Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Internuclear-distance dependence of photoionization time delay in CO

BAI Guangru REN Zhongxue ZHANG Bin YANG Yan LANG Yue LIU Jinlei ZHAO Jing ZHAO Zengxiu

Citation:

Internuclear-distance dependence of photoionization time delay in CO

BAI Guangru, REN Zhongxue, ZHANG Bin, YANG Yan, LANG Yue, LIU Jinlei, ZHAO Jing, ZHAO Zengxiu
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Photoionization time delay in atoms and molecules is a fundamental phenomenon in attosecond physics, encoding essential information about electronic structure and dynamics. Compared with atoms, molecules exhibit anisotropic potentials and additional nuclear degrees of freedom, which make the interpretation of molecular photoionization time delays more intricate but also more informative. In this work, we investigate the dependence of the photoionization time delay on the internuclear distance in the $5\sigma \to k\sigma$ ionization channel of carbon monoxide (CO) molecules. The molecular ground state is obtained using the Hartree–Fock method, and the photoionization process is treated within quantum scattering theory based on the iterative Schwinger variational principle of the Lippmann–Schwinger equation. Numerical calculations are performed with the ePolyScat program to obtain molecular-frame differential photoionization cross sections and time delays at various internuclear distances. Our results show that the extrema of the photoionization time delay occur near the peaks and dips of the differential cross section and shift toward lower energies as the internuclear distance $R$ increases. At low energies, the time delay along the oxygen end increases with $R$, while that along the carbon end decreases, which is attributed to the asymmetric charge distribution and the resulting short-range potential difference between the two atomic sites. Around the shape-resonance energy region, both cross section and time delay display pronounced peaks associated with an $l=3$ quasi-bound state. As $R$ increases, the effective potential barrier broadens, the quasi-bound state energy moves to lower values, and its lifetime becomes longer, leading to enhanced resonance amplitude and increased time delay. In the high-energy region, opposite-sign peaks of time delay are found along the O and C directions, corresponding to minima in the cross section. These features are well explained by a two-center interference model, where increasing $R$ shifts the interference minima and the associated time-delay peaks toward lower energies. This study provides deeper insights into the photoionization dynamics of CO molecules, accounting for the role of nuclear motion, and offers valuable references for studying the photoelectron dynamics of more complex molecular systems.
  • [1]

    Wigner E P 1955 Phys. Rev. 98 145

    [2]

    Smith F T 1960 Phys. Rev. 119 2098

    [3]

    Hargrove L E, Fork R L, Pollack M A 1964 Appl. Phys. Lett. 5 4

    [4]

    Fork R, Greene B, Shank C 1981 In Conference on Lasers and Electro-Optics (Washington, D.C., USA: Optica Publishing Group), p WL1

    [5]

    Strickland D, Mourou G 1985 Opt. Commun. 56 219

    [6]

    Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G, Agostini P 2001 Science 292 1689

    [7]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509

    [8]

    Wang X W, Xiao F, Wang J C, Wang L, Zhang B, Liu J L, Zhao J, Zhao Z X 2024 Ultrafast Sci. 4 0080

    [9]

    Itatani J, Quéré F, Yudin G L, Ivanov M Y, Krausz F, Corkum P B 2002 Phys. Rev. Lett. 88 173903

    [10]

    Muller H G 2002 Appl. Phys. B 74 s17

    [11]

    Schultze M, Fieß M, Karpowicz N, Gagnon J, Korbman M, Hofstetter M, Neppl S, Cavalieri A L, Komninos Y, Mercouris T, Nicolaides C A, Pazourek R, Nagele S, Feist J, Burgdörfer J, Azzeer A M, Ernstorfer R, Kienberger R, Kleineberg U, Goulielmakis E, Krausz F, Yakovlev V S 2010 Science 328 1658

    [12]

    Pazourek R, Nagele S, Burgdörfer J 2015 Rev. Mod. Phys. 87 765

    [13]

    Kheifets A S 2023 J. Phys. B: At. Mol. Opt. Phys. 56 022001

    [14]

    Magrakvelidze M, Madjet M E A, Chakraborty H S 2016 Phys. Rev. A 94 013429

    [15]

    Alexandridi C, Platzer D, Barreau L, Busto D, Zhong S Y, Turconi M, Neoričić L, Laurell H, Arnold C L, Borot A, Hergott J F, Tcherbakoff O, Lejman M, Gisselbrecht M, Lindroth E, L’ Huillier A, Dahlström J M, Salières P 2021 Phys. Rev. Res. 3 L012012

    [16]

    Zhong S Y, Vinbladh J, Busto D, Squibb R J, Isinger M, Neoričić L, Laurell H, Weissenbilder R, Arnold C L, Feifel R, Dahlström J M, Wendin G, Gisselbrecht M, Lindroth E, L’ Huillier A 2020 Nat. Commun. 11 5042

    [17]

    Ossiander M, Siegrist F, Shirvanyan V, Pazourek R, Sommer A, Latka T, Guggenmos A, Nagele S, Feist J, Burgdörfer J, Kienberger R, Schultze M 2017 Nat. Phys. 13 280

    [18]

    Cirelli C, Marante C, Heuser S, Petersson C L M, Galán ff J, Argenti L, Zhong S Y, Busto D, Isinger M, Nandi S, Maclot S, Rading L, Johnsson P, Gisselbrecht M, Lucchini M, Gallmann L, Dahlström J M, Lindroth E, L’ Huillier A, Martín F, Keller U 2018 Nat. Commun. 9 955

    [19]

    Holzmeier F, Joseph J, Houver J C, Lebech M, Dowek D, Lucchese R R 2021 Nat. Commun. 12 7343

    [20]

    Huppert M, Jordan I, Baykusheva D, Von Conta A, Wörner H J 2016 Phy. Rev. Lett. 117 093001

    [21]

    Gong X C, Jiang W Y, Tong J H, Qiang J J, Lu P F, Ni H C, Lucchese R, Ueda K, Wu J 2022 Phys. Rev. X 12 011002

    [22]

    Nandi S, Plésiat É, Zhong S Y, Palacios A, Busto D, Isinger M, Neoričić L, Arnold C, Squibb R, Feifel R, et al. 2020 Sci. Adv. 6 eaba7762

    [23]

    Gong X C, Plésiat É, Palacios A, Heck S, Martín F, Wörner H J 2023 Nat. Commun. 14 4402

    [24]

    Desrier A, Berkane M, Lévêque C, Taïeb R, Caillat J 2024 Phys. Rev. A 109 053106

    [25]

    Werner H, Knowles P J, Knizia G, Manby F R, Schütz M 2012 WIREs Comput. Mol. Sci. 2 242

    [26]

    Werner H J, Knowles P J, Manby F R, Black J A, Doll K, Heßelmann A, Kats D, Köhn A, Korona T, Kreplin D A, Ma Q L, Miller T F, Mitrushchenkov A, Peterson K A, Polyak I, Rauhut G, Sibaev M 2020 J. Chem. Phys. 152 144107

    [27]

    Werner H J, Knowles P J, Celani P, Györffy W, Hesselmann A, Kats D, Knizia G, Köhn A, Korona T, Kreplin D, Lindh R, Ma Q L, Manby F R, Mitrushenkov A, Rauhut G, Schütz M, Shamasundar K R, Adler T B, Amos R D, Bennie S J, Bernhardsson A, Berning A, Black J A, Bygrave P J, Cimiraglia R, Cooper D L, Coughtrie D, Deegan M J O, Dobbyn A J, Doll K, Dornbach M, Eckert F, Erfort S, Goll E, Hampel C, Hetzer G, Hill J G, Hodges M, Hrenar T, Jansen G, Köppl C, Kollmar C, Lee S J R, Liu Y, Lloyd A W, Mata R A, May A J, Mussard B, McNicholas S J, Meyer W, Miller III T F, Mura M E, Nicklass A, O’Neill D P, Palmieri P, Peng D, Peterson K A, Pflüger K, Pitzer R, Polyak I, Reiher M, Richardson J O, Robinson J B, Schröder B, Schwilk M, Shiozaki T, Sibaev M, Stoll H, Stone A J, Tarroni R, Thorsteinsson T, Toulouse J, Wang M, Welborn M, Ziegler B. See https://www.molpro.net

    [28]

    Lucchese R R, Takatsuka K, McKoy V 1986 Phys. Rep. 131 147

    [29]

    Gianturco F A, Lucchese R R, Sanna N 1994 J. Chem. Phys. 100 6464

    [30]

    Natalense A P P, Lucchese R R 1999 J. Chem. Phys. 111 5344

    [31]

    Baykusheva D, Wörner H J 2017 J. Chem. Phys. 146 124306

    [32]

    Gong X C, Heck S, Jelovina D, Perry C, Zinchenko K, Lucchese R, Wörner H J 2022 Nature 609 507

    [33]

    Biswas S, Förg B, Ortmann L, Schötz J, Schweinberger W, Zimmermann T, Pi L W, Baykusheva D, Masood H A, Liontos I, Kamal A M, Kling N G, Alharbi A F, Alharbi M, Azzeer A M, Hartmann G, Wörner H J, Landsman A S, Kling M F 2020 Nat. Phys. 16 778

    [34]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580

    [35]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graph. 14 33

    [36]

    Lucchese R R, Gianturco F 1996 Int. Rev. Phys. Chem. 15 429

    [37]

    Cohen H D, Fano U 1966 Phys. Rev. 150 30

    [38]

    Ueda K, Liu X J, Prümper G, Lischke T, Tanaka T, Hoshino M, Tanaka H, Minkov I, Kimberg V, Gel’ mukhanov F 2006 Chem. Phys. 329 329

    [39]

    Liao Y J, Zhou Y M, Pi L W, Ke Q H, Liang J T, Zhao Y, Li M, Lu P X 2021 Phys. Rev. A 104 013110

  • [1] WEI Menghao, LI Xing, LUO Sizuo, HE Lanhai, DING Dajun. Detection of ionization time-delay in atoms and molecules by strong-field multiphoton transition interferometry. Acta Physica Sinica, doi: 10.7498/aps.74.20250647
    [2] Wang Jing-Zhe, Dong Fu-Long, Liu Jie. Dissociation dynamic study of $\text{H}_2^+$ in time-delayed two-color femtosecond lasers. Acta Physica Sinica, doi: 10.7498/aps.73.20241283
    [3] Li Wei-Yan, Liu Na, Wang Shang. Physical origins of complex interference structures in harmonic emission from molecular ions stretched to large internuclear distances. Acta Physica Sinica, doi: 10.7498/aps.72.20222410
    [4] . Acta Physica Sinica, doi: 10.7498/aps.71.230101
    [5] Liao Jing-Jing, Lin Fu-Jun. Diffusion and separation of binary mixtures of chiral active particles driven by time-delayed feedback. Acta Physica Sinica, doi: 10.7498/aps.69.20200505
    [6] Yu Zu-Qing, Yang Wei-Ji, He Feng. Internuclear-distance-dependent ionization of H2+ in strong laser field in a classical perspective. Acta Physica Sinica, doi: 10.7498/aps.65.204202
    [7] Yu Wen-Ting, Tang Jun, Luo Jin-Ming. Influence of time delay on the memory in a gene regulatory circuit. Acta Physica Sinica, doi: 10.7498/aps.64.068702
    [8] Qiu Wei, Gao Bo, Lin Peng, Zhou Jing-Ting, Li Jia, Jiang Qiu-Li, Lü Pin, Ma Ying-Chi. Study on the relationship between the population of metastable state and time delay in an erbium-doped optical fiber. Acta Physica Sinica, doi: 10.7498/aps.62.214205
    [9] Yang Lin-Jing. Effects of time delay on transition rate of state in an increasing process of Logistic system. Acta Physica Sinica, doi: 10.7498/aps.60.050502
    [10] Tong Ai-Hong, Liao Qing, Zhou Yue-Ming, Lu Pei-Xiang. Internuclear-distance dependence of nonsequential double ionization of H2 in different alignments. Acta Physica Sinica, doi: 10.7498/aps.60.043301
    [11] Lin Ling, Yan Yong, Mei Dong-Cheng. Time delay to enhance the giant suppression in a bistable system. Acta Physica Sinica, doi: 10.7498/aps.59.2240
    [12] Wei Ya-Na, Yang Shi-Ping. Effect of molecular internuclear distance on non-sequential double ionization. Acta Physica Sinica, doi: 10.7498/aps.59.7298
    [13] Li Qian-Guang, Lan Peng-Fei, Hong Wei-Yi, Zhang Qing-Bin, Lu Pei-Xiang. Propagation characteristics of the broadband supercontinuum with an attosecond ionization gate. Acta Physica Sinica, doi: 10.7498/aps.58.5679
    [14] Xie Zhen-Hua, Xu Lu-Ping, Ni Guang-Ren. Time offset measurement algorithm based on bispectrum for pulsar integrated pulse profiles. Acta Physica Sinica, doi: 10.7498/aps.57.6683
    [15] Guo Yong-Feng, Xu Wei. Time-delayed Logistic system driven by correlated Gaussian white noises. Acta Physica Sinica, doi: 10.7498/aps.57.6081
    [16] Yang Ru, Zhang Bo. Chaotification control of buck converter via time-delayed feedback. Acta Physica Sinica, doi: 10.7498/aps.56.3789
    [17] Ge Yu-Cheng. Laser phase determination and transfer equation to directly measure the temporal structure of narrow bandwidth attosecond XUV pulse. Acta Physica Sinica, doi: 10.7498/aps.55.3386
    [18] Ge Yu-Cheng. A new method for directly measuring frequency and intensity temporal profiles of attosecond XUV pulse simultaneously and completely. Acta Physica Sinica, doi: 10.7498/aps.54.2653
    [19] HUANG XIAN-GAO, XU JIAN-XUE, HUANG WEI, ZHU FU-CHEN. ERROR ANALYSIS FOR DELAY SYNCHRONIZATION OF CHAOTIC SYSTEM. Acta Physica Sinica, doi: 10.7498/aps.50.2296
    [20] MIAO JING-WEI, SHI MIAN-GONG, YANG BAI-FANG, TANG A-YOU, N.CUE. EXPERIMENTAL DETERMINATION FOR 4HeH+ INTERNUCLEAR SEPARATION. Acta Physica Sinica, doi: 10.7498/aps.49.1058
Metrics
  • Abstract views:  61
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  22 October 2025
  • /

    返回文章
    返回