-
The spin-reorientation transition (SRT) in rare-earth orthoferrites offers an important platform for exploring the coupling and manipulation of spin dynamics, which is crucial for developing high-frequency spintronic and terahertz (THz) magneto-optical devices. In this work, we systematically investigate the temperature- and magnetic-field-induced SRT behavior and the associated electron paramagnetic resonance (EPR) transitions of Yb3+ ions in a-cut YbFeO3 single crystals using time-domain terahertz spectroscopy (THz-TDS). The temperature-dependent measurements from 1.6 to 300 K reveal a distinct SRT near 7 K, marked by a sudden shift of the magnetic resonance mode frequency. This indicates a transition of the Fe3+ spin configuration from the low-temperature Γ2 phase to the high-temperature Γ4 phase, driven primarily by the temperature evolution of the anisotropic Fe3+-Yb3+ exchange interaction.
Under an external magnetic field applied along the a-axis at 20 K, the system exhibits an incomplete field-induced SRT from the Γ4 phase toward the Γ2 phase. In the intermediate Γ24 phase, both the quasi-AntiFerroMagnetic (q-AFM) and quasi-FerroMagnetic (q-FM) modes are simultaneously excited, as observed in the THz absorption spectra. Notably, even at the maximum field of 7 T, the transition remains incomplete, indicating the stabilization of the intermediate phase over a wide field range. In the low-frequency region (<0.8 THz), two absorption peaks exhibiting clear blue shifts with increasing magnetic field are identified as EPR transitions between Zeeman sublevels of the crystal-field-split Kramers doublets of Yb3+ ions.
All experimental observations, including the temperature- and magnetic-field-dependent frequency responses of the q-AFM and q-FM modes as well as the evolution of the electron paramagnetic resonance signals with magnetic field, have been quantitatively described by coupling a spin dynamics model with crystal field theory. The model successfully reproduces the continuous rotation of the macroscopic Fe3+ magnetization vector within the ac plane under an applied magnetic field, revealing the microscopic mechanism of the field-induced SRT. The analysis demonstrates that the SRT process results from the competition and synergy between the external magnetic field and the anisotropic Fe3+-Yb3+ exchange interaction, which collectively modulate the internal effective field and determine the stability of the intermediate Γ24 phase.
This study confirms the effective control of spin configurations in YbFeO3 via both temperature and magnetic field, provides a deeper understanding of the Fe3+-Yb3+ exchange interaction mechanism, and offers important experimental insights for the design of terahertz functional devices based on rare-earth orthoferrites.-
Keywords:
- Terahertz Spectroscopy /
- Rare-earth Orthoferrites /
- SRT /
- Exchange Interaction
-
[1] Chaudhary V, Mantri S A, Ramanujan R V, Banerjee R 2020 Prog. Mater. Sci. 114 100688
[2] Serrano D, Li H R, Wang S K, Guillod T, Luo M, Bansal V 2023 IEEE Trans. Power Electron. 38 14292-14316
[3] Nithya R, Thirunavukkarasu A, Sathya A B, Sivashankar R 2021 Environ. Chem. Lett. 19 1275-1294
[4] Stewart G A, Lampl W 2017 J. Phys.: Conf. Ser. 898 072013
[5] Wang Y Y, Song C, Zhang J Y, Pan F 2017 Prog. Nat. Sci.: Mater. Int. 27 208-216
[6] Jin Z M, Ruan S Y, Li J G, Lin X, Ren W, Cao S X, Ma G H, Yao J Q 2019 Acta Phys. Sin. 68 167501(in Chinese) [金钻明,阮舜逸,李炬赓,林贤,任伟,曹世勋,马国宏,姚建铨 2019 物理学报 68 167501]
[7] White R L 1969 J. Appl. Phys. 40 1061
[8] Moriya T 1960 Phys. Rev. 120 91
[9] Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241
[10] Yamaguchi T 1974 J. Phys. Chem. Solids 35 479
[11] Ma X X, Yuan N, Luo X, Chen Y K, Kang B J, Ren W, Zhang J C, Cao S X 2021 Mater. Today Commun. 27 102438
[12] Aring K B, Sievers A J 1970 J. Appl. Phys. 41 1197
[13] Davidson G R, Dunlap B D, Eibschütz M, van Uitert L G 1975 Phys. Rev. B 12 1681
[14] Dan'shin N K, Kramarchuk G G, Sdvizhkov M A 1986 Pis'ma Zh. Eksp. Teor. Fiz. 44 85
[15] Brown S R, Hall I 1993 J. Phys.: Condens. Matter 5 4207
[16] Ju X W, Hu Z Q, Huang F, Wu H B, Belyanin A, Kono J, Wang X F 2021 Opt. Express 29 9261-9268
[17] Ju X W, Zhu G F, Huang F, Dai Z R, Chen Y Q, Guo C X, Deng L, Wang X F 2022 Opt. Express 30 957-965
[18] Peng Y, Huang J L, Luo J, Yang Z F, Wang L P, Wu X, Zang X F, Yu C, Gu M, Hu Q, Zhang X C, Zhu Y M, Zhuang S L 2021 PhotoniX 2 1-18
[19] Wang N, Zhu G F, Hu Z Q, Cao Y M, Wang X F, Ju X W, Su H B, Huang F 2023 Infrared Phys. Technol. 135 104937
[20] Lin X, Jin Z M, Li J G, Guo F Y, Zhuang N F, Chen J Z, Dai Y, Yan X N, Ma G H 2018 Acta Phys. Sin. 67 237801(in Chinese) [林贤,金钻明,李炬赓,郭飞云,庄乃锋,陈建中,戴晔,阎晓娜,马国宏 2018 物理学报 67 237801]
[21] Grischkowsky D, Duling I N, III, Chen J C, Chi C C 1987 Phys. Rev. Lett. 59 1663-1668
[22] Dorney T D, Baraniuk R G, Mittleman D M 2001 J. Opt. Soc. Am. A 18 1562-1571
[23] Duvillaret L, Garet F, Coutaz J L 2002 IEEE J. Sel. Top. Quantum Electron. 2 739-746
[24] Duvillaret L, Garet F, Coutaz J L 1999 Appl. Opt. 38 409-415
[25] Li X W, Bamba M, Yuan N, Zhang Q, Zhao Y G, Xiang M L, Jin Z M, Ren W, Ma G H, Cao S K, Turchinovich D, Kono J 2018 Science 361 794-797
[26] Wood D L, Holmes L M, Remeika J P 1969 Phys. Rev. 185 689
[27] Balbashov A M, Berezin A G, Gufan Yu M, Kolyadko G S, Marchukov P Yu, Rudashevskii E G 1987 Sov. J. Exp. Theor. Phys. 66 174
[28] Morrison C A, Wortman D E 1992 Opt. Mater. 1 195-207
Metrics
- Abstract views: 20
- PDF Downloads: 0
- Cited By: 0









下载: