Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Advances in non-Hermitian dynamics of quadratic bosonic systems

ZHAO Huawei LIU Xinlei HUANG Xinyao ZHANG Guofeng

Citation:

Advances in non-Hermitian dynamics of quadratic bosonic systems

ZHAO Huawei, LIU Xinlei, HUANG Xinyao, ZHANG Guofeng
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Non-Hermitian physics has emerged as a rapidly advancing field of research, revealing a range of novel phenomena and potential applications. Traditional non-Hermitian Hamiltonians are typically simulated by constructing asymmetric couplings or by introducing dissipation and gain to realize non-Hermitian systems. The quadratic bosonic system (QBS) with squeezing interaction is intrinsically Hermitian; however, its dynamical evolution matrix in both real and momentum spaces is non-Hermitian. Based on this, applying a field-operator transformation $\{\hat{x},\hat{p}\}$ to the dynamical evolution matrix yields quadrature nonreciprocal transmission between the $\hat{x}$ and $\hat{p}$ operators. This nonreciprocal characteristic can be utilized in signal amplifiers. On the other hand, within the Bogoliubov–de Gennes framework in momentum space, one can observe non-Hermitian topological phenomena such as point-gap topology and the non-Hermitian skin effect, both induced by spectra with nonzero winding numbers. Additionally, QBS can be employed to realize non-Hermitian Aharonov–Bohm cages and to extend non-Bloch band theory. Previous studies in non-Hermitian physics have largely concentrated on classical systems. The influence of non-Hermitian properties on quantum effects remains a key issue awaiting exploration and has evolved into a research direction at the interface of non-Hermitian and quantum physics. In QBS, squeezing interactions without dissipation cause the dynamical evolution of the system to display effective non-Hermitian characteristics and induce quantum correlation effects, such as quantum entanglement. Recent studies have shown that the non-Hermitian exceptional points in QBS can alter squeezing dynamics and entanglement dynamics. Therefore, such systems not only offer a natural platform for realizing quantum non-Hermitian dynamics but also constitute an important basis for investigating the relationship between non-Hermitian dynamics and quantum effects, as well as for achieving quantum control based on non-Hermitian properties. Future research may further focus on elucidating the connections between non-Hermitian dynamics and quantum effects in QBS, which is expected to serve as a bridge linking non-Hermitian dynamics and quantum effects.
  • [1]

    Bender C M 2007 Rep. Prog. Phys. 70 947

    [2]

    Bergholtz E J, Budich J C, Kunst F K 2021 Rev. Mod. Phys. 93 015005

    [3]

    Ashida Y, Gong Z, Ueda M 2020 Adv. Phys. 69 249

    [4]

    Zhang X, Zhang T, Lu M H, Chen Y F 2022 Adv. Phys. X 7 2109431

    [5]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243

    [6]

    Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D, Peschel U 2012 Nature 488 167

    [7]

    Xia S, Kaltsas D, Song D, Komis I, Xu J, Szameit A, Buljan H, Makris K G, Chen Z 2021 Science 372 72

    [8]

    Heiss W D 2004 J. Phys. A: Math. Gen. 37 2455

    [9]

    Wiersig J 2014 Phys. Rev. Lett. 112 203901

    [10]

    Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N, Khajavikhan M 2017 Nature 548 187

    [11]

    Chen W, Özdemir S K, Zhao G, Wiersig J, Yang L 2017 Nature 548 192

    [12]

    Wanjura C, Slim J, Pino J, Brunelli M, Verhagen E, Nunnenkamp A 2023 Nat. Phys. 19 1429

    [13]

    McDonald A, Pereg-Barnea T, Clerk A A 2018 Phys. Rev. X 8 041031

    [14]

    Slim J J, Wanjura C C, Brunelli M, Pino J D, Nunnenkamp A, Verhagen E 2024 Nature 627 767

    [15]

    Wang Q, Zhu C, Wang Y, Zhang B, Chong Y D 2022 Phys. Rev. B 106 024301

    [16]

    Qin Y, Li L 2024 Phys. Rev. Lett. 132 096501

    [17]

    Jin L 2017 Phys. Rev. A 96 032103

    [18]

    Jin L, Song Z 2019 Phys. Rev. B 99 081103

    [19]

    Zhang S M, Xu H S, Jin L 2023 Phys. Rev. A 108 023518

    [20]

    Zhang S M, Jin L 2020 Phys. Rev. Res. 2 033127

    [21]

    Kawabata K, Shiozaki K, Ryu S 2021 Phys. Rev. Lett. 126 216405

    [22]

    Zhu W, Gong J 2022 Phys. Rev. B 106 035425

    [23]

    Mu S, Zhou L, Li L, Gong J 2022 Phys. Rev. B 105 205402

    [24]

    Song F, Yao S, Wang Z 2019 Phys. Rev. Lett. 123 170401

    [25]

    Cao W, Lu X, Meng X, Sun J, Shen H, Xiao Y 2020 Phys. Rev. Lett. 124 030401

    [26]

    Zhang Z, Zhang F, Xu Z, Hu Y, Bao H, Shen H 2024 Phys. Rev. Lett. 133 133601

    [27]

    Başar G m c, Dunne G V 2008 Phys. Rev. Lett. 100 200404

    [28]

    Takahashi D A, Nitta M 2013 Phys. Rev. Lett. 110 131601

    [29]

    Kitaev A Y 2001 Phys.-Usp. 44 131

    [30]

    Wang Z H, Xu F, Li L, Xu D H, Chen W Q, Wang B 2021 Phys. Rev. B 103 134507

    [31]

    Wang Z H, Xu F, Li L, Xu D H, Wang B 2022 Phys. Rev. B 105 024514

    [32]

    Qian K, Apigo D J, Padavić K, Ahn K H, Vishveshwara S, Prodan C 2023 Phys. Rev. Res. 5 L012012

    [33]

    Lieu S 2019 Phys. Rev. B 100 085110

    [34]

    Zhao X M, Guo C X, Kou S P, Zhuang L, Liu W M 2021 Phys. Rev. B 104 205131

    [35]

    Okuma N, Kawabata K, Shiozaki K, Sato M 2020 Phys. Rev. Lett. 124 086801

    [36]

    Wang L W, Lin Z K, Jiang J H 2023 Phys. Rev. B 108 195126

    [37]

    Miao J J, Jin H K, Zhang F C, Zhou Y 2017 Phys. Rev. Lett. 118 267701

    [38]

    Kawabata K, Okuma N, Sato M 2020 Phys. Rev. B 101 195147

    [39]

    Yokomizo K, Yoda T, Ashida Y 2024 Phys. Rev. B 109 115115

    [40]

    Wang K, Li T, Xiao L, Han Y, Yi W, Xue P 2021 Phys. Rev. Lett. 127 270602

    [41]

    Bonderson P, Kitaev A, Shtengel K 2006 Phys. Rev. Lett. 96 016803

    [42]

    Barnett R 2013 Phys. Rev. A 88 063631

    [43]

    Galilo B, Lee D K K, Barnett R 2015 Phys. Rev. Lett. 115 245302

    [44]

    Engelhardt G, Benito M, Platero G, Brandes T 2016 Phys. Rev. Lett. 117 045302

    [45]

    Peano V, Houde M, Marquardt F, Clerk A A 2016 Phys. Rev. X 6 041026

    [46]

    Flynn V P, Cobanera E, Viola L 2020 New J. Phys. 22 083004

    [47]

    Wang Y X, Clerk A A 2019 Phys. Rev. A 99 063834

    [48]

    Blinova P, Moiseev E, Wang K 2024 Phys. Rev. Res. 6 043209

    [49]

    Luo X W, Zhang C, Du S 2022 Phys. Rev. Lett. 128 173602

    [50]

    Yokomizo K, Murakami S 2021 Phys. Rev. B 103 165123

    [51]

    Zhou K, Zeng B, Hu Y 2025 Phys. Rev. B 111 224308

    [52]

    Qi L, Yan Y, Wang G L, Zhang S, Wang H F 2019 Phys. Rev. A 100 062323

    [53]

    Flynn V P, Cobanera E, Viola L 2021 Phys. Rev. Lett. 127 245701

    [54]

    Gong Z, Jonsson R H, Malz D 2022 Phys. Rev. B 105 085423

    [55]

    Wang Y N, You W L, Sun G 2022 Phys. Rev. A 106 053315

    [56]

    Bilitewski T, Rey A M 2023 Phys. Rev. Lett. 131 053001

    [57]

    Busnaina J H, Shi Z, Mcdonald A, Dubyna D, Nsanzineza I, Hung J S C, Chang C W S, Clerk A A, Wilson C M 2024 Nat. Commun. 15 3065

    [58]

    He D K, Song Z 2025 Phys. Rev. B 111 035131

    [59]

    Wan L L, Lü X Y 2023 Phys. Rev. Lett. 130 203605

    [60]

    Chaudhary G, Levin M, Clerk A A 2021 Phys. Rev. B 103 214306

    [61]

    Peng B, Özdemir S K, Rotter S, Yilmaz H, Liertzer M, Monifi F, Bender C M, Nori F, Yang L 2014 Science 346 328

    [62]

    Jing H, Özdemir S K, Lü X Y, Zhang J, Yang L, Nori F 2014 Phys. Rev. Lett. 113 053604

    [63]

    Macieszczak K, Guţă M, Lesanovsky I, Garrahan J P 2016 Phys. Rev. Lett. 116 240404

    [64]

    Minganti F, Biella A, Bartolo N, Ciuti C 2018 Phys. Rev. A 98 042118

    [65]

    Shi M, Bao G, Guo J, Zhang W 2025 Phys. Rev. Res. 7 L022034

    [66]

    Thapliyal K, Jr J P, Chimczak G, Kowalewska-Kudłaszyk A, Miranowicz A 2024 arXiv:2405.01666

    [67]

    Jr J P, Thapliyal K, Chimczak G, Kowalewska-Kudłaszyk A, Miranowicz A 2024 arXiv:2405.01667

    [68]

    Yu C, Tian M, Kong N, Fadel M, Huang X, He Q 2025 arXiv:2502.04639

    [69]

    Liu C H, Li F, Du S, Wen J, Yang L, Zhang C 2024 arXiv:2404.03803

    [70]

    Li Y, Liu Y C 2023 Phys. Rev. A 108 062405

    [71]

    Lee G, Jin T, Wang Y X, McDonald A, Clerk A 2024 PRX Quantum 5 010313

    [72]

    Colpa J 1978 Physica A 93 327

    [73]

    Shindou R, Matsumoto R, Murakami S, Ohe J i 2013 Phys. Rev. B 87 174427

    [74]

    Matsumoto R, Shindou R, Murakami S 2014 Phys. Rev. B 89 054420

    [75]

    Lieu S 2018 Phys. Rev. B 98 115135

    [76]

    Ohashi T, Kobayashi S, Kawaguchi Y 2020 Phys. Rev. A 101 013625

    [77]

    Vishveshwara S, Weld D M 2021 Phys. Rev. A 103 L051301

    [78]

    Ling H Y, Kain B 2021 Phys. Rev. A 104 013305

    [79]

    Okuma N 2022 Phys. Rev. B 105 224301

    [80]

    Lo H, Wang Y, Banerjee R, Zhang B, Chong Y D 2025 Phys. Rev. B 111 L241401

    [81]

    Born M 1949 Rev. Mod. Phys. 21 463

    [82]

    Case K M 1957 Rev. Mod. Phys. 29 651

    [83]

    Khanikaev A B, Mousavi S H, Shvets G, Kivshar Y S 2010 Phys. Rev. Lett. 105 126804

    [84]

    Guo X, Zou C L, Jung H, Tang H X 2016 Phys. Rev. Lett. 117 123902

    [85]

    Lira H, Yu Z, Fan S, Lipson M 2012 Phys. Rev. Lett. 109 033901

    [86]

    Clerk A A, Devoret M H, Girvin S M, Marquardt F, Schoelkopf R J 2010 Rev. Mod. Phys. 82 1155

    [87]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803

    [88]

    Yokomizo K, Murakami S 2019 Phys. Rev. Lett. 123 066404

    [89]

    Yang Z, Zhang K, Fang C, Hu J 2020 Phys. Rev. Lett. 125 226402

    [90]

    Wang W, Wang X, Ma G 2022 Nature 608 50

    [91]

    Song F, Yao S, Wang Z 2019 Phys. Rev. Lett. 123 246801

    [92]

    Helbig T, Hofmann T, Imhof S, Abdelghany M, Kiessling T, Molenkamp L W, Lee C H, Szameit A, Greiter M, Thomale R 2020 Nat. Phys. 16 747

    [93]

    Zhang K, Yang Z, Fang C 2020 Phys. Rev. Lett. 125 126402

    [94]

    Yuen H P 1976 Phys. Rev. A 13 2226

    [95]

    Caves C M 1981 Phys. Rev. D 23 1693

    [96]

    Slusher R E, Hollberg L W, Yurke B, Mertz J C, Valley J F 1985 Phys. Rev. Lett. 55 2409

    [97]

    Caves C M, Schumaker B L 1985 Phys. Rev. A 31 3068

    [98]

    Grangier P, Slusher R E, Yurke B, LaPorta A 1987 Phys. Rev. Lett. 59 2153

    [99]

    Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706

    [100]

    Arandes O, Bergholtz E J 2025 Phys. Rev. Res. 7 013309

    [101]

    Pino J, Slim J, Verhagen E 2022 Nature 606 82

    [102]

    Jia X, Zhai C, Zhu X, You C, Cao Y, Zhang X, Zheng Y, Fu Z, Mao J, Dai T, Chang L, Su X, Gong Q, Wang J 2025 Nature 639 329

    [103]

    Wang Z, Li K, Wang Y, Zhou X, Cheng Y, Jing B, Sun F, Jincheng L, Li Z, Wu B, Gong Q, He Q, Li B, Yang Q F 2025 Light: Sci. Appl. 14 164

    [104]

    von Lüpke U, Rodrigues I, Yang Y, Fadel M, Chu Y 2024 Nat. Phys. 20 564

    [105]

    Marti S, von Lüpke U, Joshi O, Yang Y, Bild M, Omahen A, Chu Y, Fadel M 2024 Nat. Phys. 20 1448

  • [1] WANG Yujia, XU Zhihao. Multifractal state and mobility edges in a periodically driven non-reciprocal Aubry-André model. Acta Physica Sinica, doi: 10.7498/aps.74.20241633
    [2] YANG Xing, LIU Mengjiao, HOU Jiahao, LI Tianyue, WANG Shuming. Topological selective non Hermitian skin effect. Acta Physica Sinica, doi: 10.7498/aps.74.20250526
    [3] Yu Min, Guo You-Neng. Regulation of entropic uncertainty relation in correlated channels with dephasing colored noise. Acta Physica Sinica, doi: 10.7498/aps.73.20241171
    [4] Hu Fei-Fei, Li Si-Ying, Zhu Shun, Huang Yu, Lin Xu-Bin, Zhang Si-Tuo, Fan Yun-Ru, Zhou Qiang, Liu Yun. Generation of multiwavelength quantum correlated photon pair for quantum entanglement key distribution. Acta Physica Sinica, doi: 10.7498/aps.73.20241274
    [5] Huang Ze-Xin, Sheng Zong-Qiang, Cheng Le-Le, Cao San-Zhu, Chen Hua-Jun, Wu Hong-Wei. Steering non-Hermitian skin states by engineering interface in 1D nonreciprocal acoustic crystal. Acta Physica Sinica, doi: 10.7498/aps.73.20241087
    [6] Xu Can-Hong, Xu Zhi-Cong, Zhou Zi-Yu, Cheng En-Hong, Lang Li-Jun. Electrical circuit simulation of non-Hermitian lattice models. Acta Physica Sinica, doi: 10.7498/aps.72.20230914
    [7] Yang Yan-Li, Duan Zhi-Lei, Xue Hai-Bin. Edge states and skin effect dependent electron transport properties of non-Hermitian Su-Schrieffer-Heeger chain. Acta Physica Sinica, doi: 10.7498/aps.72.20231286
    [8] Zhang Xi-Zheng, Wang Peng, Zhang Kun-Liang, Yang Xue-Min, Song Zhi. Non-Hermitian critical dynamics and its application to quantum many-body systems. Acta Physica Sinica, doi: 10.7498/aps.71.20220914
    [9] Cheng En-Hong, Lang Li-Jun. Electrical circuit simulation of nonreciprocal Aubry-André models. Acta Physica Sinica, doi: 10.7498/aps.71.20220219
    [10] Liu Jia-Lin, Pang Ting-Fang, Yang Xiao-Sen, Wang Zheng-Ling. Skin effect in disordered non-Hermitian Su-Schrieffer-Heeger. Acta Physica Sinica, doi: 10.7498/aps.71.20221151
    [11] Chen Shu-Yue, Jiang Chuang, Ke Shao-Lin, Wang Bing, Lu Pei-Xiang. Suppression of non-Hermitian skin effect via Aharonov-Bohm cage. Acta Physica Sinica, doi: 10.7498/aps.71.20220978
    [12] Hou Bo, Zeng Qi-Bo. Non-Hermitian mosaic dimerized lattices. Acta Physica Sinica, doi: 10.7498/aps.71.20220890
    [13] Deng Tian-Shu. Non-Hermitian skin effect in a domain-wall system. Acta Physica Sinica, doi: 10.7498/aps.71.20221087
    [14] Zhang Shi-Hao, Zhang Xiang-Dong, Li Lü-Zhou. Research progress of measurement-based quantum computation. Acta Physica Sinica, doi: 10.7498/aps.70.20210923
    [15] Hu Yu-Min, Song Fei, Wang Zhong. Generalized Brillouin zone and non-Hermitian band theory. Acta Physica Sinica, doi: 10.7498/aps.70.20211908
    [16] Wang Zi, Zhang Dan-Mei, Ren Jie. Topological and non-reciprocal phenomena in elastic waves and heat transport of phononic systems. Acta Physica Sinica, doi: 10.7498/aps.68.20191463
    [17] Yang Yang, Wang An-Min, Cao Lian-Zhen, Zhao Jia-Qiang, Lu Huai-Xin. Correlation and coherence for two-qubit system coupled to XY spin chains. Acta Physica Sinica, doi: 10.7498/aps.67.20180812
    [18] Qin Meng, Li Yan-Biao, Bai Zhong. Effects of inhomogeneous magnetic field and magnetic impurity on the quantum correlation of spin-1 system. Acta Physica Sinica, doi: 10.7498/aps.64.030301
    [19] Yang Yang, Wang An-Min. Quantum correlation for a central two-qubit system coupled to Ising chain. Acta Physica Sinica, doi: 10.7498/aps.62.130305
    [20] Fan Kai-Ming, Zhang Guo-Feng. The dynamics of quantum correlation between two atoms in a damping Jaynes-Cummings model. Acta Physica Sinica, doi: 10.7498/aps.62.130301
Metrics
  • Abstract views:  10
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  06 December 2025
  • /

    返回文章
    返回