Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-Pressure Polarized Raman Device and Its Applications

WANG Zeyu LIU Jingyi WANG Yangbin WANG Menghan LI Jingye YAN Chengxi LEI Li

Citation:

High-Pressure Polarized Raman Device and Its Applications

WANG Zeyu, LIU Jingyi, WANG Yangbin, WANG Menghan, LI Jingye, YAN Chengxi, LEI Li
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • High-pressure polarized Raman spectroscopy (HPRS) refers to a spectroscopic technique in which a diamond anvil cell (DAC) is employed as the pressure-generating device, and the polarization orientations of both incident and scattered light are systematically controlled to measure the angular dependence of Raman spectral intensities under varying pressures. This enables the quantitative extraction of the pressure evolution of Raman tensor elements. In this study, we developed an in-situ high-pressure polarized Raman setup based on a backscattering configuration incorporating a half-wave plate, allowing continuous variation of the polarization angle without rotating the sample. Quantitative determination of Raman tensor elements was achieved through polar coordinate fitting of the measured intensity profiles. Singlecrystal Si(100), commonly used for Raman calibration, and two-dimensional Te(110) flakes exhibiting in-plane anisotropy were selected as model systems for investigation. Our results show that over the pressure range of 0~12 GPa, the angular distribution pattern and periodicity of Si(100) remain unchanged, while the main Raman peak exhibits an approximately linear blue shift with increasing pressure. The Raman tensorelement associated with the active mode decreases according to an inverse power-law function, reflecting the response of the polarizability derivative to volume compression in the absence of phase transitions. For two-dimensional Te(110), the in-plane anisotropy increases with pressure, accompanied by deviations of certain modes from ideal symmetry-predicted behavior. Notably, the ratio of Raman tensor elements displays an inflection point near 1.5 GPa, transitioning from a decreasing to an increasing trend, with clearly observable changes in polarized Raman responses within the 1.2~1.6 GPa range. It is in close proximity to the electronic structure phase transition point determined from transport experiments (~2 GPa). Collectively, studies on single-crystal Si(100) and two-dimensional Te(110) demonstrate that HPRS is a robust in-situ method for probing symmetry evolution, anisotropic behavior, and incipient electronic rearrangements in materials under compression.
  • [1]

    Pu M F, Zhang F, Liu S, Irifune T, Lei L 2019 Chin. Phys. B 28 053102

    [2]

    Liu S, Tang Q Q, Wu B B, Zhang F, Liu J Y, Fan C M, Lei L 2021 Chin. Phys. B 30 016301

    [3]

    Wang Y J, Wu B B, Liu J Y, Fang L M, Liu B Q, Lei L 2025 Spectrosc. Spectr. Anal. 45 59(in Chinese)[王艺佳,吴彬彬,刘静仪,房雷鸣,刘本琼,雷力2025光谱学 与光谱分析45 59]

    [4]

    Zhang F, Liu S, Pu M F, Tang Q Q, Wu B B, Li L, Hu Q W, Xia Y H, Fang L M, Lei L 2021 Spectrosc. Spectr. Anal. 41 807(in Chinese)[张峰,刘珊,蒲梅芳,唐琦琪, 吴彬彬,李林,胡启威,夏元华,房雷鸣,雷力2021光谱学与光谱分析41 807]

    [5]

    Zhang F, Tao Y, Tang Q Q, Wu B B, Liu S, Lei L 2021 J. Light Scatt. 33 5(in Chinese)[张峰,陶雨,唐琦琪,吴彬彬,刘珊,雷力2021光散射学报33 5]

    [6]

    Tao Y, Liu J Y, Wu B B, Liu S, Lei L 2022 J. Light Scatt. 34 261(in Chinese)[陶 雨,刘静仪,吴彬彬,雷力2022光散射学报34 261]

    [7]

    Wu B B, Li Y, Lin Y R, Liu J Y, Tao Y, Chang X, Lei L 2025 Appl. Phys. Lett. 126 112109

    [8]

    Wu B B, Lin Y R, Li Y, Chang X, Tao Y, Liu J Y, Lei L 2025 Appl. Phys. Lett. 126 102103

    [9]

    Liu J Y, Tao Y, Fan C M, Wu B B, Tang Q Q, Lei L 2022 Chin. Phys. B 31 037801

    [10]

    Liu J Y, Tao Y, Fan C M, Wu B B, Lei L 2022 Chin. J. High Press. Phys. 36 051102 (in Chinese)[刘静仪,陶雨,范春梅,吴彬彬,雷力2022高压物理学报36 051102]

    [11]

    Liu J Y, Wu B B, Zhang L L, Chang X, Zhao X Y, Fan C M, Pu M F, Zhou C Y, Wang X L, Lei L 2025 J. Phys. Chem. C 129 9755

    [12]

    Wen T, Zhang M D, Li J, Jiao C Y, Pei S H, Wang Z H, Xia J 2023 Nanoscale Horiz. 8 516

    [13]

    Yan Y T, Chen L Y, Hong Z A, Dai K, Li Y F, Jiang K, Zhang Z Y, Dong H L, Shang L Y, Hu Z G 2025 Phys. Rev. B 111 195303

    [14]

    Antoniazzi I, Woźniak T, Pawbake A, Zawadzka N, 2024 J. Appl. Phys. 136 035901

    [15]

    Ribeiro H B, Pimenta M A, De Matos C J S, Moreira R L, Rodin A S, Zapata J D, De Souza E A T, Castro Neto A H 2015 ACS nano 9 4270

    [16]

    Yan Y T, Chen L Y, Dai K, Li Y F, Wang L, Jiang K, Cui A Y, Zhang J Z, Hu Z G 2023 J. Phys. Chem. Lett. 14 7618

    [17]

    Song Q J, Pan X C, Wang H F, Zhang K, Tan Q H, Li P, Wan Y, Wang Y L, Xu X L, Lin M L, Wan X G, Song F Q, Dai L 2016 Sci. Rep. 6 29254

    [18]

    Ma X L, Guo P J, Yi C J, Yu Q H, Zhang A M, Ji J T, Tian Y, Jin F, Wang Y Y, Liu K, Xia T L, Shi Y G, Zhang Q M 2016 Phys. Rev. B 94 214105

    [19]

    Cheng X R, Huangfu Z B, Wang J B, Zhang H J, Feng S Q, Liang Y F, Zhu X, Wang Z, Wu X W, Yang K 2024 J. Alloys Compd. 970 172636

    [20]

    Richet P, Xu J A, Mao H K 1986 J. Geophys. Res.:Solid Earth 91 4673

    [21]

    Liu X L, Zhang X, Lin M L, Tan P H 2017 Chin. Phys. B 26 067802

    [22]

    De Wolf I 1996 Semicond. Sci. Technol. 11 139

    [23]

    Menendez J, Cardona M 1984 Phys. Rev. B 29 2051

    [24]

    Nye J F 1985 Physical Properties of Crystals:Their Representation by Tensors and Matrices (Oxford:Clarendon Press) pp75-76

    [25]

    Cardona M, Güntherodt G 1982 Light Scatt. in Solids II (New York:SpringerVerlag Berlin Heidelberg) p269

    [26]

    Mossbrucker J, Grotjohn T A 1996 Diam. Relat. Mater. 5 1333

    [27]

    Chang Y, He S S, Sun M Y, Xiao A X, Zhao J X, Ma L L, Qiu W 2021 J. Spectrosc. 2021 2860007

    [28]

    Mujica A, Rubio A, Munoz A, Needs R J 2003 Rev. Mod. Phys. 75 863

    [29]

    Anzellini S, Wharmby M T, Miozzi F, Kleppe A, Daisenberger D, Wilhelm H 2019 Sci. Rep. 9 15537

    [30]

    Cardona M 1959 J. Phys. Chem. Solids 8 204

    [31]

    Tong L, Huang X Y, Wang P, Ye L, Peng M, An L C, Sun Q D, Zhang Y, Yang G M, Li Z, Zhong F, Wang F, Wang Y X, Motlag M,Wu W Z, Cheng G J, Hu W D 2020 Nat. Commun. 11 2308.

    [32]

    Yu J, Mu H R, Wang P, Li H Z, Yang Z X, Ren J, Li Y, Mei L Y, Zhang J N, Yu W Z, Cui N, Yuan J, Wu J, Lan S, Zhang G Y, Lin S H 2024 ACS nano 18 19099

    [33]

    Duan Y H, Zhao D M, Li Z L, Yu J, Liang Y, Wang Y Y 2025 J. Appl. Phys. 137 024301

    [34]

    Qiao J, Pan Y, Yang F 2018 Sci. Bull. 63 159

    [35]

    Ideue T, Hirayama M, Taiko H, Takahashi T, Murase M, Miyake T, Murakami S, Sasagawa T, Iwasa Y 2019 Proc. Natl. Acad. Sci. 116 25530

    [36]

    Zou B Y, Wang S, Wang Q L, Wang G Y, Zhang G Z, Jiang J L, Cui J, He J R, XiH Z, Fu H L, Wang Z C, Wang C, Wang Q S, Liu C L 2024 Appl. Phys. Lett. 124 102105

    [37]

    Li H, Wu K D, Yang S J, Boland T, Chen B, Singh A K, Tongay S, 2019 Nanoscale 11 20245

    [38]

    Zhao L X, Pei C Y, Wu J F, Zhao Y, Wang Q, Zhu B S, Li C H, Cao W Z, Qi Y P 2023 Phys. Rev. B 108 214518

    [39]

    Yadav R A, Padma N, Sen S, Chandrakumar K R S, Donthula H, Rao R 2020 Appl. Surf. Sci. 531 147303

  • [1] Zhang Mao-Di, Jiao Chen-Yin, Wen Ting, Li Jing, Pei Sheng-Hai, Wang Zeng-Hui, Xia Juan. In-situ high pressure polarized Raman spectroscopy of rhenium disulfide. Acta Physica Sinica, doi: 10.7498/aps.71.20220053
    [2] Shi Bao-Sen, Ding Dong-Sheng, Zhang Wei, Li En-Ze. Raman protocol-based quantum memories. Acta Physica Sinica, doi: 10.7498/aps.68.20182215
    [3] Qin Kang, Yuan Lie-Rong, Tan Jun, Peng Sheng, Wang Qian-Jin, Zhang Xue-Jin, Lu Yan-Qing, Zhu Yong-Yuan. Surface-enhanced Raman scattering of subwavelength metallic structures. Acta Physica Sinica, doi: 10.7498/aps.68.20190458
    [4] Sheng Zi-Cheng, Wang Teng, Zhou Gui-Yao, Xia Chang-Ming, Liu Jian-Tao, Li Bo-Yao, Fan Hai-Xia, Chen Yun, Hou Zhi-Yun. Raman probe based on hollow-core microstructured fiber. Acta Physica Sinica, doi: 10.7498/aps.67.20180684
    [5] Jiang Jian-Jun, Li He-Ping, Dai Li-Dong, Hu Hai-Ying, Zhao Chao-Shuai. Raman spectra based pressure calibration of the non-gauge sapphire anvil cell at high temperature and high pressure. Acta Physica Sinica, doi: 10.7498/aps.64.149101
    [6] Wang Mei-Jie, Jia Wei-Guo, Zhang Si-Yuan, Menke Nei-Mu-Le, Yang Jun, Zhang Jun-Ping. Effect of Raman gain on the state of polarization evolution in a low-birefringence fiber. Acta Physica Sinica, doi: 10.7498/aps.64.034212
    [7] Wang Mei-Jie, Jia Wei-Guo, Zhang Si-Yuan, Qiao Hai-Long, Yang Jun, Zhang Jun-Ping, Menke Nei-Mu-Le. Influence of Raman effect on the state of polarization evolution in a low-birefringence fiber. Acta Physica Sinica, doi: 10.7498/aps.63.104204
    [8] Xu Yong-Gen, Wang Shi-Jian, Ji Yu-Pin, Xu Jing-Yue, Lu Hong, Liu Xiao-Xu, Zhang Shi-Chang. Comparative study of relativistic electron motion stability in a Raman free-electron laser. Acta Physica Sinica, doi: 10.7498/aps.62.084104
    [9] Zhang Ji, Zhang De-Ming, Wang Di, Zhang Qing-Li, Sun Dun-Lu, Yin Shao-Tang. Polarized Raman spectra of single crystal Bi2ZnOB2O6. Acta Physica Sinica, doi: 10.7498/aps.62.237802
    [10] Chen Yuan-Zheng, Li Shuo, Li Liang, Men Zhi-Wei, Li Zhan-Long, Sun Cheng-Lin, Li Zuo-Wei, Zhou Mi. Study of phase transition of HoVO4 under high pressure by Raman scattering and ab initio calculations. Acta Physica Sinica, doi: 10.7498/aps.62.246101
    [11] Huang Qian, Xiong Shao-Zhen, Zhao Ying, Zhang Xiao-Dan. Nonlinear phenomenon of surface enhanced Raman scattering caused by surface plasmon. Acta Physica Sinica, doi: 10.7498/aps.61.157801
    [12] Lu Hong-Yan, Chen San, Liu Bao-Tong. Theoretical research on two gaps in cuprate superconductors:an electronic Raman scattering study. Acta Physica Sinica, doi: 10.7498/aps.60.037402
    [13] Zhou Mi, Li Zhan-Long, Lu Guo-Hui, Li Dong-Fei, Sun Cheng-Lin, Gao Shu-Qin, Li Zuo-Wei. High pressure Raman investigation on the Fermi resonance of biphenyl. Acta Physica Sinica, doi: 10.7498/aps.60.050702
    [14] Zhou Wen-Ping, Wan Song-Ming, Yin Shao-Tang, Zhang Qing-Li, You Jing-Lin, Wang Yuan-Yuan. High temperature Raman spectra and micro-structure of KTN crystal and melt. Acta Physica Sinica, doi: 10.7498/aps.58.570
    [15] Zhu Ying-Tao, Yang Chuan-Lu, Wang Mei-Shan, Dong Yong-Mian. First-principles calculations on the electrical structures and vibration frequencies of β-Si3N4. Acta Physica Sinica, doi: 10.7498/aps.57.1048
    [16] Han Ru, Yang Yin-Tang, Chai Chang-Chun. Electronic Raman scattering and the second-order Raman spectra of the n-type SiC. Acta Physica Sinica, doi: 10.7498/aps.57.3182
    [17] Xu Cun-Ying, Zhang Peng-Xiang, Yan Lei. Blue shift of Raman peaks of coated BaTiO3 nanoparticles. Acta Physica Sinica, doi: 10.7498/aps.54.5089
    [18] Jiang Mei-Fu, Ning Zhao-Yuan. Structural analysis of fluorinated diamond-like carbon films by Raman and Fourier transform infrared absorption spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.53.1588
    [19] Ding Pei, Liang Er-Jun, Zhang Hong-Rui, Liu Yi-Zhen, Liu Hui, Guo Xin-Yong, Du Zu-Liang. Growth mechanism and Raman spectroscopic study of “interlinked-cone" shaped CNx nanotubes. Acta Physica Sinica, doi: 10.7498/aps.52.237
    [20] FANG LI-ZHI, LIU YONG-ZHEN. RAMAN SCATTERING OF RELATIVISTIC ELECTRONS IN A STRONG MAGNETIC FIELD. Acta Physica Sinica, doi: 10.7498/aps.25.521
Metrics
  • Abstract views:  32
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  03 December 2025
  • /

    返回文章
    返回