-
Non-Hermitian physics has emerged as a rapidly advancing field of research, revealing a range of novel phenomena and potential applications. Traditional non-Hermitian Hamiltonians are typically simulated by constructing asymmetric couplings or by introducing dissipation and gain to realize non-Hermitian systems. The quadratic bosonic system (QBS) with squeezing interaction is intrinsically Hermitian; however, its dynamical evolution matrix in both real and momentum spaces is non-Hermitian. Based on this, applying a field-operator transformation $\{\hat{x},\hat{p}\}$ to the dynamical evolution matrix yields quadrature nonreciprocal transmission between the $\hat{x}$ and $\hat{p}$ operators. This nonreciprocal characteristic can be utilized in signal amplifiers. On the other hand, within the Bogoliubov–de Gennes framework in momentum space, one can observe non-Hermitian topological phenomena such as point-gap topology and the non-Hermitian skin effect, both induced by spectra with nonzero winding numbers. Additionally, QBS can be employed to realize non-Hermitian Aharonov–Bohm cages and to extend non-Bloch band theory. Previous studies in non-Hermitian physics have largely concentrated on classical systems. The influence of non-Hermitian properties on quantum effects remains a key issue awaiting exploration and has evolved into a research direction at the interface of non-Hermitian and quantum physics. In QBS, squeezing interactions without dissipation cause the dynamical evolution of the system to display effective non-Hermitian characteristics and induce quantum correlation effects, such as quantum entanglement. Recent studies have shown that the non-Hermitian exceptional points in QBS can alter squeezing dynamics and entanglement dynamics. Therefore, such systems not only offer a natural platform for realizing quantum non-Hermitian dynamics but also constitute an important basis for investigating the relationship between non-Hermitian dynamics and quantum effects, as well as for achieving quantum control based on non-Hermitian properties. Future research may further focus on elucidating the connections between non-Hermitian dynamics and quantum effects in QBS, which is expected to serve as a bridge linking non-Hermitian dynamics and quantum effects.
-
Keywords:
- non-Hermitian dynamics /
- quadratic bosonic systems /
- nonreciprocity /
- nonHermitian skin effect /
- quantum correlations
-
[1] Bender C M 2007 Rep. Prog. Phys. 70 947
[2] Bergholtz E J, Budich J C, Kunst F K 2021 Rev. Mod. Phys. 93 015005
[3] Ashida Y, Gong Z, Ueda M 2020 Adv. Phys. 69 249
[4] Zhang X, Zhang T, Lu M H, Chen Y F 2022 Adv. Phys. X 7 2109431
[5] Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243
[6] Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D, Peschel U 2012 Nature 488 167
[7] Xia S, Kaltsas D, Song D, Komis I, Xu J, Szameit A, Buljan H, Makris K G, Chen Z 2021 Science 372 72
[8] Heiss W D 2004 J. Phys. A: Math. Gen. 37 2455
[9] Wiersig J 2014 Phys. Rev. Lett. 112 203901
[10] Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N, Khajavikhan M 2017 Nature 548 187
[11] Chen W, Özdemir S K, Zhao G, Wiersig J, Yang L 2017 Nature 548 192
[12] Wanjura C, Slim J, Pino J, Brunelli M, Verhagen E, Nunnenkamp A 2023 Nat. Phys. 19 1429
[13] McDonald A, Pereg-Barnea T, Clerk A A 2018 Phys. Rev. X 8 041031
[14] Slim J J, Wanjura C C, Brunelli M, Pino J D, Nunnenkamp A, Verhagen E 2024 Nature 627 767
[15] Wang Q, Zhu C, Wang Y, Zhang B, Chong Y D 2022 Phys. Rev. B 106 024301
[16] Qin Y, Li L 2024 Phys. Rev. Lett. 132 096501
[17] Jin L 2017 Phys. Rev. A 96 032103
[18] Jin L, Song Z 2019 Phys. Rev. B 99 081103
[19] Zhang S M, Xu H S, Jin L 2023 Phys. Rev. A 108 023518
[20] Zhang S M, Jin L 2020 Phys. Rev. Res. 2 033127
[21] Kawabata K, Shiozaki K, Ryu S 2021 Phys. Rev. Lett. 126 216405
[22] Zhu W, Gong J 2022 Phys. Rev. B 106 035425
[23] Mu S, Zhou L, Li L, Gong J 2022 Phys. Rev. B 105 205402
[24] Song F, Yao S, Wang Z 2019 Phys. Rev. Lett. 123 170401
[25] Cao W, Lu X, Meng X, Sun J, Shen H, Xiao Y 2020 Phys. Rev. Lett. 124 030401
[26] Zhang Z, Zhang F, Xu Z, Hu Y, Bao H, Shen H 2024 Phys. Rev. Lett. 133 133601
[27] Başar G m c, Dunne G V 2008 Phys. Rev. Lett. 100 200404
[28] Takahashi D A, Nitta M 2013 Phys. Rev. Lett. 110 131601
[29] Kitaev A Y 2001 Phys.-Usp. 44 131
[30] Wang Z H, Xu F, Li L, Xu D H, Chen W Q, Wang B 2021 Phys. Rev. B 103 134507
[31] Wang Z H, Xu F, Li L, Xu D H, Wang B 2022 Phys. Rev. B 105 024514
[32] Qian K, Apigo D J, Padavić K, Ahn K H, Vishveshwara S, Prodan C 2023 Phys. Rev. Res. 5 L012012
[33] Lieu S 2019 Phys. Rev. B 100 085110
[34] Zhao X M, Guo C X, Kou S P, Zhuang L, Liu W M 2021 Phys. Rev. B 104 205131
[35] Okuma N, Kawabata K, Shiozaki K, Sato M 2020 Phys. Rev. Lett. 124 086801
[36] Wang L W, Lin Z K, Jiang J H 2023 Phys. Rev. B 108 195126
[37] Miao J J, Jin H K, Zhang F C, Zhou Y 2017 Phys. Rev. Lett. 118 267701
[38] Kawabata K, Okuma N, Sato M 2020 Phys. Rev. B 101 195147
[39] Yokomizo K, Yoda T, Ashida Y 2024 Phys. Rev. B 109 115115
[40] Wang K, Li T, Xiao L, Han Y, Yi W, Xue P 2021 Phys. Rev. Lett. 127 270602
[41] Bonderson P, Kitaev A, Shtengel K 2006 Phys. Rev. Lett. 96 016803
[42] Barnett R 2013 Phys. Rev. A 88 063631
[43] Galilo B, Lee D K K, Barnett R 2015 Phys. Rev. Lett. 115 245302
[44] Engelhardt G, Benito M, Platero G, Brandes T 2016 Phys. Rev. Lett. 117 045302
[45] Peano V, Houde M, Marquardt F, Clerk A A 2016 Phys. Rev. X 6 041026
[46] Flynn V P, Cobanera E, Viola L 2020 New J. Phys. 22 083004
[47] Wang Y X, Clerk A A 2019 Phys. Rev. A 99 063834
[48] Blinova P, Moiseev E, Wang K 2024 Phys. Rev. Res. 6 043209
[49] Luo X W, Zhang C, Du S 2022 Phys. Rev. Lett. 128 173602
[50] Yokomizo K, Murakami S 2021 Phys. Rev. B 103 165123
[51] Zhou K, Zeng B, Hu Y 2025 Phys. Rev. B 111 224308
[52] Qi L, Yan Y, Wang G L, Zhang S, Wang H F 2019 Phys. Rev. A 100 062323
[53] Flynn V P, Cobanera E, Viola L 2021 Phys. Rev. Lett. 127 245701
[54] Gong Z, Jonsson R H, Malz D 2022 Phys. Rev. B 105 085423
[55] Wang Y N, You W L, Sun G 2022 Phys. Rev. A 106 053315
[56] Bilitewski T, Rey A M 2023 Phys. Rev. Lett. 131 053001
[57] Busnaina J H, Shi Z, Mcdonald A, Dubyna D, Nsanzineza I, Hung J S C, Chang C W S, Clerk A A, Wilson C M 2024 Nat. Commun. 15 3065
[58] He D K, Song Z 2025 Phys. Rev. B 111 035131
[59] Wan L L, Lü X Y 2023 Phys. Rev. Lett. 130 203605
[60] Chaudhary G, Levin M, Clerk A A 2021 Phys. Rev. B 103 214306
[61] Peng B, Özdemir S K, Rotter S, Yilmaz H, Liertzer M, Monifi F, Bender C M, Nori F, Yang L 2014 Science 346 328
[62] Jing H, Özdemir S K, Lü X Y, Zhang J, Yang L, Nori F 2014 Phys. Rev. Lett. 113 053604
[63] Macieszczak K, Guţă M, Lesanovsky I, Garrahan J P 2016 Phys. Rev. Lett. 116 240404
[64] Minganti F, Biella A, Bartolo N, Ciuti C 2018 Phys. Rev. A 98 042118
[65] Shi M, Bao G, Guo J, Zhang W 2025 Phys. Rev. Res. 7 L022034
[66] Thapliyal K, Jr J P, Chimczak G, Kowalewska-Kudłaszyk A, Miranowicz A 2024 arXiv:2405.01666
[67] Jr J P, Thapliyal K, Chimczak G, Kowalewska-Kudłaszyk A, Miranowicz A 2024 arXiv:2405.01667
[68] Yu C, Tian M, Kong N, Fadel M, Huang X, He Q 2025 arXiv:2502.04639
[69] Liu C H, Li F, Du S, Wen J, Yang L, Zhang C 2024 arXiv:2404.03803
[70] Li Y, Liu Y C 2023 Phys. Rev. A 108 062405
[71] Lee G, Jin T, Wang Y X, McDonald A, Clerk A 2024 PRX Quantum 5 010313
[72] Colpa J 1978 Physica A 93 327
[73] Shindou R, Matsumoto R, Murakami S, Ohe J i 2013 Phys. Rev. B 87 174427
[74] Matsumoto R, Shindou R, Murakami S 2014 Phys. Rev. B 89 054420
[75] Lieu S 2018 Phys. Rev. B 98 115135
[76] Ohashi T, Kobayashi S, Kawaguchi Y 2020 Phys. Rev. A 101 013625
[77] Vishveshwara S, Weld D M 2021 Phys. Rev. A 103 L051301
[78] Ling H Y, Kain B 2021 Phys. Rev. A 104 013305
[79] Okuma N 2022 Phys. Rev. B 105 224301
[80] Lo H, Wang Y, Banerjee R, Zhang B, Chong Y D 2025 Phys. Rev. B 111 L241401
[81] Born M 1949 Rev. Mod. Phys. 21 463
[82] Case K M 1957 Rev. Mod. Phys. 29 651
[83] Khanikaev A B, Mousavi S H, Shvets G, Kivshar Y S 2010 Phys. Rev. Lett. 105 126804
[84] Guo X, Zou C L, Jung H, Tang H X 2016 Phys. Rev. Lett. 117 123902
[85] Lira H, Yu Z, Fan S, Lipson M 2012 Phys. Rev. Lett. 109 033901
[86] Clerk A A, Devoret M H, Girvin S M, Marquardt F, Schoelkopf R J 2010 Rev. Mod. Phys. 82 1155
[87] Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803
[88] Yokomizo K, Murakami S 2019 Phys. Rev. Lett. 123 066404
[89] Yang Z, Zhang K, Fang C, Hu J 2020 Phys. Rev. Lett. 125 226402
[90] Wang W, Wang X, Ma G 2022 Nature 608 50
[91] Song F, Yao S, Wang Z 2019 Phys. Rev. Lett. 123 246801
[92] Helbig T, Hofmann T, Imhof S, Abdelghany M, Kiessling T, Molenkamp L W, Lee C H, Szameit A, Greiter M, Thomale R 2020 Nat. Phys. 16 747
[93] Zhang K, Yang Z, Fang C 2020 Phys. Rev. Lett. 125 126402
[94] Yuen H P 1976 Phys. Rev. A 13 2226
[95] Caves C M 1981 Phys. Rev. D 23 1693
[96] Slusher R E, Hollberg L W, Yurke B, Mertz J C, Valley J F 1985 Phys. Rev. Lett. 55 2409
[97] Caves C M, Schumaker B L 1985 Phys. Rev. A 31 3068
[98] Grangier P, Slusher R E, Yurke B, LaPorta A 1987 Phys. Rev. Lett. 59 2153
[99] Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706
[100] Arandes O, Bergholtz E J 2025 Phys. Rev. Res. 7 013309
[101] Pino J, Slim J, Verhagen E 2022 Nature 606 82
[102] Jia X, Zhai C, Zhu X, You C, Cao Y, Zhang X, Zheng Y, Fu Z, Mao J, Dai T, Chang L, Su X, Gong Q, Wang J 2025 Nature 639 329
[103] Wang Z, Li K, Wang Y, Zhou X, Cheng Y, Jing B, Sun F, Jincheng L, Li Z, Wu B, Gong Q, He Q, Li B, Yang Q F 2025 Light: Sci. Appl. 14 164
[104] von Lüpke U, Rodrigues I, Yang Y, Fadel M, Chu Y 2024 Nat. Phys. 20 564
[105] Marti S, von Lüpke U, Joshi O, Yang Y, Bild M, Omahen A, Chu Y, Fadel M 2024 Nat. Phys. 20 1448
Metrics
- Abstract views: 10
- PDF Downloads: 0
- Cited By: 0









下载: