Liu P F, Yuan J M 2014 Phys. Rev. A 90 044701Google Scholar

    [48]

    Cowan R D 1981 The theory of atomic structure and spectra (California: University of California Press) pp214–236

    [49]

    Gaigalas G, Rudzikas Z, Fischer C F 1997 J. Phys. B: At. Mol. Opt. Phys. 30 3747Google Scholar

    [50]

    Bar-Shalom A, Klapisch M, Oreg J 1988 Phys. Rev. A 38 1773Google Scholar

    [51]

    Mott N F 1930 Proc.R.Soc.Lond.A 126 259Google Scholar

    [52]

    Vriens L 1969 Case studies in atomic collision physics (Vol. 1) (North-Holland Amsterdam: Press) p335

    [53]

    Bethe H 1930 Ann. Phys. 397 325Google Scholar

    [54]

    Gregory D C, Dittner P F, Crandall D H 1983 Phys. Rev. A 27 724Google Scholar

    [55]

    Bannister M E 1996 Phys. Rev. A 54 1435Google Scholar

    [56]

    Brouillard F, 2013 Atomic processes in electron-ion and ion-ion collisions (Vol. 145) (New York: Springer Science & Business Media Press) pp75–91

    [57]

    Bartschat K 1998 Comput. phys. commun. 114 168Google Scholar

    [58]

    Son S, Thiele R, Jurek Z, Ziaja B, and Santra R, 2014 Phys. Rev. X 4 031004

  • [1] Ge Di, Zhao Guo-Peng, Qi Yue-Ying, Chen Chen, Gao Jun-Wen, Hou Hong-Sheng. Influence of relativistic effects on photoionization process of hydrogen-like ions in plasma environment. Acta Physica Sinica, doi: 10.7498/aps.73.20240016
    [2] Ma Li-Li, Zhang Shi-Ping, Zhang Fang-Jun, Li Mai-Juan, Jiang Jun, Ding Xiao-Bin, Xie Lu-You, Zhang Deng-Hong, Dong Chen-Zhong. Theoretical investigation of electron-impact ionization of W6+ ion. Acta Physica Sinica, doi: 10.7498/aps.73.20240408
    [3] Jin Yang, Zhang Ping, Li Yong-Jun, Hou Yong, Zeng Jiao-Long, Yuan Jian-Min. Influence of different charge-state ion distribution on elastic X-ray scattering in warm dense matter. Acta Physica Sinica, doi: 10.7498/aps.70.20201483
    [4] Chen Zhan-Bin, Ma Kun. Influence of eikonal-initial-state on ionization of atom by proton. Acta Physica Sinica, doi: 10.7498/aps.67.20172465
    [5] Zhang Tai-Yang, Chen Ran. A collisional-radiative model for lithium impurity in plasma boundary region of Experimental Advanced Superconducting Tokamak. Acta Physica Sinica, doi: 10.7498/aps.66.125201
    [6] Zhou Hang, Cui Jiang-Wei, Zheng Qi-Wen, Guo Qi, Ren Di-Yuan, Yu Xue-Feng. Reliability of partially-depleted silicon-on-insulator n-channel metal-oxide-semiconductor field-effect transistor under the ionizing radiation environment. Acta Physica Sinica, doi: 10.7498/aps.64.086101
    [7] Jiang Ke, Lu Wu, Hu Tian-Le, Wang Xin, Guo Qi, He Cheng-Fa, Liu Mo-Han, Li Xiao-Long. Radiation damage effect and post-annealing treatments of NPN-input bipolar operational amplifier in electron radiation environment. Acta Physica Sinica, doi: 10.7498/aps.64.136103
    [8] Wu Chuan-Lu, Ma Ying, Jiang Li-Mei, Zhou Yi-Chun, Li Jian-Cheng. Computer simulation of electric properties of metal-ferroelectric-substrate structured ferroelectric field effect transistor under ionizing radiation. Acta Physica Sinica, doi: 10.7498/aps.63.216102
    [9] Zhang Li-Min, Jia Chang-Chun, Wang Qi, Chen Zhang-Jin. First-order distorted wave Born approximation for single ionization of Ar by electron impact in a coplanar doubly symmetric geometry. Acta Physica Sinica, doi: 10.7498/aps.63.153401
    [10] Chen Qiong, Yang Xian-Qing, Zhao Xin-Yin, Wang Zhen-Hui, Zhao Yue-Min. Binary collision approximation for solitary wave in periodic dimer granular chains. Acta Physica Sinica, doi: 10.7498/aps.61.044501
    [11] Ouyang Jian-Ming, Ma Yan-Yun, Shao Fu-Qiu, Zou De-Bin. The effect of energetic electron impact ionization on radiation ionization process of high-altitude nuclear explosion. Acta Physica Sinica, doi: 10.7498/aps.61.212802
    [12] J. Ullrich, A. Dorn, Ma Xin-Wen, Xu Shen-Yue, Ren Xue-Guang, T. Pflüger. Dissociative ionization of methane by 54 eV electron impact. Acta Physica Sinica, doi: 10.7498/aps.60.093401
    [13] Zhang Yan, Zheng Lian-Cun, Zhang Xin-Xin. The analytical approximate solution for Marangoni convection in a liquid layer with coupled boundary conditions. Acta Physica Sinica, doi: 10.7498/aps.58.5501
    [14] Zheng Lian-Cun, Sheng Xiao-Yan, Zhang Xin-Xin. Analytical approximate solutions for Marangoni convection boundary layer equations. Acta Physica Sinica, doi: 10.7498/aps.55.5298
    [15] QI JING-BO, CHEN CHONG-YANG, WANG YAN-SEN. ELECTRON IMPACT IONIZATION CROSS SECTIONS FOR THE Na-LIKE IONS. Acta Physica Sinica, doi: 10.7498/aps.50.1475
    [16] YAN SHI-XIANG, CHEN CHONG-YANG, TENG ZHOU-XUAN, WANG YAN-SEN, SUN YONG-SHENG. DISTORTED-WAVE CALCULATIONS OF THE ELECTRON-IMPACT IONIZATION FOR LOWLY AND MEDIUMLY IONIZED IONS. Acta Physica Sinica, doi: 10.7498/aps.47.583
    [17] QU YI-ZHI, GONG XIAO-MIN, LI JIA-MING. RELATIVISTIC EFFECT IN INELASTIC COLLISION OF ELECTRON WITH ATOM OR ION. Acta Physica Sinica, doi: 10.7498/aps.44.1719
    [18] HU WEI, FANG DU-FEI, WANG YAN-SEN, LU FU-QUAN, TANG JIA-YONG, YANG FU-JIA. ELECTRON IMPACT IONIZATION CROSS SECTION FOR LITHIUM-LIKE IONS INCLUDING EXCITATION-AUTOIONIZATION CROSS SECTION. Acta Physica Sinica, doi: 10.7498/aps.42.1416
    [19] FANG DU-FEI, WANG YAN-SEN, HU WEI, GAO HAI-BIN, LU FU-QUAN. ELECTRON IMPACT IONIZATION CROSS SECTIONS OF BORON-LIKE IONS. Acta Physica Sinica, doi: 10.7498/aps.42.40
    [20] FANG DU-FEI, WANG YAM-SEN, HU WEI. DIFFERENTIAL CROSS SECTIONS FOR ELECTRON IMPACT IONIZATION OF HELIUMLIKE IONS. Acta Physica Sinica, doi: 10.7498/aps.41.744
Metrics
  • Abstract views:  383
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Available Online:  24 October 2025
  • /

    返回文章
    返回