-
Bound states in the continuum (BIC) has made significant progress in photonic integrated circuits, but there are still some limitations in practical applications. When the mode deviates from the BIC, its Q value decays rapidly. These limit the performance of BIC under wide-angle incidence. The application limitation of BIC is mainly because all types of BIC are discrete mode points in the k-space. This kind of point-like BIC or quasi-BIC, on the one hand, has extremely high requirements for the incident angle; even a slight deviation can cause a sharp drop in the Q factor. On the other hand, it is also extremely sensitive to the geometric parameters of the structure (such as the size, position and offset of the holes). Even the slightest manufacturing error can cause the formant position to shift and the Q value to drop sharply. Therefore, if we can construct a BIC in a continuous k-space, we can largely remove the constraints on the application of traditional BIC. In this work, we designed a simple photonic crystal slab and performed calculations and analyses of its band structure and quality factor. By optimized the structural parameters, a square-shaped quasi-BIC loop with tunable side length was identified in k-space. Based on the relationship between the quasi-BIC loop and the equifrequency contours, together with the characteristics of the mode field distribution, it was revealed that this square-shaped quasi-BIC originates from the effect of total internal reflection and standing-wave resonances in the structure. The existence of the square-shaped quasi-BIC loop is further confirmed by the Fano spectral line with high quality factors at a special incident angle or frequency which corresponds to the position of the quasi-BIC loop. The square-shaped quasi-BIC loop provides a large anglebandwidth response and expand the applied range of BIC.
-
Keywords:
- bound states in the continuum /
- photonic crystal slab /
- quality factor
-
[1] Hsu C W, Zhen B, Stone A D, Joannopoulos J D, Soljačić M 2016 Nat. Rev. Mater. 1 1
[2] Bogdanov A A, Koshelev K L, Kapitanova P V, Rybin M V, Gladyshev S A, Sadrieva Z F, Samusev K B, Kivshar Y S, Limonov M F 2019 Adv. Photon. 1 016001
[3] Joseph S, Pandey S, Sarkar S, Joseph J 2021 Nanophotonics-Berlin 10 4175
[4] Azzam S I, Kildishev A V 2020 Advanced Opt. Mater. 9 2001469
[5] Song Q, Hu J, Dai S, Zheng C, Han D, Zi J, Zhang Z Q, Chan C T 2020 Sci. Adv. 6 eabc1160
[6] Liang H W, Liu Y Z, Zeng Y J, Cai Y J, Ning T Y 2025 Chin. Phys. Lett. 42 080401
[7] Hsu C W, Zhen B, Lee J, Chua S-L, Johnson S G, Joannopoulos J D, Soljačić M 2013 Nature 499 188
[8] Qin H, Chen S, Zhang W, Zhang H, Pan R, Li J, Shi L, Zi J, Zhang X 2024 Nat. Commun. 15 9080
[9] Hirose K, Liang Y, Kurosaka Y, Watanabe A, Sugiyama T, Noda S 2014 Nat. Photon. 8 406
[10] Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y, Kanté B 2017 Nature 541 196
[11] Romano S, Zito G, Torino S, Calafiore G, Penzo E, Coppola G, Cabrini S, Rendina I, Mocella V 2018 Photon. Res. 6 726
[12] Chen X, Fan W, Yan H 2020 Opt. Express 28 17102
[13] Wang X, Duan J, Chen W, Zhou C, Liu T, Xiao S 2020 Phys. Rev. B 102 155432
[14] Xiao S, Liu T, Wang X, Liu X, Zhou C 2020 Phys. Rev. B 102 085410
[15] Liu Z, Xu Y, Lin Y, Xiang J, Feng T, Cao Q, Li J, Lan S, Liu J 2019 Phys. Rev. Lett. 123 253901
[16] Koshelev K, Kruk S, Melik-Gaykazyan E, Choi J-H, Bogdanov A, Park H-G, Kivshar Y 2020 Science 367 288
[17] Wang J, Clementi M, Minkov M, Barone A, Carlin J-F, Grandjean N, Gerace D, Fan S, Galli M, Houdré R 2020 Optica 7 1126
[18] Fang Y T, Bu F, He S 2025 Laser & Photon. Rev. 19 2400964
[19] Suh W, Yanik M, Solgaard O, et al 2003 Appl. Phys. Lett. 82 1999
[20] Suh W, Solgaard O, Fan S H 2005 J. Appl. Phys. 98 033102
[21] Kikkawa R, Nishida M, Kadoya Y 2019 New J Phys. 21 113020
[22] Azzam S I, Shalaev V M, Boltasseva A, Kildishev A V 2018 Phys. Rev. Lett. 121 253901
[23] Wang J, Li P, Zhao X, Qian Z, Wang X, Wang F, Zhou X, Han D, Peng C, Shi L J 2024 Photon. Insight 3 R01
[24] Hsu C W, Zhen B, Lee J, Chua S, Johnson S G, Joannopoulos J D, Soljačić M 2013 Nature 499 188
[25] Zhen B, Hsu C W, Lu L, Stone A D, Soljacic M 2014 Phys. Rev. Lett. 113 257401
[26] Kang M, Zhang S P, Xiao M, Xu H X 2021 Phys. Rev. Lett. 126 117402
[27] Kang M, Mao L, Zhang S, Xiao M, Xu H, Chan C T J 2022 Light-Sci Appl. 11 228
[28] Hu P, Xie C W, Song Q J, Chen A, Xiang H, Han D Z, Zi J 2023 Natl Sci Rev 10 nwac043
Metrics
- Abstract views: 14
- PDF Downloads: 0
- Cited By: 0









下载: