Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on the Effects of Interlayer Doping with Functional Groups on the Structural Stability and Electronic Structure of Bilayer Graphene

Miao Yaping Shuli Xiao Fan Wu Wei Fan

Citation:

Study on the Effects of Interlayer Doping with Functional Groups on the Structural Stability and Electronic Structure of Bilayer Graphene

Miao Yaping, Shuli Xiao, Fan Wu, Wei Fan
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Among the graphene family, bilayer graphene (BLG) exhibits more diverse electronic structures and higher tunability than monolayer graphene due to its unique interlayer coupling effect, emerging as a crucial branch in functionalization research. By utilizing its interlayer as an embedding channel, BLG avoids impairing graphene's intrinsic conductivity-a common issue with surface modification. Furthermore, the interlayer coupling allows for synergistic engineering of its electronic structure, yielding performance superior to that of monolayer graphene. Therefore, the interface of BLG represents a potential functionalization site. Based on the aforementioned research status and issues, all calculations in this study are performed using density functional theory (DFT) via the Vienna Ab-initio Simulation Package (VASP). To accurately describe the van der Waals (vdW) interactions (π-π stacking) between the layers of AB-stacked BLG, the DFT-D3 method is employed for vdW correction to investigate the influence of functional groups on BLG electrical properties. This study focuses on four functional groups (-OH, -CO, -CHO, and -COOH), whose contained O and H atoms can readily form chemical bonds with the carbon atoms in BLG. Through interlayer modification, the interactions between these functional groups and the carbon atoms are analyzed to realize the regulation of interlayer coupling and electronic structure characteristics of BLG. The insertion of -OH and -CHO into the interlayer of BLG results in higher stability and lower interfacial binding energy, whereas the insertion of -CO and -COOH leads to reduced stability. The Fermi level of BLG shifts to varying degrees upon the insertion of functional groups. Specifically, the insertion of -OH or -COOH causes the Fermi level to shift toward lower energy levels, reducing the highest occupied energy level. In contrast, the insertion of -CO or -CHO shifts the Fermi level toward higher energy levels, exciting more electrons to higher energy states and resulting in electron filling at elevated energy levels. The band structure of BLG undergoes significant modifications due to the insertion of functional groups. The original parabolic band dispersion is disrupted, and the band distribution becomes more complex, with altered line trajectories and crossing characteristics. Partial density of states (PDOS) and charge density difference calculations reveal orbital hybridization and charge transfer between the functional groups and BLG. All four functional groups form covalent bonds with the carbon atoms of BLG, exhibiting characteristics of chemical adsorption. Moreover, the extent of charge transfer and the perturbation of charge density vary significantly among the different functional groups. This study aims to elucidate the regulatory mechanisms and underlying principles of functional groups, providing a theoretical basis for designing BLG-based electronic materials with specific functionalities, while also enriching the research framework of interlayer functionalization in two-dimensional layered materials.
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]

    De Fazio D, Purdie D G, Ott A K, Braeuninger-Weimer P, Khodkov T, Goossens S, Taniguchi T, Watanabe K, Livreri P, H. L. Koppens F, Hofmann S, Goykhman I, C. Ferrari A, Lombardo A 2019 ACS nano 13 8926

    [3]

    Tyagi A, Martini L, Gebeyehu Z M, Miseikis V, Coletti C 2024 ACS Appl. Nano Mater. 7 18329

    [4]

    Bolotin K I, Ghahari F, Shulman M D, Stormer H L, Kim, P 2009 Nature 462 196

    [5]

    Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Mucha-Kruczynski M, Piot, B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal'ko V I, Geim A K 2013 Nature 497 594

    [6]

    Delagrange R, Garg M, Le Breton G, Zhang A, Dong Q, Jin Y, Watanabe K, Taniguchi T, Roulleau P, Maillet O, Roche P, Parmentier FD 2024 Nat. Phys. 20 1927

    [7]

    Fu X B, Liu Y, Wang X D, Kang L, Qiu T J 2025 Appl. Energy 386 125566

    [8]

    Geim A K 2009 Science 324 1530

    [9]

    Hu X X, Tan L L, Wu X Z, Wang J Q 2023 Nano Res. 16 8512

    [10]

    Bonaccorso F, Lombardo A, Hasan T, Sun Z P, Colombo L, Ferrari A C 2020 2D Mater. 7 022001

    [11]

    Döscher H, Schmaltz T, Neef C, Thielmann A, Reiss T 2021 2D Mater. 8 022005

    [12]

    Xiong Z Y, Shen L Y, Long J, Li X, Zhou K, Choi M, Ou K T, Yang G Y, Ma W C, Lee H S, Sun Y Y, Li D 2024 Nat. Commun. 15 10807

    [13]

    Li S J, Yan J, Zhang Y F, Qin Y H, Zhang Y L, Du S G 2023 J. Mol. Liq. 377 121569

    [14]

    Suter J L, Sinclair R C, Coveney P V 2020 Adv. Mater. 32 2003213

    [15]

    Wang H, Wang X Y, Xiong Y, Cui J S 2024 Chin. J. Appl. Chem. 41 1712 (in Chinese) [王昊, 王熙宇, 熊英, 崔俊硕 2024 应用化学 12 1712]

    [16]

    Wang Y, Xia W J, Giuntoli A 2025 Macromolecules 58 2224

    [17]

    Chen C X, Lin Y, Zhou W, Gong M, He Z Y, Shi F Y, Li X Y, Wu J Z, Lam K T, Wang J N, Yang F, Zeng Q S, Guo J, Gao W P, Zuo J M, Liu J, Hong G S, Antaris A L, Lin M C, Mao W D L, Dai H J 2021 Nat. Electron. 4 653

    [18]

    Zhao J, Ji P X, Li Y Q, Zhang K M, Tian H, Yu K C, Bian B Y, Hao L Z, Xiao X, Griffin W, Dudeck N, Moro Ramiro, Ma L, Heer W A 2024 Nature 625 60

    [19]

    Shen J C, Fu W J, Wei W, Qian C, Ni G X, Zhu D 2025 Biosens. Bioelectron. 280 117426

    [20]

    Nan Y L, Li B, Zhang X J, Song X L 2018 J. Nanopart. Res. 20 274

    [21]

    Yang Q S, Gong Q Y, Kang H M, Ji S M, Li Z Y, Kim J M, Song Y J 2024 Diam. Relat. Mater. 144 111043

    [22]

    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951

    [23]

    Kumar Ravi, Srivastav S K, Roy U, Singhal U, Watanabe K, Taniguchi T, Singh V, Roulleau P, Das A 2024 Nat. Phys. 20 1941

    [24]

    Zhu X L, Su Z K, Tan R, Guo C L, Ai X P, Qian J F 2024 J. Am. Chem. Soc. 146 6388

    [25]

    Zhang X W, Zhou T, Ren Y L, Feng Z, Qiao R X, Wang Q H, Wang B, Bai J X, Wu M H, Tang Z L, Zhou X, Liu K H, Xu X Z 2024 Nano Res. 17 4616

    [26]

    Liu S, He B Z, Yang W, Zhou X H, Xue X D, Liu M Y, Zhao Y, Wang X H, Si J, Wang F Y, Zhang Z Y, Peng L M, Yu G 2024 Adv. Mater. 36 2312125

    [27]

    Lai X Y, Li G H, Coe A M, Pixley J H, Watanabe K, Taniguchi T, Andrei E Y 2025 Nature Mater. 24 1019

    [28]

    Astles T, Mchugh J G, Zhang R, Guo Q, Howe M, Wu Z F, Indykiewicz K, Summerfield A, Goodwin ZAH, Slizovskiy S, Domaretskiy D, Geim A K, Falko V, Grigorieva I V 2024 Nat. Commun. 15 6933

    [29]

    Endo Y, Yan X, Li M, Akiyama R, Brandl C, Liu J Z, Hobara R, Hasegawa S, Wan W S, Novoselov K, Tang W X 2023 Nature Nanotech. 18 1154

    [30]

    Wu X, Zheng F W, Kang F Y, Li J 2023 Phys. Rev. B 107 165409

    [31]

    Xuan N N, Xie A Z, Liu B, Sun Z Z 2023 Carbon 201 529

    [32]

    Zhang M W, Han N N, Wang J, Zhang Z H, Liu K H, Sun Z P, Zhao J L, Gan X T 2022 Nano Lett. 22 4287

    [33]

    Pang J S, Shi R R, Xie H A, Chen H P, Zhang X, Zhao D D, Shi C S, He C N, Zhao N Q, Liu E Z 2024 Appl. Surf. Sci. 644 158762

    [34]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [35]

    Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 77 3865

    [36]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [37]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [38]

    Grimme S, Mu1ck-Lichtenfeld C, Antony J 2007 J. Phys. Chem. C 111 11199

    [39]

    Antony J, Grimme S 2008 Phys. Chem. Chem. Phys. 10 2722

    [40]

    Denis P A 2023 Comput. Theor. Chem. 1221 114035

    [41]

    Ji D P, Xu Q L, Xian L D 2025 Adv. Funct. Mater. 35 2419321

    [42]

    Shin J, Chittari B L, Jang Y S, Min H K, Jung J 2022 Phys. Rev. B 105 245124

    [43]

    Wu J B, Zhang X, Tan P H, Feng Z H, Li J 2013 Acta Phys. Sin. 62 157302 (in Chinese) [吴江滨, 张昕, 谭平恒, 冯志红, 李佳 2013 物理学报 62 157302]

    [44]

    Liu Y J, Chen Y W, Zhu Y J, Huang Y, An D D, Li Q X, Gan Q K, Zhu W, Song J W, Wang K Y, Wei L N, Zong Q J, Liu S H, Li S W, Liu Zhi, Zhang Q, Xu Y H, Cao X Y, Yang A, Wang H L, Yang B, Shen A, Yu G L, Wang L 2023 Acta Phys. Sin. 72 147303 (in Chinese) [刘义俊, 陈以威, 朱雨剑, 黄焱, 安冬冬, 李庆鑫, 甘祺康, 朱旺, 宋珺威, 王开元, 魏凌楠, 宗其军, 刘硕涵, 李世伟, 刘芝, 张琪, 徐瑛海, 曹新宇, 杨奥, 王浩林, 杨冰, Andy Shen, 于葛亮, 王雷 2023 物理学报 72 147303]

  • [1] TIAN Xin, SHU Pengli, ZHANG Ketong, ZENG Dechao, YAO Zhifei, ZHAO Bohui, REN Xiaosen, QIN Li, ZHU Qiang, WEI Jiuyan, WEN Huanfei, LI Yanjun, Yasuhiro Sugawara, TANG Jun, MA Zongmin, LIU Jun. Charge transfer characteristics of Au adsorption on CeO2(111) surface. Acta Physica Sinica, doi: 10.7498/aps.74.20241522
    [2] Wu Hong-Fen, Feng Pan-Jun, Zhang Shuo, Liu Da-Peng, Gao Miao, Yan Xun-Wang. First-principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, doi: 10.7498/aps.71.20211631
    [3] Ding Qing-Song, Luo Chao-Bo, Peng Xiang-Yang, Shi Xi-Zhi, He Chao-Yu, Zhong Jian-Xin. First principles study of distributions of Si atoms and structures of siligraphene g-SiC7. Acta Physica Sinica, doi: 10.7498/aps.70.20210621
    [4] First principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, doi: 10.7498/aps.70.20211631
    [5] Wang Xiao, Huang Sheng-Xiang, Luo Heng, Deng Lian-Wen, Wu Hao, Xu Yun-Chao, He Jun, He Long-Hui. First-principles study of electronic structure and optical properties of nickel-doped multilayer graphene. Acta Physica Sinica, doi: 10.7498/aps.68.20190523
    [6] Yuan Guo-Liang, Li Shuang, Ren Shen-Qiang, Liu Jun-Ming. Excited charge-transfer organics with multiferroicity. Acta Physica Sinica, doi: 10.7498/aps.67.20180759
    [7] Wang Yi-Fei, Li Xiao-Wei. First-principle calculation on electronic structures and optical properties of hybrid graphene and BiOI nanosheets. Acta Physica Sinica, doi: 10.7498/aps.67.20172220
    [8] Chen Xian, Cheng Mei-Juan, Wu Shun-Qing, Zhu Zi-Zhong. First-principle study of structure stability and electronic structures of graphyne derivatives. Acta Physica Sinica, doi: 10.7498/aps.66.107102
    [9] Jiao Zhao-Yong, Guo Yong-Liang, Niu Yi-Jun, Zhang Xian-Zhou. The first principle study of electronic and optical properties of defect chalcopyrite XGa2S4 (X=Zn, Cd, Hg). Acta Physica Sinica, doi: 10.7498/aps.62.073101
    [10] Wang Ping, Guo Li-Xin, Yang Yin-Tang, Zhang Zhi-Yong. First-principles study on electronic structures of Al, N Co-doped ZnO nanotubes. Acta Physica Sinica, doi: 10.7498/aps.62.056105
    [11] Deng Jiao-Jiao, Liu Bo, Gu Mu, Liu Xiao-Lin, Huang Shi-Ming, Ni Chen. First principles calculation of electronic structures and optical properties for -CuX(X = Cl, Br, I). Acta Physica Sinica, doi: 10.7498/aps.61.036105
    [12] Zhang Xue-Jun, Gao Pan, Liu Qing-Ju. First-principles study on electronic structure and optical properties of anatase TiO2 codoped with nitrogen and iron. Acta Physica Sinica, doi: 10.7498/aps.59.4930
    [13] Li Pei-Juan, Zhou Wei-Wei, Tang Yuan-Hao, Zhang Hua, Shi Si-Qi. Electronic structure,optical and lattice dynamical properties of CeO2:A first-principles study. Acta Physica Sinica, doi: 10.7498/aps.59.3426
    [14] Wang Zhi-Gang, Zhang Yang, Wen Yu-Hua, Zhu Zi-Zhong. First-principles calculation of structural stability and electronic properties of ZnO atomic chains. Acta Physica Sinica, doi: 10.7498/aps.59.2051
    [15] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb on electronic structure of NiTi intermetallic compound: A first-principles study. Acta Physica Sinica, doi: 10.7498/aps.59.515
    [16] Hu Fang, Ming Xing, Fan Hou-Gang, Chen Gang, Wang Chun-Zhong, Wei Ying-Jin, Huang Zu-Fei. First-principles study on the electronic structures of the ladder compound NaV2O4F. Acta Physica Sinica, doi: 10.7498/aps.58.1173
    [17] Song Qing-Gong, Wang Yan-Feng, Song Qing-Long, Kang Jian-Hai, Chu Yong. First-principle study on the electronic structures of intercalation compound Ag1/4TiSe2. Acta Physica Sinica, doi: 10.7498/aps.57.7827
    [18] Huang Dan, Shao Yuan-Zhi, Chen Di-Hu, Guo Jin, Li Guang-Xu. First-principles calculation on the electronic structure and absorption spectrum of the wurtzite Zn1-xMgxO alloys. Acta Physica Sinica, doi: 10.7498/aps.57.1078
    [19] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb doping on electronic structure of TiO2/NiTi interface: A first-principle study. Acta Physica Sinica, doi: 10.7498/aps.57.7794
    [20] Ma Hua-Li, Li Ying-Lan, Yang Bao-Hua, Wang Feng. Structural and optical properties and charge transfer study for C60-PMMA composite films. Acta Physica Sinica, doi: 10.7498/aps.54.2859
Metrics
  • Abstract views:  23
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  04 December 2025
  • /

    返回文章
    返回