-
Among the graphene family, bilayer graphene (BLG) exhibits more diverse electronic structures and higher tunability than monolayer graphene due to its unique interlayer coupling effect, emerging as a crucial branch in functionalization research. By utilizing its interlayer as an embedding channel, BLG avoids impairing graphene's intrinsic conductivity-a common issue with surface modification. Furthermore, the interlayer coupling allows for synergistic engineering of its electronic structure, yielding performance superior to that of monolayer graphene. Therefore, the interface of BLG represents a potential functionalization site. Based on the aforementioned research status and issues, all calculations in this study are performed using density functional theory (DFT) via the Vienna Ab-initio Simulation Package (VASP). To accurately describe the van der Waals (vdW) interactions (π-π stacking) between the layers of AB-stacked BLG, the DFT-D3 method is employed for vdW correction to investigate the influence of functional groups on BLG electrical properties. This study focuses on four functional groups (-OH, -CO, -CHO, and -COOH), whose contained O and H atoms can readily form chemical bonds with the carbon atoms in BLG. Through interlayer modification, the interactions between these functional groups and the carbon atoms are analyzed to realize the regulation of interlayer coupling and electronic structure characteristics of BLG. The insertion of -OH and -CHO into the interlayer of BLG results in higher stability and lower interfacial binding energy, whereas the insertion of -CO and -COOH leads to reduced stability. The Fermi level of BLG shifts to varying degrees upon the insertion of functional groups. Specifically, the insertion of -OH or -COOH causes the Fermi level to shift toward lower energy levels, reducing the highest occupied energy level. In contrast, the insertion of -CO or -CHO shifts the Fermi level toward higher energy levels, exciting more electrons to higher energy states and resulting in electron filling at elevated energy levels. The band structure of BLG undergoes significant modifications due to the insertion of functional groups. The original parabolic band dispersion is disrupted, and the band distribution becomes more complex, with altered line trajectories and crossing characteristics. Partial density of states (PDOS) and charge density difference calculations reveal orbital hybridization and charge transfer between the functional groups and BLG. All four functional groups form covalent bonds with the carbon atoms of BLG, exhibiting characteristics of chemical adsorption. Moreover, the extent of charge transfer and the perturbation of charge density vary significantly among the different functional groups. This study aims to elucidate the regulatory mechanisms and underlying principles of functional groups, providing a theoretical basis for designing BLG-based electronic materials with specific functionalities, while also enriching the research framework of interlayer functionalization in two-dimensional layered materials.
-
Keywords:
- First-principles calculation /
- Bilayer graphene (BLG) /
- Functional group /
- Electronic structure /
- Charge transfer
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[2] De Fazio D, Purdie D G, Ott A K, Braeuninger-Weimer P, Khodkov T, Goossens S, Taniguchi T, Watanabe K, Livreri P, H. L. Koppens F, Hofmann S, Goykhman I, C. Ferrari A, Lombardo A 2019 ACS nano 13 8926
[3] Tyagi A, Martini L, Gebeyehu Z M, Miseikis V, Coletti C 2024 ACS Appl. Nano Mater. 7 18329
[4] Bolotin K I, Ghahari F, Shulman M D, Stormer H L, Kim, P 2009 Nature 462 196
[5] Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Mucha-Kruczynski M, Piot, B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal'ko V I, Geim A K 2013 Nature 497 594
[6] Delagrange R, Garg M, Le Breton G, Zhang A, Dong Q, Jin Y, Watanabe K, Taniguchi T, Roulleau P, Maillet O, Roche P, Parmentier FD 2024 Nat. Phys. 20 1927
[7] Fu X B, Liu Y, Wang X D, Kang L, Qiu T J 2025 Appl. Energy 386 125566
[8] Geim A K 2009 Science 324 1530
[9] Hu X X, Tan L L, Wu X Z, Wang J Q 2023 Nano Res. 16 8512
[10] Bonaccorso F, Lombardo A, Hasan T, Sun Z P, Colombo L, Ferrari A C 2020 2D Mater. 7 022001
[11] Döscher H, Schmaltz T, Neef C, Thielmann A, Reiss T 2021 2D Mater. 8 022005
[12] Xiong Z Y, Shen L Y, Long J, Li X, Zhou K, Choi M, Ou K T, Yang G Y, Ma W C, Lee H S, Sun Y Y, Li D 2024 Nat. Commun. 15 10807
[13] Li S J, Yan J, Zhang Y F, Qin Y H, Zhang Y L, Du S G 2023 J. Mol. Liq. 377 121569
[14] Suter J L, Sinclair R C, Coveney P V 2020 Adv. Mater. 32 2003213
[15] Wang H, Wang X Y, Xiong Y, Cui J S 2024 Chin. J. Appl. Chem. 41 1712 (in Chinese) [王昊, 王熙宇, 熊英, 崔俊硕 2024 应用化学 12 1712]
[16] Wang Y, Xia W J, Giuntoli A 2025 Macromolecules 58 2224
[17] Chen C X, Lin Y, Zhou W, Gong M, He Z Y, Shi F Y, Li X Y, Wu J Z, Lam K T, Wang J N, Yang F, Zeng Q S, Guo J, Gao W P, Zuo J M, Liu J, Hong G S, Antaris A L, Lin M C, Mao W D L, Dai H J 2021 Nat. Electron. 4 653
[18] Zhao J, Ji P X, Li Y Q, Zhang K M, Tian H, Yu K C, Bian B Y, Hao L Z, Xiao X, Griffin W, Dudeck N, Moro Ramiro, Ma L, Heer W A 2024 Nature 625 60
[19] Shen J C, Fu W J, Wei W, Qian C, Ni G X, Zhu D 2025 Biosens. Bioelectron. 280 117426
[20] Nan Y L, Li B, Zhang X J, Song X L 2018 J. Nanopart. Res. 20 274
[21] Yang Q S, Gong Q Y, Kang H M, Ji S M, Li Z Y, Kim J M, Song Y J 2024 Diam. Relat. Mater. 144 111043
[22] Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951
[23] Kumar Ravi, Srivastav S K, Roy U, Singhal U, Watanabe K, Taniguchi T, Singh V, Roulleau P, Das A 2024 Nat. Phys. 20 1941
[24] Zhu X L, Su Z K, Tan R, Guo C L, Ai X P, Qian J F 2024 J. Am. Chem. Soc. 146 6388
[25] Zhang X W, Zhou T, Ren Y L, Feng Z, Qiao R X, Wang Q H, Wang B, Bai J X, Wu M H, Tang Z L, Zhou X, Liu K H, Xu X Z 2024 Nano Res. 17 4616
[26] Liu S, He B Z, Yang W, Zhou X H, Xue X D, Liu M Y, Zhao Y, Wang X H, Si J, Wang F Y, Zhang Z Y, Peng L M, Yu G 2024 Adv. Mater. 36 2312125
[27] Lai X Y, Li G H, Coe A M, Pixley J H, Watanabe K, Taniguchi T, Andrei E Y 2025 Nature Mater. 24 1019
[28] Astles T, Mchugh J G, Zhang R, Guo Q, Howe M, Wu Z F, Indykiewicz K, Summerfield A, Goodwin ZAH, Slizovskiy S, Domaretskiy D, Geim A K, Falko V, Grigorieva I V 2024 Nat. Commun. 15 6933
[29] Endo Y, Yan X, Li M, Akiyama R, Brandl C, Liu J Z, Hobara R, Hasegawa S, Wan W S, Novoselov K, Tang W X 2023 Nature Nanotech. 18 1154
[30] Wu X, Zheng F W, Kang F Y, Li J 2023 Phys. Rev. B 107 165409
[31] Xuan N N, Xie A Z, Liu B, Sun Z Z 2023 Carbon 201 529
[32] Zhang M W, Han N N, Wang J, Zhang Z H, Liu K H, Sun Z P, Zhao J L, Gan X T 2022 Nano Lett. 22 4287
[33] Pang J S, Shi R R, Xie H A, Chen H P, Zhang X, Zhao D D, Shi C S, He C N, Zhao N Q, Liu E Z 2024 Appl. Surf. Sci. 644 158762
[34] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
[35] Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 77 3865
[36] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671
[37] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[38] Grimme S, Mu1ck-Lichtenfeld C, Antony J 2007 J. Phys. Chem. C 111 11199
[39] Antony J, Grimme S 2008 Phys. Chem. Chem. Phys. 10 2722
[40] Denis P A 2023 Comput. Theor. Chem. 1221 114035
[41] Ji D P, Xu Q L, Xian L D 2025 Adv. Funct. Mater. 35 2419321
[42] Shin J, Chittari B L, Jang Y S, Min H K, Jung J 2022 Phys. Rev. B 105 245124
[43] Wu J B, Zhang X, Tan P H, Feng Z H, Li J 2013 Acta Phys. Sin. 62 157302 (in Chinese) [吴江滨, 张昕, 谭平恒, 冯志红, 李佳 2013 物理学报 62 157302]
[44] Liu Y J, Chen Y W, Zhu Y J, Huang Y, An D D, Li Q X, Gan Q K, Zhu W, Song J W, Wang K Y, Wei L N, Zong Q J, Liu S H, Li S W, Liu Zhi, Zhang Q, Xu Y H, Cao X Y, Yang A, Wang H L, Yang B, Shen A, Yu G L, Wang L 2023 Acta Phys. Sin. 72 147303 (in Chinese) [刘义俊, 陈以威, 朱雨剑, 黄焱, 安冬冬, 李庆鑫, 甘祺康, 朱旺, 宋珺威, 王开元, 魏凌楠, 宗其军, 刘硕涵, 李世伟, 刘芝, 张琪, 徐瑛海, 曹新宇, 杨奥, 王浩林, 杨冰, Andy Shen, 于葛亮, 王雷 2023 物理学报 72 147303]
Metrics
- Abstract views: 23
- PDF Downloads: 1
- Cited By: 0









下载: