-
With the increasing demand for materials capable of withstanding extreme service environments in fields such as advanced manufacturing, aerospace, and nuclear energy, the development of materials combining high strength, hardness, and thermal stability has become highly significant. Chromium monoboride(CrB), owing to its unique crystal structure and excellent mechanical properties, has attracted considerable attention; however, its deformation and failure mechanisms under complex stress states remain unclear. In this work, first-principles calculations are employed, combined with electronic structure analysis, to investigate the mechanical response and microstructural evolution of CrB under uniaxial tension, pure shear, and shear coupled with normal stress. The results reveal pronounced tensile anisotropy: the tensile strength is highest along the [100] direction (69.92 GPa) and lowest along the [010] direction (44.69 GPa). The minimum pure shear strength (35.68 GPa) occurs along the (010)[100] direction. Under pure shear and low normal stress, the Cr-Cr bimetallic layers undergo interlayer slip at the critical shear strain, leading to a sudden stress drop. In contrast, under high normal compressive stress coupled with shear, the interlayer spacing between Cr-Cr bimetallic layers is significantly reduced, which enhances interlayer bonding and suppresses interlayer slip. As a result, strain energy accumulates within the crystal lattice, eventually causing an abrupt structural collapse and catastrophic failure. Further analysis shows that the effect of normal stress on shear strength is non-monotonic: it increases with pressure at low stresses but softens under high pressures. The sensitivity to normal stress varies significantly with crystallographic orientation, and the anisotropy is further amplified as pressure increases. This study elucidates the instability mechanisms of CrB under multiaxial stress, providing theoretical guidance and design reference for its applications in extreme environments.
-
Keywords:
- First-principles /
- Chromium monoboride (CrB) /
- Strength and Failure /
- Deformation mechanisms
-
[1] Griza S D, Matar S F, Weihrich R, Eyert V 2025 Journal of Solid State Chemistry 350 125466
[2] Du J, Sun W, Li X, Su X 2025 Materials 18 3125
[3] Liu S Y, Qin L, Zhang H, Liu C, Liu S, Li D-J, Yadav T, Shah D, Wang S 2024 Ceramics International 50 17977
[4] Zhao P, Zhu J, Li M, Shao G, Lu H, Wang H, He J 2023 Journal of the European Ceramic Society 43 2320
[5] Kong Q, Liu Q, Chen L, Huo S, Li K, Mao M, Sun W, Wang Y, Kang S-J L, Zhou Y 2025 Journal of Materials Science & Technology 234 102
[6] Xu B, Tian Y-J 2017 Acta Physica Sinica 66 036201[徐波,田永君2017 物理学报 66 036201]
[7] Kapadia B M 1987 Journal of Heat Treating 5 41
[8] Li B, Sun H, Zang C, Chen C 2013 Physical Review B 87 174106
[9] Kaner R B, Gilman J J, Tolbert S H 2005 Science 308 1268
[10] Chung H Y, Weinberger M B, Levine J B, Cumberland R W, Kavner A, Yang J M, Tolbert S H, Kaner R B 2007 Science 316 436
[11] Gou H, Li Z, Niu H, Gao F, Zhang J, Ewing R C, Lian J 2012 Applied Physics Letters 100 111907
[12] Paul B, Okamoto N L, Kusakari M, Chen Z, Kishida K, Inui H, Otani S 2021 Acta Materialia 211 116857
[13] Liu C, Gu X, Zhang K, Zheng W, Ma Y, Chen C 2022 Physical Review B 105 024105
[14] Miao N, Duan Z, Wang S, Cui Y, Feng S, Wang J 2024 Acs Applied Materials & Interfaces 16 5792
[15] Pan Y, Zhu J 2024 Materials Today Communications 38 108428
[16] Zhang Y-t, Chen G-h, Shi X-h, Li N, Li H-j 2024 Corrosion Science 236 112218
[17] Uzunok H Y, Sichula H, Tütüncü H M, Bagci S 2025 International Journal of Refractory Metals & Hard Materials 131 107190
[18] Tao Q, Ma S-L, Cui T, Zhu P-W 2017 Acta Physica Sinica 66 036103(in Chinese) [陶强,马帅领,崔田,朱品文 2017 物理学报 66 036103]
[19] Zhao L-K, Zhao E-J, Wu Z-J 2013 Acta Physica Sinica 62 046201 (in Chinese) [赵立凯,赵二俊,武志坚 2013 物理学报 62 046201]
[20] Frueh A J 1951 Acta Crystallographica 4 66
[21] Mnisi B O 2025 Vacuum 234 114094
[22] Han L, Wang S, Zhu J, Han S, Li W, Chen B, Wang X, Yu X, Liu B, Zhang R, Long Y, Cheng J, Zhang J, Zhao Y, Jin C 2015 Applied Physics Letters 106 221902
[23] Ding B X, Li S Y, Zhang X, Jiang J Y, Lian X J, Wang L 2025 Japanese Journal of Applied Physics 64 036501
[24] Wang Y S, Wang S, Song N H, Wu X W, Xu J, Luo S J, Xu B, Wang F 2024 Computational Materials Science 233 112710
[25] Tan X Y, Na Z M, Zhuo R, Wang D B, Zhang Y F, Wu P 2023 Chemosensors 11 371
[26] Li X Q, Schönecker S, Li W, Varga L K, Irving D L, Vitos L 2018 Physical Review B 97 094102
[27] Shang S L, Shimanek J, Qin S P, Wang Y, Beese A M, Liu Z K 2020 Physical Review B 101 024102
[28] Yizhong G, Zhanxin W, Bin Z, Jiao T, Weijing Z, Yufeng Z, Libo F, Dongwei L, Yan M, Wenxiong S, Liu L 2022 Cell Reports Physical Science 3 100736
[29] Li C Y, Fu T, Li X L, Hu H, Peng X H 2023 Physical Review B 107 224106
[30] Zhang L, Li J, Zhang J, Liu Y, Lin L 2023 Metals 13 1569
[31] Umeno Y, Kitamura T 2002 Materials Science and Engineering: B 88 79
[32] Cerny M, Pokluda J 2008 Computational Materials Science 44 127
[33] Černý M, Pokluda J 2010 Acta Materialia 58 3117
[34] Tschopp M A, McDowell D L 2008 Journal of the Mechanics and Physics of Solids 56 1806
[35] Kitamura R, Kageyama T, Koyanagi J, Ogihara S 2018 Advanced Composite Materials 28 135
[36] Li J, Li J, Chen Y, Chen J 2022 Nanomaterials 12 4381
[37] Kumar A, Kumar A, Kumar S 2025 Journal of Materials Engineering and Performance 34 24542
[38] Kresse G, Furthmuller J 1996 Phys Rev B 54 11169
[39] Blochl P E 1994 Phys Rev B 50 17953
[40] Perdew J P, Burke K, Ernzerhof M 1996 Phys Rev Lett 77 3865
[41] Monkhorst H J, Pack J D 1976 Physical Review B 13 5188
[42] Li R-Y, Duan Y-H 2016 Philosophical Magazine 96 972
[43] Chong X, Jiang Y, Zhou R, Feng J 2014 Journal of Alloys and Compounds 610 684
Metrics
- Abstract views: 22
- PDF Downloads: 3
- Cited By: 0









下载: